JPH0813328B2 - Catalyst composition for hydrotreatment of hydrocarbon oil and hydrodesulfurization method using the same - Google Patents

Catalyst composition for hydrotreatment of hydrocarbon oil and hydrodesulfurization method using the same

Info

Publication number
JPH0813328B2
JPH0813328B2 JP2076408A JP7640890A JPH0813328B2 JP H0813328 B2 JPH0813328 B2 JP H0813328B2 JP 2076408 A JP2076408 A JP 2076408A JP 7640890 A JP7640890 A JP 7640890A JP H0813328 B2 JPH0813328 B2 JP H0813328B2
Authority
JP
Japan
Prior art keywords
catalyst
carrier
weight
hours
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2076408A
Other languages
Japanese (ja)
Other versions
JPH03275143A (en
Inventor
一司 薄井
貢 湯本
貴志 藤川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Original Assignee
Cosmo Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd filed Critical Cosmo Oil Co Ltd
Priority to JP2076408A priority Critical patent/JPH0813328B2/en
Publication of JPH03275143A publication Critical patent/JPH03275143A/en
Publication of JPH0813328B2 publication Critical patent/JPH0813328B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、炭化水素油各留分及び炭化水素油残渣油の
高度な水素化精製、特に水素化脱硫処理に使用される触
媒組成物、詳しくは通常この種の触媒担体に用いられて
いるアルミナに、シリカ及びチタニアを特定量添加する
ことにより、担体の酸度を適度にコントロールし、かつ
触媒に特定の細孔分布を付与して、炭化水素油の脱硫活
性を向上させた触媒組成物と、この触媒組成物を使用す
る炭化水素油の水素化脱硫方法とに関する。
TECHNICAL FIELD The present invention relates to a catalyst composition used for advanced hydrorefining of hydrocarbon oil fractions and hydrocarbon oil residual oil, particularly hydrodesulfurization treatment, More specifically, by adding a specific amount of silica and titania to alumina which is usually used for this type of catalyst carrier, the acidity of the carrier is moderately controlled, and a specific pore distribution is imparted to the catalyst. The present invention relates to a catalyst composition having improved desulfurization activity of hydrogen oil, and a hydrodesulfurization method of hydrocarbon oil using the catalyst composition.

〔従来の技術〕 従来、一般に、炭化水素油の接触水素化処理方法にお
いては、耐火性酸化物担体に周期律表第6B族及び周期律
表第8族の群から選択される1種又は2種以上の金属を
担持させた触媒が使用されている。
[Prior Art] Conventionally, generally, in a catalytic hydrotreating method for hydrocarbon oils, the refractory oxide carrier is one or two selected from the groups of Group 6B and Group 8 of the Periodic Table. Catalysts supporting more than one metal have been used.

例えば、アルミナに担持させたコバルト−モリブデン
系又はニッケル−モリブデン系等の水素化処理用触媒が
広く使用されており、これにより脱硫、脱窒素、水素化
脱金属、脱アスファルテン及び水素化分解等が種々の目
的に応じて実施されている。
For example, a catalyst for hydrotreatment such as cobalt-molybdenum-based or nickel-molybdenum-based supported on alumina is widely used, and by this, desulfurization, denitrification, hydrodemetallization, deasphaltene, hydrocracking, etc. It is implemented according to various purposes.

このような水素化処理用触媒に要求される性能は、高
活性で、かつその性能がいかに長期間維持できるかとい
うことである。
The performance required for such a hydrotreating catalyst is high activity and how the performance can be maintained for a long period of time.

そのためには、先ず、活性金属を担体上にいかに多量
に、しかも高度に分散させた状態で担持させ、有効な活
性点をいかに多量に発現できるかにある。
For that purpose, first, how much active metal can be carried on a carrier in a highly dispersed state and how many effective active sites can be expressed.

次いで、原料炭化水素油中に含まれる目的反応物質及
び種々の触媒被毒物質のうち、目的反応物質のみを効率
良く触媒の活性点上に近接させ、触媒被毒物質を極力近
づけないようなガード機能をいかに保持させるかにあ
る。
Next, of the target reactants and various catalyst poisoning substances contained in the raw hydrocarbon oil, only the target reactant is efficiently brought close to the active point of the catalyst, and the guard is made to keep the catalyst poisoning substances as close as possible. It is how to retain the function.

前者の対策としては、高い比表面積を有する担体を使
用すること、後者の対策としては、表面積を減少させな
い範囲で目的物質の分子サイズと触媒被毒物質の分子サ
イズを考慮しながら、触媒の細孔径を制御することが提
案され、また一般に実施されているのが現状である。
As a measure against the former, use a carrier with a high specific surface area.As a measure against the latter, consider the molecular size of the target substance and the molecular size of the catalyst poisoning substance within a range that does not reduce the surface area, and At present, it is proposed and generally practiced to control the pore size.

また、アルミナにシリカ及びチタニアを添加すること
により酸性度を高め、脱硫活性ではなく分解活性を期待
した触媒も提案されている。
Further, a catalyst has been proposed in which the acidity is increased by adding silica and titania to alumina to expect decomposition activity rather than desulfurization activity.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

ところで、従来提供されている触媒には、次のような
問題がある。
By the way, the conventionally provided catalyst has the following problems.

触媒の物性として、高表面積を得るために平均細孔径
を小さくすることは、活性金属の分散性を高めるという
点では良い。しかし、触媒毒たる巨大分子の金属成分等
により、小さい細孔は容易に閉塞されてしまう。
As for the physical properties of the catalyst, it is good to reduce the average pore size in order to obtain a high surface area in order to enhance the dispersibility of the active metal. However, the small pores are easily blocked by the metal component of the macromolecule which is a catalyst poison.

逆に、平均細孔径を大きくすると、細孔内部まで金属
等の触媒被毒物質の蓄積が可能となるという点で好まし
い。しかし、表面積は小さくなり、活性金属の分散性は
劣る。
On the contrary, increasing the average pore diameter is preferable in that the catalyst poisoning substance such as a metal can be accumulated inside the pores. However, the surface area is small and the dispersibility of the active metal is poor.

このように、活性と寿命に対し、いかなる平均細孔径
のものとするかは、極めて難しい問題である。
As described above, what kind of average pore size should be used for activity and life is a very difficult problem.

また、アルミナにシリカ及びチタニアを添加すること
についても、酸性度が高過ぎると、脱硫活性は期待し得
ない。
Also, regarding the addition of silica and titania to alumina, if the acidity is too high, desulfurization activity cannot be expected.

本発明が解決しようとする課題は、脱硫活性に優れた
水素化処理用触媒を開発することにある。
The problem to be solved by the present invention is to develop a hydrotreating catalyst having excellent desulfurization activity.

更に詳しくは、第1に、活性金属の分散性を高めるの
に充分で、かつ触媒毒たる炭素析出物やヘテロ化合物等
による閉塞が起こらない最適な平均細孔径や細孔分布を
見い出すことにある。第2に、触媒上に脱硫活性を最大
限に高め得る酸性点をいかに付与するかにある。
More specifically, firstly, it is to find an optimum average pore size and pore distribution that are sufficient to enhance the dispersibility of the active metal and do not cause clogging by carbon deposits or hetero compounds that are catalyst poisons. . Secondly, how to provide an acidic point on the catalyst that can maximize the desulfurization activity.

〔課題を解決するための手段〕[Means for solving the problem]

本発明者等は、上記課題を解決するために、鋭意研究
を重ねた結果、アルミナ担体に一定の割合でシリカ及び
チタニアを配合すれば、アルミナ担体が分解よりも脱硫
に好都合の酸性質を有し、かつ触媒が特定の平均細孔径
及び細孔分布を有するようになり、このような触媒が炭
化水素の脱硫活性を一段と高めることを見い出し、本発
明を完成するに至った。
The present inventors have conducted extensive studies in order to solve the above-mentioned problems, and as a result, if silica and titania are blended in a fixed ratio in an alumina carrier, the alumina carrier has an acid property that is more favorable for desulfurization than decomposition. In addition, it has been found that the catalyst has a specific average pore diameter and a specific pore distribution, and such a catalyst further enhances the desulfurization activity of hydrocarbons, thus completing the present invention.

すなわち、本発明は、 (1)アルミナ,シリカ及びチタニアからなる触媒担体
に、触媒活性成分として、周期律表第6B族から選ばれる
少なくとも1種の金属を触媒基準で酸化物換算で7〜25
重量%、及び周期律表第8族から選ばれる少なくとも1
種の金属を触媒基準で酸化物換算で3〜6重量%担持さ
せてなり、上記触媒担体中のシリカ及びチタニアが担体
基準で夫々1〜10重量%であり、かつ上記触媒の細孔特
性が、 (1)水銀ポロシメータ圧入法で測定した平均細孔直径
が50〜100Å, (2)平均細孔直径50〜100Åの細孔が占める容積が全
細孔容積の少なくとも50%, (3)比表面積が少なくとも150m2/g, (4)全細孔容積が0.4〜1.5ml/g, であることを特徴とする炭化水素油の水素化処理用触媒
組成物、及び、 (2)上記の触媒組成物を使用することを特徴とする炭
化水素油の水素化脱硫方法、 を要旨とする。
That is, the present invention provides (1) a catalyst carrier comprising alumina, silica, and titania, which contains, as a catalytically active component, at least one metal selected from Group 6B of the periodic table in an amount of 7 to 25 in terms of oxide based on the catalyst.
%, And at least 1 selected from Group 8 of the periodic table
3 to 6% by weight of a metal of the catalyst is calculated in terms of oxide, and silica and titania in the catalyst carrier are 1 to 10% by weight on the carrier basis, and the pore characteristics of the catalyst are , (1) The average pore diameter measured by the mercury porosimeter press-fitting method is 50 to 100Å, (2) The volume occupied by pores with an average pore diameter of 50 to 100Å is at least 50% of the total pore volume, and (3) ratio. A surface area of at least 150 m 2 / g, (4) a total pore volume of 0.4 to 1.5 ml / g, a catalyst composition for hydrotreating a hydrocarbon oil, and (2) the above catalyst A method for hydrodesulfurizing a hydrocarbon oil characterized by using a composition.

本発明における「全細孔容積」とは、実在する細孔の
容積を全部測定することは不可能であるので、水銀ポロ
シメータによる4225Kg/cm2・G(60000psig)での水銀
吸収量をもって全細孔容積とみなしたものをいう。
The "total pore volume" in the present invention is not possible to measure the volume of all existing pores, so the mercury absorption amount at 4225 Kg / cm 2 · G (60000 psig) measured by a mercury porosimeter is the total fine pore volume. What is regarded as the pore volume.

また、本発明における「平均細孔直径」の値は、水銀
ポロシメータの圧力と触媒による水銀の吸収量との関係
を0〜4225Kg/cm2・Gについて求め、4225Kg/cm2・Gに
おける吸収量の1/2の吸収量を示した時の圧力から平均
細孔直径を求めたものである。なお、本発明では、水銀
の接触角は130゜、表面張力は470dyne/cmとして求め
た。水銀ポロシメータと圧力とそれに対応する細孔径と
の関係は、既に知られている。
The value of the "average pore diameter" in the present invention, the relationship between the absorption of mercury under pressure with a catalyst mercury porosimeter obtained for 0~4225Kg / cm 2 · G, the amount absorbed in the 4225Kg / cm 2 · G The average pore diameter is obtained from the pressure when the absorption amount of 1/2 is shown. In the present invention, the contact angle of mercury was 130 ° and the surface tension was 470 dyne / cm. The relationship between the mercury porosimeter and the pressure and the corresponding pore size is already known.

本発明触媒の平均細孔直径は、約50〜100Å、好まし
くは約60〜95Åである。平均細孔直径が小さ過ぎると、
触媒毒たる炭素質やヘテロ分子が表面上に堆積し、反応
物たる炭化水素油の細孔内部への拡散が起こりにくくな
り、脱硫が低下する。逆に、平均細孔直径が大き過ぎる
と、比表面積が低下し、水素化脱硫活性が低下する。
The average pore diameter of the catalyst of the present invention is about 50 to 100Å, preferably about 60 to 95Å. If the average pore diameter is too small,
A carbonaceous substance or a hetero molecule, which is a catalyst poison, is deposited on the surface, and it becomes difficult for the hydrocarbon oil, which is a reactant, to diffuse into the inside of the pores, and desulfurization is reduced. On the other hand, if the average pore diameter is too large, the specific surface area decreases and the hydrodesulfurization activity decreases.

本発明触媒の平均細孔直径50〜100Åの細孔の占める
容積は、触媒の全細孔容積の少なくとも約50%、好まし
くは70%以上である。上記のように、特定の平均細孔直
径を有していても、その平均細孔直径50〜100Åの細孔
の占める容積が少な過ぎると、脱硫活性が低下してしま
う。
The volume of pores having an average pore diameter of 50 to 100Å of the catalyst of the present invention is at least about 50%, preferably 70% or more of the total pore volume of the catalyst. As described above, even if it has a specific average pore diameter, if the volume occupied by the pores having an average pore diameter of 50 to 100 Å is too small, the desulfurization activity will decrease.

本発明触媒の単位重量当たりの表面積すなわち比表面
積は、少なくとも約150m2/g、好ましくは約200〜300m2/
g以上である。比表面積が小さ過ぎると、活性点が減少
し、優れた脱硫活性を示さない。
Surface area i.e. the specific surface area per unit weight of the catalyst of the present invention, at least about 150 meters 2 / g, preferably about 200 to 300 m 2 /
g or more. If the specific surface area is too small, the number of active sites is reduced and excellent desulfurization activity is not exhibited.

本発明触媒の全細孔容積は、約0.4〜1.5ml/g、好まし
くは約0.45〜0.8ml/gである。全細孔容積の占める割合
が少ないと被毒物質に対する耐性が小さく、実用に耐え
ない。
The total pore volume of the catalyst of the present invention is about 0.4 to 1.5 ml / g, preferably about 0.45 to 0.8 ml / g. When the proportion of the total pore volume is small, the resistance to poisonous substances is small and it cannot be practically used.

本発明触媒は、周期律表第6B族及び第8族の有効金属
成分を実質的にアルミナ,シリカ及びチタニアからなる
担体に担持させた水素化処理用触媒である。
The catalyst of the present invention is a hydrotreating catalyst in which effective metal components of Groups 6B and 8 of the Periodic Table are supported on a carrier substantially composed of alumina, silica and titania.

担体の一部であるアルミナとしては、γ−アルミナ、
χ−アルミナ、又はη−アルミナのいずれか1種又はこ
れらの混合体が好適である。
As the alumina which is a part of the carrier, γ-alumina,
Any one of χ-alumina and η-alumina or a mixture thereof is suitable.

本発明触媒の担体中、シリカ及びチタニアは、担体基
準で夫々約1〜10重量%、好ましくは約3〜8重量%で
ある。少な過ぎると、触媒としての必要な適度の酸強度
が得られず、深度の脱硫には適さない。多過ぎると、本
質的な脱硫活性が低下する。
In the carrier of the catalyst of the present invention, silica and titania are each about 1 to 10% by weight, preferably about 3 to 8% by weight, based on the carrier. If the amount is too small, a suitable acid strength required as a catalyst cannot be obtained, which is not suitable for deep desulfurization. If too much, the essential desulfurization activity is reduced.

本発明触媒は、通常の調製法により調製することがで
きる。
The catalyst of the present invention can be prepared by a usual preparation method.

アルミナ−シリカ−チタニア担体の調製法としては、
アルミナ,シリカ及びチタニアの各ゲルを予め調製して
おき、これらを混合する方法、シリカゲル,チタニアゲ
ルをアルミニウム化合物の溶液に浸漬した後に、アルミ
ナゲルをシリカゲル及びチタニアゲルに沈着させる方
法、水溶性アルミニウム化合物,水溶性ケイ素化合物及
び水溶性チタン化合物との均一混合溶液に塩基性物質を
添加し、三者を共沈させる方法等を採用することができ
る。
As a method for preparing the alumina-silica-titania carrier,
Alumina, silica and titania gels are prepared in advance, a method of mixing these, silica gel, a method of precipitating alumina gel on silica gel and titania gel after immersing the titania gel in a solution of an aluminum compound, a water-soluble aluminum compound, A method of adding a basic substance to a homogeneous mixed solution of a water-soluble silicon compound and a water-soluble titanium compound and coprecipitating the three can be adopted.

特に好ましい調製法は、アルミナ,シリカ及びチタニ
アの各ゲルを予め調製しておき、これらを混合する方法
である。
A particularly preferable preparation method is a method in which each gel of alumina, silica and titania is prepared in advance and then these are mixed.

アルミナゲルの調製法は、公知の方法を用いることが
できる。
As a method for preparing the alumina gel, a known method can be used.

例えば、硫酸アルミニウム,硝酸アルミニウム等のア
ルミニウム塩をアンモニウムのような塩基で中和し、あ
るいはアルミン酸ナトリウムのようなアルミン酸塩を酸
性アルミニウム塩又は酸で中和し、生成したゲルを洗浄
して得ることができる。また、アルミニウムアルコキシ
ドを加水分解して得ることもできる。
For example, an aluminum salt such as aluminum sulfate or aluminum nitrate is neutralized with a base such as ammonium, or an aluminate such as sodium aluminate is neutralized with an acidic aluminum salt or acid, and the formed gel is washed. Obtainable. It can also be obtained by hydrolyzing an aluminum alkoxide.

シリカゲルの調製法も、公知の方法を用いることがで
きる。
As a method for preparing silica gel, a known method can be used.

例えば、水ガラスをイオン交換水に溶解させ、その溶
液に硫酸を適宜添加し、pHを約6.0〜11.0に調整しなが
ら、この懸濁液を約50〜90℃に加熱し、少なくとも1〜
3時間保持する。その後、沈澱をフィルターでロ別し、
炭酸アンモニウム及び水で洗浄し、不純物イオンを除去
して得ることができる。また、アルコキシシランを加水
分解することによっても得ることができる。チタニアゲ
ルの調製法も、公知の方法を用いることができる。
For example, water glass is dissolved in ion-exchanged water, sulfuric acid is appropriately added to the solution, and the suspension is heated to about 50 to 90 ° C while adjusting the pH to about 6.0 to 11.0, and at least 1 to 1
Hold for 3 hours. After that, the precipitate was filtered with a filter,
It can be obtained by washing with ammonium carbonate and water to remove impurity ions. It can also be obtained by hydrolyzing an alkoxysilane. As a method for preparing the titania gel, a known method can be used.

例えば、チタンの硫酸塩,塩化物,硝酸塩をイオン交
換水で希釈させ、その水溶液にアンモニア水,硝酸塩等
を適宜添加し、pHを調整しながら、この懸濁液を約50〜
90℃に加熱し、少なくとも1〜3時間保持する。その
後、沈澱をフィルターでロ別し、炭酸アンモニウム及び
水で洗浄し、不純物イオンを除去して得ることができ
る。また、チタンアルコキシドを加水分解することによ
っても得ることができる。
For example, titanium sulfate, chloride, and nitrate are diluted with ion-exchanged water, aqueous ammonia, nitrate, etc. are appropriately added to the aqueous solution, and the suspension is adjusted to about 50-
Heat to 90 ° C. and hold for at least 1-3 hours. Then, the precipitate can be filtered off, washed with ammonium carbonate and water to remove impurity ions, and obtained. It can also be obtained by hydrolyzing a titanium alkoxide.

次に、これら3種のゲルを物理的に混合し、スプレー
ドライヤ等を用いて乾燥する。このようにして得られた
ゲルを、特定の細孔あるいは細孔分布を得るために、所
望の条件にて、押し出し成型機により成型後、乾燥し、
約400〜700℃で約1〜5時間焼成して担体を得る。
Next, these three gels are physically mixed and dried using a spray dryer or the like. The gel thus obtained, in order to obtain specific pores or pore distribution, under desired conditions, after molding by an extrusion molding machine, dried,
The carrier is obtained by calcining at about 400 to 700 ° C. for about 1 to 5 hours.

担体は、通常、当業界で良く知られている方法により
成形粒子につくられる。好ましい方法は、所望の担体の
前駆物質、例えば、噴霧乾燥した、又は解凝固したアル
ミナ−シリカ−チタニアゲルのような無機耐火性酸化物
ゲルを、所望の寸法及び形状の開口を有するダイスを介
して押し出し、この後この押し出したもを所望の長さに
切断する方法である。
The carrier is usually formed into shaped particles by methods well known in the art. A preferred method is to provide a precursor of the desired carrier, for example, an inorganic refractory oxide gel, such as a spray dried or peptized alumina-silica-titania gel, through a die having openings of the desired size and shape. This is a method of extruding and then cutting the extruded pieces to a desired length.

本発明触媒の調製にあたっては、最初担体粒子が最終
触媒と同様の細孔容積分布を有するのがよいが、これは
必ずしも必要なことではない。ここで注意すべきこと
は、担体粒子にニッケル及びモリブデン等の活性金属を
担持させた場合に、水銀の接触角が変化するため、一般
的に、担体粒子よりも10〜20Å程度細孔直径が大きい値
に移行する傾向となることである。従って、担体粒子の
平均細孔直径が希望の値より若干小さくとも、以降の含
浸,焼成及び触媒調製工程により、ここで必要とされる
最終触媒組成物を得ることができる。
In preparing the catalyst of the present invention, it is preferable that the carrier particles initially have a pore volume distribution similar to that of the final catalyst, but this is not always necessary. Here, it should be noted that when the carrier particles carry active metals such as nickel and molybdenum, the contact angle of mercury changes, and therefore, generally, the pore diameter is about 10 to 20 Å more than the carrier particles. It tends to shift to a larger value. Therefore, even if the average pore diameter of the carrier particles is slightly smaller than the desired value, the final catalyst composition required here can be obtained by the subsequent impregnation, calcination and catalyst preparation steps.

本発明触媒の特徴である前記の特性を発現させるため
には、担体調製の際に、アルミナゲルあるいはチタニゲ
ルに酸及び塩基性窒素化合物を添加するか、ポリビニル
アルコール,ポリエチレングリコール,結晶性セルロー
ス等の有機成形助剤を添加するため、あるいはメチルア
ルコール,エチルアルコール,n−ブチルアルコール当の
アルコールを添加することが望ましい。
In order to express the above-mentioned characteristics which are the characteristics of the catalyst of the present invention, an acid and a basic nitrogen compound are added to alumina gel or titanigel at the time of carrier preparation, or polyvinyl alcohol, polyethylene glycol, crystalline cellulose, etc. It is desirable to add an organic molding aid or an alcohol such as methyl alcohol, ethyl alcohol or n-butyl alcohol.

担体への第6B族金属及び第8族金属成分の担持方法
も、通常の方法により行うことができる。
The method for supporting the Group 6B metal and Group 8 metal components on the carrier can also be carried out by a usual method.

例えば、担体をこれら水素化活性金属成分を含有する
溶液中に浸漬したり、担体とこの溶液を混合させたり、
担体上にこの溶液を滴下させたり、担体を溶液中に浸漬
した状態で水素化活性金属成分の沈澱剤を加え担体上に
水素化活性金属成分を沈着させる等、担体を水素化活性
金属成分を含有する溶液と接触させることにより、担体
上に水素化活性金属成分を担持させる方法が採用でき
る。
For example, the carrier is immersed in a solution containing these hydrogenation-active metal components, or the carrier and this solution are mixed,
This solution is dropped onto the carrier, or a hydrogenation-active metal component is deposited on the carrier by adding a precipitant for the hydrogenation-active metal component while the carrier is immersed in the solution. A method of supporting the hydrogenation active metal component on the carrier by bringing it into contact with the solution containing it can be adopted.

また、周期律表第6B族と第8族の担持順位は、どちら
が先でもよいし、また同時でもよい。
Further, as for the carrying order of the 6B group and the 8th group of the periodic table, either one may come first, or both may be carried simultaneously.

周期律表第6B族金属の溶液として使用できる例えばモ
リブデン化合物としては、パラモリブデン酸アンモニウ
ム,モリブデン酸,モリブデン酸アンモニウム,リンモ
リブデン酸アンモニウム,リンモリブデン酸等があり、
また周期律表第8族金属の溶液として使用できる例えば
ニッケル化合物としては、ニッケルの硝酸塩,硫酸塩,
フッ化物,塩化物,臭化物,酢酸塩,炭酸塩,リン酸塩
等がある。これ以外にも、この種の分野において利用で
きるとして当業者間に公知の周期律表第6B族及び第8族
金属化合物が利用できる。
Examples of molybdenum compounds that can be used as a solution of Group 6B metal of the periodic table include ammonium paramolybdate, molybdic acid, ammonium molybdate, ammonium phosphomolybdate, phosphomolybdic acid, and the like.
Further, as a nickel compound which can be used as a solution of Group 8 metal of the periodic table, for example, nickel nitrate, sulfate,
There are fluorides, chlorides, bromides, acetates, carbonates, phosphates, etc. In addition to these, metal compounds of Group 6B and Group 8 of the periodic table known to those skilled in the art as usable in this type of field can be used.

以上のようにして処理した後、通常の方法により、乾
燥、焼成後を行うことが好ましい。
After the treatment as described above, it is preferable to carry out drying and baking by a usual method.

乾燥は、通常、常温ないし約150℃、特に約100〜120
℃で、約5時間以上、特に約12〜24時間保持するのが好
ましく、焼成は、通常、常温ないし約350〜600℃、特に
約400〜550℃で、約3時間以上、特に約12〜24時間保持
するのが好ましい。
Drying is usually at room temperature to about 150 ° C, especially about 100 to 120
It is preferable to hold at about 5 hours or more, particularly about 12 to 24 hours, and the firing is usually from room temperature to about 350 to 600 ° C, especially about 400 to 550 ° C, about 3 hours or more, especially about 12 to 12 hours. It is preferable to hold it for 24 hours.

本発明触媒は、触媒基準で、通常、酸化物として計算
して約7〜25重量%、好ましくは約10〜20重量%の第6B
族金属と、約3〜6重量%、好ましくは約3〜5重量%
の第8族金属とを含有する。これらの水素化活性金属成
分は、上記の焼成後の触媒中において、大部分が酸化物
となり、一部が単体元素となっていると考えられる。
The catalyst of the present invention is usually about 7 to 25% by weight, preferably about 10 to 20% by weight, of 6B, calculated as oxide, based on the catalyst.
Group metal and about 3 to 6% by weight, preferably about 3 to 5% by weight
And a Group 8 metal of It is considered that most of these hydrogenation-active metal components become oxides and some become elemental elements in the above-mentioned catalyst after calcination.

本発明触媒を硫化物の形態で使用する場合には、予備
硫化しておく。
When the catalyst of the present invention is used in the form of sulfide, it is pre-sulfided.

硫化の方法としては、約1.0重量%又はそれ以上の硫
黄を含有する炭化水素油や気相硫化物を、高温高圧下で
触媒上に通じる方法等が採用される。
As the sulfurization method, a method of passing a hydrocarbon oil or a gas phase sulfide containing about 1.0% by weight or more of sulfur on a catalyst under high temperature and high pressure is adopted.

以上詳述した本発明触媒の物理特性を第1表に示す。 The physical properties of the catalyst of the present invention detailed above are shown in Table 1.

本発明触媒を使用する本発明方法で適用することので
きる炭化水素油としては、原油の常圧蒸留留出油及び残
渣,減圧蒸留留出油及び残渣,ビスブレーキング油,タ
ールサンド油,シェールオイル等が挙げられる。
Hydrocarbon oils applicable to the process of the present invention using the catalyst of the present invention include atmospheric distillate distillates and residues of crude oil, vacuum distillate distillates and residues, visbreaking oils, tar sands oils, and shale. Examples include oil.

特に、本発明触媒は、灯油留分及び軽油留分のような
中質留出油、減圧蒸留の重質留出油、アスファルトを含
有する残渣油、あるいはこれらの混合油の水素化処理を
実施するのに好適である。
In particular, the catalyst of the present invention is a medium distillate oil such as a kerosene fraction and a light oil fraction, a heavy distillate oil under reduced pressure distillation, a residual oil containing asphalt, or a hydrotreatment of these mixed oils. It is suitable for

また、本発明方法における水素化処理条件は、温度約
200〜450℃,圧力約10〜200Kg/cm2,LHSV(液空間速度)
約0.1〜5.0Hr-1とすることが好ましい。
Further, the hydrotreating condition in the method of the present invention is that the temperature is about
200-450 ℃, Pressure about 10-200Kg / cm 2 , LHSV (Liquid space velocity)
It is preferably about 0.1 to 5.0 Hr -1 .

〔作用〕[Action]

本発明触媒では、アルミナ担体にシリカ及びチタニア
を含有させているため、シリカ原子あるいはチタン原子
と酸素原子がアルミナ上のアルミニウム原子と化学的に
結合して、新たに酸性点を形成し、水素化活性金属の脱
硫活性を向上させる。
In the catalyst of the present invention, since silica and titania are contained in the alumina carrier, silica atoms or titanium atoms and oxygen atoms chemically bond with aluminum atoms on alumina to form new acidic points and hydrogenate. Improves desulfurization activity of active metals.

このとき、シリカ及びチタニアを特定割合で含有させ
ているため、上記の酸性点は、炭化水素油の分解よりは
脱硫に好都合のものとなっている。
At this time, since silica and titania are contained in a specific ratio, the above-mentioned acidic point is more convenient for desulfurization than decomposition of hydrocarbon oil.

また、本発明触媒では、触媒の平均細孔直径と細孔分
布を厳密にコントロールすることにより、目的反応物質
の触媒内部への拡散を助長し、また触媒被毒物質に対す
る耐性を持たせ、かつ脱硫活性を向上させる。
Further, in the catalyst of the present invention, by strictly controlling the average pore diameter and the pore distribution of the catalyst, the diffusion of the target reactant into the catalyst is promoted, and resistance to the catalyst poisoning substance is imparted, and Improves desulfurization activity.

本発明方法では、このような本発明触媒を炭化水素油
の水素化処理で使用することにより、炭化水素油中の目
的物を脱硫活性の高い水素化活性金属が担持されている
触媒内部へ容易に拡散させ、高効率での脱硫を行うと共
に、該炭化水素油中の触媒被毒物質による本発明触媒活
性の低下を極力抑える。
In the method of the present invention, by using such a catalyst of the present invention in the hydrotreatment of a hydrocarbon oil, the target substance in the hydrocarbon oil can be easily transferred to the inside of the catalyst supporting the hydrogenation active metal having high desulfurization activity. And desulfurization with high efficiency, and at the same time, the deterioration of the catalytic activity of the present invention due to the catalyst poisoning substance in the hydrocarbon oil is suppressed as much as possible.

なお、本発明における「水素化処理」とは、炭化水素
油と水素との接触による処理を称し、比較的反応条件の
苛酷度の低い水素化精製、比較的苛酷度の高い若干の分
解反応を伴う水素化精製、水添異性化、水素化脱アルキ
ル化、その他の水素の存在下における炭化水素油の反応
を包含するものである。
Incidentally, the "hydrotreatment" in the present invention refers to a treatment by contacting a hydrocarbon oil with hydrogen, and comprises hydrorefining with relatively low severity of reaction conditions, and some cracking reaction with relatively high severity. It involves hydrorefining, hydroisomerization, hydrodealkylation, and other reactions of hydrocarbon oils in the presence of hydrogen.

例えば、常圧蒸留又は減圧蒸留の留出液及び残渣油の
水素化脱硫,水素化脱窒素,水素化分解を含み、また灯
油留分,軽油留分,ワックス,潤滑油留分の水素化精製
等を包含する。
For example, it includes hydrodesulfurization, hydrodenitrogenation, hydrocracking of distillate and residual oil of atmospheric distillation or vacuum distillation, and hydrorefining of kerosene fraction, gas oil fraction, wax, lubricating oil fraction. Etc. are included.

〔実施例〕〔Example〕

以下、実施例及び比較例を用いて本発明を更に具体的
に説明する。
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.

実施例1 アルミニウム−sec−ブトキシド200g,チタンテトライ
ソプロポキシド8.64g及びテトラエトキシシラン16.42g
をイソプロパノール4に溶解させた溶液を80℃で1時
間撹拌する。
Example 1 Aluminum-sec-butoxide 200 g, titanium tetraisopropoxide 8.64 g and tetraethoxysilane 16.42 g
Is dissolved in isopropanol 4 and stirred at 80 ° C. for 1 hour.

この溶液に、イオン交換水1Kgを徐々に滴下すると白
色沈澱が生じ、最終的に乳白色のスラリーになる。更
に、このスラリーを、80℃で3時間撹拌し続ける。
When 1 kg of ion-exchanged water was gradually added dropwise to this solution, a white precipitate was formed, and finally a milky white slurry was formed. Further, the slurry is kept stirring at 80 ° C. for 3 hours.

得られたスラリーをフィルターによりロ別後、加熱濃
縮して可塑性のあるゲルとし、このゲルを所望の細孔分
布を得るために圧力を調整しつつ押し出し成型し、乾
燥,焼成して触媒担体とした。
After filtering the obtained slurry with a filter, it is heated and concentrated to give a plastic gel, and the gel is extruded while adjusting the pressure to obtain the desired pore distribution, dried and fired to form a catalyst carrier. did.

この担体を20g秤取り、これに14.5mlのイオン交換水
に溶解させたモリブデン酸アンモニウム4.7gを加え、1
時間浸漬させ、風乾し、500℃にて12時間焼成した。
20 g of this carrier was weighed, and 4.7 g of ammonium molybdate dissolved in 14.5 ml of ion-exchanged water was added to this, and 1
It was soaked for an hour, air-dried, and baked at 500 ° C. for 12 hours.

次いで、硝酸コバルト5gを含むイオン交換水4.5mlを
含浸させ、風乾後、500℃で12時間焼成して触媒とし
た。
Then, 4.5 ml of ion-exchanged water containing 5 g of cobalt nitrate was impregnated, air-dried, and calcined at 500 ° C. for 12 hours to obtain a catalyst.

得られた触媒中には、酸化コバルトが4.9重量%,酸
化モリブデンが14.9重量%含まれていた。また、チタニ
ア,シリカは、夫々担体重量基準で、5重量%づつ含ま
れていた。
The obtained catalyst contained 4.9% by weight of cobalt oxide and 14.9% by weight of molybdenum oxide. Further, titania and silica were contained in an amount of 5% by weight, respectively, based on the weight of the carrier.

この触媒の比表面積は321m2/g,細孔容積は0.65ml/g,
水銀ポロシメータ圧入法で求めた平均細孔直径は80Åで
あった。
The specific surface area of this catalyst is 321 m 2 / g, the pore volume is 0.65 ml / g,
The average pore diameter determined by the mercury porosimeter press-fitting method was 80Å.

また、50〜100Åの細孔が占める容積は、全細孔容積
の80%であった(触媒A)。
Further, the volume occupied by 50 to 100 Å pores was 80% of the total pore volume (catalyst A).

実施例2 硝酸アルミニウム233gをイオン交換水600mlに溶解さ
せ、この水溶液を撹拌しながら28%アンモニア水280gと
イオン交換水600mlとの混合液に加えた。このとき、水
溶液のpHを9以上に保ち、そのまま4時間放置後、生成
した懸濁液をロ過した。ロ別された沈澱物を、1Nの炭酸
アンモニウム水溶液800ml中で50℃で12時間保持熟成
後、冷却し、再びロ過した。その後、更に0.2%アンモ
ニア水1.2で洗浄し、ロ過し、沈澱物を得た。
Example 2 233 g of aluminum nitrate was dissolved in 600 ml of ion-exchanged water, and this aqueous solution was added to a mixed liquid of 280 g of 28% ammonia water and 600 ml of ion-exchanged water while stirring. At this time, the pH of the aqueous solution was kept at 9 or higher, and the suspension thus formed was filtered after standing for 4 hours. The separated precipitate was kept and matured in 800 ml of 1N ammonium carbonate aqueous solution at 50 ° C. for 12 hours, cooled, and filtered again. Then, it was further washed with 0.2% ammonia water 1.2 and filtered to obtain a precipitate.

これとは別に、水ガラス(シリカ分3.8重量%含有)8
6gを、イオン交換水800mlに溶解させ、この水溶液を撹
拌しながら5Nの硫酸水溶液をpH7.5になるまで徐々に滴
下した。そのまま2時間撹拌の後、生成した懸濁液をロ
過した。ロ別した沈澱物を、イオン交換水5で5回洗
浄し、沈澱物を得た。
Separately, water glass (containing 3.8% by weight of silica) 8
6 g was dissolved in 800 ml of ion-exchanged water, and a 5N sulfuric acid aqueous solution was gradually added dropwise to this aqueous solution with stirring until the pH reached 7.5. After stirring for 2 hours as it was, the resulting suspension was filtered. The separated precipitate was washed 5 times with ion-exchanged water 5 to obtain a precipitate.

更に、30%硝酸チタン溶液110gをイオン交換水600ml
で希釈し、この水溶液を撹拌しながら10%アンモニア水
溶液をpH6になるまで滴下した。そのまま1時間撹拌の
後、生成した懸濁液をロ過した。ロ別した沈澱物を、イ
オン交換水3で3回洗浄し、沈澱物を得た。
Furthermore, 110 g of 30% titanium nitrate solution is added to 600 ml of deionized water.
The mixture was diluted with and a 10% aqueous ammonia solution was added dropwise to the solution with stirring until the pH reached 6. After stirring for 1 hour as it was, the resulting suspension was filtered. The separated precipitate was washed 3 times with ion-exchanged water 3 to obtain a precipitate.

上記の沈澱物〜を混合し、ニーダーにて充分混練
した。その後、水分調整を行い、所望の細孔分布を得る
ため圧力を調整しつつ押し出し成型し、風乾後、500℃
で5時間焼成して担体を得た。
The above precipitates (1) to (5) were mixed and thoroughly kneaded with a kneader. After that, adjust the water content, extrude while adjusting the pressure to obtain the desired pore distribution, air dry, then 500 ° C.
After firing for 5 hours, a carrier was obtained.

上記担体を20g秤取り、これに12.5mlのイオン交換水
に溶解させたモリブデン酸アンモニウム4.7gを加え、1
時間浸漬させ、風乾し、450℃にて12時間焼成した。
20 g of the above carrier is weighed, and 4.7 g of ammonium molybdate dissolved in 12.5 ml of ion-exchanged water is added to this, and 1
It was soaked for an hour, air-dried, and baked at 450 ° C. for 12 hours.

次いで、硝酸コバルト5gを含むイオン交換水4.5mlを
含浸させ、風乾後450℃で12時間焼成して触媒とした。
Next, 4.5 ml of ion-exchanged water containing 5 g of cobalt nitrate was impregnated, air-dried, and calcined at 450 ° C. for 12 hours to obtain a catalyst.

得られた触媒中には、酸化コバルトが4.9重量%,酸
化モリブデンが14.9重量%含まれていた。また、チタニ
ア,シリカは、夫々担体重量基準で、10重量%、5重量
%づつ含まれていた。
The obtained catalyst contained 4.9% by weight of cobalt oxide and 14.9% by weight of molybdenum oxide. Further, titania and silica were contained in an amount of 10% by weight and 5% by weight, respectively, based on the weight of the carrier.

この触媒の比表面積は250m2/g,細孔容積は0.48ml/g,
水銀ポロシメータ圧入法で求めた平均細孔直径は73Åで
あった。
The specific surface area of this catalyst is 250 m 2 / g, the pore volume is 0.48 ml / g,
The average pore diameter determined by the mercury porosimeter press-fitting method was 73Å.

また、50〜100Åの細孔が占める容積は、全細孔容積
の87%であった。(触媒B)。
The volume occupied by 50 to 100 Å pores was 87% of the total pore volume. (Catalyst B).

実施例3 実施例2の沈澱物を、実施例2と全く同様の方法で
調製した。
Example 3 The precipitate of Example 2 was prepared in exactly the same manner as in Example 2.

これとは別に、水ガラス(シリカ分3.8重量%含有)1
67gを、イオン交換水1000mlに溶解させ、この水溶液を
撹拌しながら5Nの硫酸水溶液をpH7.5になるまで徐々に
滴下した。そのまま2時間撹拌の後、生成した懸濁液を
ロ過した。ロ別した沈澱物を、イオン交換水7で5回
洗浄し、沈澱物を得た。
Separately, water glass (containing 3.8% by weight of silica) 1
67 g was dissolved in 1000 ml of ion-exchanged water, and a 5N sulfuric acid aqueous solution was gradually added dropwise to the solution while stirring the solution until the pH reached 7.5. After stirring for 2 hours as it was, the resulting suspension was filtered. The separated precipitate was washed 5 times with ion-exchanged water 7 to obtain a precipitate.

更に、30%硫酸チタン溶液21.1gをイオン交換水200ml
で希釈し、この水溶液を撹拌しながら10%アンモニア水
溶液をpH6になるまで滴下した。そのまま1時間撹拌の
後、生成した懸濁液をロ過した。ロ別した沈澱物を、イ
オン交換水1で5回洗浄し、沈澱物を得た。
Furthermore, 21.1 g of 30% titanium sulfate solution was added to 200 ml of ion-exchanged water.
The mixture was diluted with and a 10% aqueous ammonia solution was added dropwise to the solution with stirring until the pH reached 6. After stirring for 1 hour as it was, the resulting suspension was filtered. The separated precipitate was washed 5 times with ion-exchanged water 1 to obtain a precipitate.

上記の沈澱物〜を混合し、ニーダーにて充分混練
した。その後、水分調整を行い、所望の細孔分布を得る
ため圧力を調整しつつ押し出し成型し、風乾後、500℃
で5時間焼成し担体を得た。
The above precipitates (1) to (5) were mixed and thoroughly kneaded with a kneader. After that, adjust the water content, extrude while adjusting the pressure to obtain the desired pore distribution, air dry, then 500 ° C.
After firing for 5 hours, a carrier was obtained.

上記担体を20g秤取り、これに12.5mlのイオン交換水
に溶解させたモリブデン酸アンモニウム4.7gを加え、1
時間浸漬させ、風乾し、450℃にて12時間焼成した。
20 g of the above carrier is weighed, and 4.7 g of ammonium molybdate dissolved in 12.5 ml of ion-exchanged water is added to this, and 1
It was soaked for an hour, air-dried, and baked at 450 ° C. for 12 hours.

次いで、硝酸ニッケル5gを含むイオン交換水4.5mlを
含浸させ、風乾後、450℃で12時間焼成して触媒とし
た。
Next, 4.5 ml of ion-exchanged water containing 5 g of nickel nitrate was impregnated, air-dried, and calcined at 450 ° C. for 12 hours to obtain a catalyst.

得られた触媒中には、酸化ニッケルが4.7重量%,酸
化モリブデンが14.8重量%含まれていた。また、チタニ
ア,シリカは、夫々担体重量基準で、2重量%、10重量
%づつ含まれていた。
The obtained catalyst contained 4.7% by weight of nickel oxide and 14.8% by weight of molybdenum oxide. Further, titania and silica were contained in an amount of 2% by weight and 10% by weight, respectively, based on the weight of the carrier.

この触媒の比表面積は301m2/g,細孔容積は0.52ml/g,
水銀ポロシメータ圧入法で求めた平均細孔直径は65Åで
あった。
The specific surface area of this catalyst is 301 m 2 / g, the pore volume is 0.52 ml / g,
The average pore diameter determined by the mercury porosimeter press-fitting method was 65Å.

また50〜100Åの細孔が占める容積は、全細孔容積の8
5%であった(触媒C)。
The volume occupied by 50-100 Å pores is 8% of the total pore volume.
5% (catalyst C).

比較例1 実施例2の沈澱物を、実施例2と全く同様の方法で
調製した。
Comparative Example 1 The precipitate of Example 2 was prepared in exactly the same manner as in Example 2.

これをニーダーにて充分混練した。その後、水分調製
を行い、所望の細孔分布を得るため圧力を調整しつつ押
し出し成型し、風乾後、500℃で5時間焼成し担体を得
た。
This was thoroughly kneaded with a kneader. Then, the water content was adjusted, extrusion molding was performed while adjusting the pressure to obtain a desired pore distribution, air-dried, and then baked at 500 ° C. for 5 hours to obtain a carrier.

上記担体を20g秤取り、これに12.5mlのイオン交換水
に溶解させたモリブデン酸アンモニウム4.7gを加え、1
時間浸漬させ、風乾し、450℃にて12時間焼成した。
20 g of the above carrier is weighed, and 4.7 g of ammonium molybdate dissolved in 12.5 ml of ion-exchanged water is added to this, and 1
It was soaked for an hour, air-dried, and baked at 450 ° C. for 12 hours.

次いで、硝酸コバルト5gを含むイオン交換水4.5mlを
含浸させ、風乾後、450℃で12時間焼成して触媒とし
た。
Next, 4.5 ml of ion-exchanged water containing 5 g of cobalt nitrate was impregnated, air-dried, and calcined at 450 ° C. for 12 hours to obtain a catalyst.

得られた触媒中には、酸化コバルトが4.9重量%,酸
化モリブデンが14.9重量%含まれていた。また、担体に
は、アルミナ以外は検出されなかった。
The obtained catalyst contained 4.9% by weight of cobalt oxide and 14.9% by weight of molybdenum oxide. In addition, no carrier other than alumina was detected in the carrier.

この触媒の比表面積は260m2/g,細孔容積は0.59ml/g,
水銀ポロシメータ圧入法で求めた平均細孔直径は88Åで
あった。
The specific surface area of this catalyst is 260 m 2 / g, the pore volume is 0.59 ml / g,
The average pore diameter determined by the mercury porosimeter press-fitting method was 88Å.

また、50〜100Åの細孔が占める容積は、全細孔容積
の80%であった(触媒D)。
Further, the volume occupied by 50 to 100 Å pores was 80% of the total pore volume (catalyst D).

比較例2 実施例2の沈澱物を、実施例2と全く同様の方法で
調製した。
Comparative Example 2 The precipitate of Example 2 was prepared in exactly the same manner as in Example 2.

これとは別に、水ガラス(シリカ分3.8重量%含有)1
64gを、イオン交換水1000mlに溶解させ、この水溶液を
撹拌しながら5Nの硫酸水溶液をpH7.5になるまで徐々に
滴下した。そのまま2時間撹拌の後、生成した懸濁液を
ロ過した。ロ別した沈澱物を、イオン交換水5で5回
洗浄し、沈澱物を得た。
Separately, water glass (containing 3.8% by weight of silica) 1
64 g was dissolved in 1000 ml of ion-exchanged water, and a 5N sulfuric acid aqueous solution was gradually added dropwise to the solution while stirring until the pH was 7.5. After stirring for 2 hours as it was, the resulting suspension was filtered. The separated precipitate was washed 5 times with ion-exchanged water 5 to obtain a precipitate.

上記の沈澱物,を混合し、ニーダーにて充分混練
した。その後、水分調整を行い、所望の細孔分布を得る
ため圧力を調整しつつ押し出し成型し、風乾後、500℃
で5時間焼成して担体を得た。
The above-mentioned precipitates were mixed and thoroughly kneaded with a kneader. After that, adjust the water content, extrude while adjusting the pressure to obtain the desired pore distribution, air dry, then 500 ° C.
After firing for 5 hours, a carrier was obtained.

上記担体を20g秤取り、これに14.0mlのイオン交換水
に溶解させたモリブデン酸アンモニウム4.7gを加え、1
時間浸漬させ、風乾し、450℃にて12時間焼成した。
20 g of the above carrier was weighed, and 4.7 g of ammonium molybdate dissolved in 14.0 ml of ion-exchanged water was added to this, and 1
It was soaked for an hour, air-dried, and baked at 450 ° C. for 12 hours.

次いで、硝酸ニッケル5gを含むイオン交換水4.5mlを
含浸させ、風乾後、450℃で12時間焼成して触媒とし
た。
Next, 4.5 ml of ion-exchanged water containing 5 g of nickel nitrate was impregnated, air-dried, and calcined at 450 ° C. for 12 hours to obtain a catalyst.

得られた触媒中には、酸化ニッケルが4.8重量%,酸
化モリブデンが15.0重量%含まれていた。また、シリカ
は、担体重量基準で10重量%含まれていた。
The obtained catalyst contained 4.8% by weight of nickel oxide and 15.0% by weight of molybdenum oxide. Further, silica was contained in an amount of 10% by weight based on the weight of the carrier.

この触媒の比表面積は320m2/g,細孔容積は0.50ml/g,
水銀ポロシメータ圧入法で求めた平均細孔直径は61Åで
あった。
The specific surface area of this catalyst is 320 m 2 / g, the pore volume is 0.50 ml / g,
The average pore diameter determined by the mercury porosimeter press-fitting method was 61Å.

また、50〜100Åの細孔が占める容積は、全細孔容積
の80%であった(触媒E)。
The volume occupied by 50 to 100 Å pores was 80% of the total pore volume (catalyst E).

比較例3 実施例2の沈澱物を、実施例2と全く同様の方法で
調製した。
Comparative Example 3 The precipitate of Example 2 was prepared in exactly the same manner as in Example 2.

更に、30%硫酸チタン溶液49gをイオン交換水300mlで
希釈し、この水溶液を撹拌しながら10%アンモニア水溶
液をpH6になるまで滴下した。そのまま1時間撹拌の
後、生成した懸濁液をロ過した。ロ別した沈澱物を、イ
オン交換水2で5回洗浄し、沈澱物を得た。
Further, 49 g of a 30% titanium sulfate solution was diluted with 300 ml of ion-exchanged water, and a 10% aqueous ammonia solution was added dropwise to the solution with stirring until the pH reached 6. After stirring for 1 hour as it was, the resulting suspension was filtered. The separated precipitate was washed 5 times with ion-exchanged water 2 to obtain a precipitate.

上記の沈澱物,を混合し、ニーダーにて充分混練
した。その後、水分調整を行い、所望の細孔分布を得る
ため圧力を調整しつつ押し出し成型し、風乾後、500℃
で5時間焼成して担体を得た。
The above-mentioned precipitates were mixed and thoroughly kneaded with a kneader. After that, adjust the water content, extrude while adjusting the pressure to obtain the desired pore distribution, air dry, then 500 ° C.
After firing for 5 hours, a carrier was obtained.

上記担体を20g秤取り、これに13.0mlのイオン交換水
に溶解させたモリブデン酸アンモニウム4.7gを加え、1
時間浸漬させ、風乾し、450℃にて12時間焼成した。
20 g of the above carrier is weighed, and 4.7 g of ammonium molybdate dissolved in 13.0 ml of ion-exchanged water is added to this, and 1
It was soaked for an hour, air-dried, and baked at 450 ° C. for 12 hours.

次いで、硝酸コバルト5gを含むイオン交換水4.5mlを
含浸させ、風乾後、450℃で12時間焼成して触媒とし
た。
Next, 4.5 ml of ion-exchanged water containing 5 g of cobalt nitrate was impregnated, air-dried, and calcined at 450 ° C. for 12 hours to obtain a catalyst.

得られた触媒中には、酸化コバルトが5.0重量%,酸
化モリブデンが14.9重量%含まれていた。また、チタニ
アは、担体重量基準で5重量%含まれていた。
The obtained catalyst contained 5.0% by weight of cobalt oxide and 14.9% by weight of molybdenum oxide. Further, titania was contained in an amount of 5% by weight based on the weight of the carrier.

この触媒の比表面積は282m2/g,細孔容積は0.51ml/g,
水銀ポロシメータ圧入法で求めた平均細孔直径は69Åで
あった。
The specific surface area of this catalyst is 282 m 2 / g, the pore volume is 0.51 ml / g,
The average pore diameter determined by the mercury porosimeter press-fitting method was 69Å.

また、50〜100Åの細孔が占める容積は、全細孔容積
の80%であった(触媒F)。
Further, the volume occupied by 50 to 100 Å pores was 80% of the total pore volume (catalyst F).

比較例4 実施例2の沈澱物を、実施例2と全く同様の方法で
調製した。
Comparative Example 4 The precipitate of Example 2 was prepared in exactly the same manner as in Example 2.

これとは別に、水ガラス(シリカ分3.8重量%含有)4
91gを、イオン交換水2に溶解させ、この水溶液を撹
拌しながら5Nの硫酸水溶液をpH7.5になるまで徐々に滴
下した。そのまま2時間撹拌の後、生成した懸濁液をロ
過した。ロ別した沈澱物を、イオン交換水10で5回洗
浄し、沈澱物を得た。
Separately, water glass (containing 3.8% by weight of silica) 4
91 g was dissolved in ion-exchanged water 2, and a 5N sulfuric acid aqueous solution was gradually added dropwise to this solution with stirring until the pH reached 7.5. After stirring for 2 hours as it was, the resulting suspension was filtered. The separated precipitate was washed 5 times with ion-exchanged water 10 to obtain a precipitate.

更に、30%硫酸チタン溶液310gをイオン交換水1.5
で希釈し、この水溶液を撹拌しながら10%アンモニア水
溶液をpH6になるまで滴下した。そのまま1時間撹拌の
後、生成した懸濁液をロ過した。ロ別した沈澱物を、イ
オン交換水8で5回洗浄し、沈澱物を得た。
Furthermore, 310 g of 30% titanium sulfate solution is added to ion-exchanged water 1.5.
The mixture was diluted with and a 10% aqueous ammonia solution was added dropwise to the solution with stirring until the pH reached 6. After stirring for 1 hour as it was, the resulting suspension was filtered. The separated precipitate was washed 5 times with ion-exchanged water 8 to obtain a precipitate.

上記の沈澱物〜を混合し、ニーダーにて充分混練
した。その後、水分調整を行い、所望の細孔分布を得る
ため圧力を調整しつつ押し出し成型し、風乾後、500℃
で5時間焼成して担体を得た。
The above precipitates (1) to (5) were mixed and thoroughly kneaded with a kneader. After that, adjust the water content, extrude while adjusting the pressure to obtain the desired pore distribution, air dry, then 500 ° C.
After firing for 5 hours, a carrier was obtained.

上記担体を20g秤取り、これに12.0mlのイオン交換水
に溶解させたモリブデン酸アンモニウム4.7gを加え、1
時間浸漬させ、風乾し、450℃にて12時間焼成した。
20 g of the above carrier was weighed, and 4.7 g of ammonium molybdate dissolved in 12.0 ml of ion-exchanged water was added to this, and 1
It was soaked for an hour, air-dried, and baked at 450 ° C. for 12 hours.

次いで、硝酸コバルト5gを含むイオン交換水4.5mlを
含浸させ、風乾後、450℃で12時間焼成して触媒とし
た。
Next, 4.5 ml of ion-exchanged water containing 5 g of cobalt nitrate was impregnated, air-dried, and calcined at 450 ° C. for 12 hours to obtain a catalyst.

得られた触媒中には、酸化コバルトが4.9重量%,酸
化モリブデンが15.1重量%含まれていた。また、チタニ
ア,シリカは、夫々担体重量基準で20重量%,20重量%
づつ含まれていた。
The obtained catalyst contained 4.9% by weight of cobalt oxide and 15.1% by weight of molybdenum oxide. In addition, titania and silica are 20% by weight and 20% by weight, respectively, based on the weight of the carrier.
Each was included.

この触媒の比表面積は163m2/g,細孔容積は0.39ml/g,
水銀ポロシメータ圧入法で求めた平均細孔直径は88Åで
あった。
The specific surface area of this catalyst is 163 m 2 / g, the pore volume is 0.39 ml / g,
The average pore diameter determined by the mercury porosimeter press-fitting method was 88Å.

また、50〜100Åの細孔が占める容積は、全細孔容積
の62%であった(触媒G)。
The volume occupied by 50 to 100 Å pores was 62% of the total pore volume (catalyst G).

比較例5 実施例2の沈澱物〜を、実施例2と全く同様の方
法で調製した。
Comparative Example 5 The precipitate of Example 2 was prepared in exactly the same manner as in Example 2.

各々の沈澱物を先ず噴霧乾燥し、焼成した後、再び水
を加えて調湿し、ニーダーにて充分混練した。その後、
所望の細孔分布を得るため圧力を調整しつつ押し出し成
型し、風乾後、500℃で5時間焼成して担体を得た。
Each of the precipitates was first spray-dried, calcined, water was added again to adjust the humidity, and the kneader was sufficiently kneaded. afterwards,
It was extruded while adjusting the pressure to obtain a desired pore distribution, air-dried, and then calcined at 500 ° C. for 5 hours to obtain a carrier.

上記担体を20g秤取り、これに12.5mlのイオン交換水
に溶解させたモリブデン酸アンモニウム4.7gを加え、1
時間浸漬させ、風乾し、450℃にて12時間焼成した。
20 g of the above carrier is weighed, and 4.7 g of ammonium molybdate dissolved in 12.5 ml of ion-exchanged water is added to this, and 1
It was soaked for an hour, air-dried, and baked at 450 ° C. for 12 hours.

次いで、硝酸コバルト5gを含むイオン交換水4.5mlを
含浸させ、風乾後、450℃で12時間焼成して触媒とし
た。
Next, 4.5 ml of ion-exchanged water containing 5 g of cobalt nitrate was impregnated, air-dried, and calcined at 450 ° C. for 12 hours to obtain a catalyst.

得られた触媒中には、酸化コバルトが4.7重量%,酸
化モリブデンが14.8重量%含まれていた。また、チタニ
ア,シリカは、夫々担体重量基準で10重量%,5重量%づ
つ含まれていた。
The obtained catalyst contained 4.7% by weight of cobalt oxide and 14.8% by weight of molybdenum oxide. Further, titania and silica were contained in an amount of 10% by weight and 5% by weight, respectively, based on the weight of the carrier.

この触媒の比表面積は185m2/g,細孔容積は0.53ml/g,
水銀ポロシメータ圧入法で求めた平均細孔直径は120Å
であった。
The specific surface area of this catalyst is 185 m 2 / g, the pore volume is 0.53 ml / g,
The average pore diameter determined by the mercury porosimeter press-fitting method is 120Å
Met.

また、50〜100Åの細孔が占める容積は、全細孔容積
の35%であった(触媒H)。
The volume occupied by 50 to 100 Å pores was 35% of the total pore volume (catalyst H).

上記の実施例1〜3及び比較例1〜5で調製した触媒
A〜Hの物性を第2表に示す。
Table 2 shows the physical properties of the catalysts A to H prepared in the above Examples 1 to 3 and Comparative Examples 1 to 5.

また、上記の実施例1〜3及び比較例1〜3で得られ
た触媒A〜Hを、下記条件の水素化脱硫の相対活性評価
試験で評価した。
Further, the catalysts A to H obtained in the above Examples 1 to 3 and Comparative Examples 1 to 3 were evaluated by a hydrodesulfurization relative activity evaluation test under the following conditions.

水素化脱硫の相対活性評価試験: アラビアンライト軽油(LGO),減圧軽油(VGO)ある
いはアラビアンヘビー常圧残油(AH−AR)に対する水素
化脱硫相対活性を内径10mmφの固定床式反応管を用い、
10日目(条件1),20日目(条件2),25日目(条件3)
(反応初期には生成物の硫黄分は少ないが、日数ととも
に増加安定するため、10日目,20日目,25日目とした。)
の反応生成物の残留硫黄分(重量%)から得られる初期
相対脱硫活性求めた。
Relative activity evaluation test for hydrodesulfurization: Fixed bed type reaction tube with inner diameter of 10 mmφ was used for hydrodesulfurization relative activity against Arabian light gas oil (LGO), vacuum gas oil (VGO) or Arabian heavy atmospheric residual oil (AH-AR) ,
Day 10 (condition 1), day 20 (condition 2), day 25 (condition 3)
(The sulfur content of the product is low at the beginning of the reaction, but since it increased and stabilized with the number of days, it was set as the 10th, 20th, and 25th days.)
The initial relative desulfurization activity obtained from the residual sulfur content (% by weight) of the reaction product of was determined.

原料油の性状と反応条件を第3表に示し、結果を第4
表(軽質軽油),第5表(減圧軽油)及び第6表(常圧
残油)に示す。
The properties and reaction conditions of the feedstock are shown in Table 3, and the results are shown in Table 4.
Table (light diesel oil), Table 5 (vacuum diesel oil) and Table 6 (normal pressure residual oil) are shown.

第4表から明らかなように、実施例1〜3の触媒A〜
Cを用いた実施例4〜6はいずれも、比較例1〜5の触
媒D〜Hを用いた比較例6〜10に比較して、軽質軽油の
脱流活性に優れた結果を示していることが判る。
As is clear from Table 4, catalysts A of Examples 1 to 3
All of Examples 4 to 6 using C show excellent results in light-gas light oil efflux activity as compared with Comparative Examples 6 to 10 using catalysts D to H of Comparative Examples 1 to 5. I understand.

第5表から明らかなように、実施例1〜3の触媒A〜
C用いた実施例7〜9はいずれも、比較例1〜4の触媒
D〜Gを用いた比較例11〜14に比較して、減圧軽油の脱
硫活性に優れた結果を示していることが判る。
As is clear from Table 5, catalysts A of Examples 1 to 3
Examples 7 to 9 using C all showed excellent results in desulfurization activity of vacuum gas oil as compared with Comparative Examples 11 to 14 using catalysts DG of Comparative Examples 1 to 4. I understand.

第6表から明らかなように、実施例1,2の触媒A,Bを用
いた実施例10,11はいずれも、比較例1,5の触媒D,Hを用
いた比較例15,16に比較して、常圧残油の脱硫活性に優
れた結果を示していることが判る。
As is clear from Table 6, Examples 10 and 11 using the catalysts A and B of Examples 1 and 2 are the same as Comparative Examples 15 and 16 using the catalysts D and H of Comparative Examples 1 and 5, respectively. By comparison, it can be seen that the results show that the desulfurization activity of the atmospheric residue is excellent.

〔発明の効果〕〔The invention's effect〕

本発明触媒では、炭化水素油の脱硫に好都合な酸性点
に新たに形成されており、しかも目的反応物質の触媒内
部への拡散が良好で、かつ触媒被毒物質に対する耐性が
優れているため、炭化水素油の脱硫活性が大幅に向上し
ている。
The catalyst of the present invention is newly formed at an acidic point convenient for desulfurization of hydrocarbon oil, and further has good diffusion of the target reactant into the catalyst, and has excellent resistance to a catalyst poisoning substance, The desulfurization activity of hydrocarbon oil is greatly improved.

本発明方法では、上記の本発明触媒を使用することに
より、第4〜6表に示すように、従来の炭化水素油の水
素化精製法に比べ、石油各留出油及び残渣油のいずれの
原料油に対しても、高効率での脱硫を行うことができ、
特に石油留出原料に対して顕著な効果を示す。
In the method of the present invention, by using the above-mentioned catalyst of the present invention, as shown in Tables 4 to 6, as compared with the conventional hydrorefining method for hydrocarbon oils, any one of petroleum distillates and residual oils can be obtained. It is possible to perform desulfurization with high efficiency even for feedstock oil,
In particular, it shows a remarkable effect on petroleum distillate raw materials.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】アルミナ,シリカ及びチタニアからなる触
媒担体に、触媒活性成分として、周期律表第6B族から選
ばれる少なくとも1種の金属を触媒基準として酸化物換
算で7〜25重量%、及び周期律表第8族から選ばれる少
なくとも1種の金属を触媒基準として酸化物換算で3〜
6重量%担持させてなり、上記触媒担体中のシリカ及び
チタニアが担体基準で夫々1〜10重量%であり、かつ上
記触媒の細孔特性が、 (1)水銀ポロシメータ圧入法で測定した平均細孔直径
が50〜100Å, (2)平均細孔直径50〜100Åの細孔が占める容積が全
細孔容積の少なくとも50%, (3)比表面積が少なくとも150m2/g, (4)全細孔容積が0.4〜1.5ml/g, であることを特徴とする炭化水素油の水素化処理用触媒
組成物。
1. A catalyst carrier composed of alumina, silica and titania, and 7 to 25% by weight in terms of oxide, based on the catalyst, of at least one metal selected from Group 6B of the periodic table as a catalytically active component, and Based on the catalyst, at least one metal selected from Group 8 of the periodic table is 3 to 3 in terms of oxide.
6 wt% of the carrier, silica and titania in the catalyst carrier are 1 to 10 wt% respectively on the carrier basis, and the pore characteristics of the catalyst are (1) the average fineness measured by the mercury porosimeter press-fitting method. Pore diameter is 50-100Å, (2) Volume occupied by pores with average pore diameter of 50-100Å is at least 50% of total pore volume, (3) Specific surface area is at least 150 m 2 / g, (4) Fine pore A catalyst composition for hydrotreating a hydrocarbon oil, which has a pore volume of 0.4 to 1.5 ml / g.
【請求項2】第1項記載の触媒組成物を使用することを
特徴とする炭化水素油の水素化脱硫方法。
2. A method for hydrodesulfurizing a hydrocarbon oil, which comprises using the catalyst composition according to claim 1.
JP2076408A 1990-03-26 1990-03-26 Catalyst composition for hydrotreatment of hydrocarbon oil and hydrodesulfurization method using the same Expired - Fee Related JPH0813328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2076408A JPH0813328B2 (en) 1990-03-26 1990-03-26 Catalyst composition for hydrotreatment of hydrocarbon oil and hydrodesulfurization method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2076408A JPH0813328B2 (en) 1990-03-26 1990-03-26 Catalyst composition for hydrotreatment of hydrocarbon oil and hydrodesulfurization method using the same

Publications (2)

Publication Number Publication Date
JPH03275143A JPH03275143A (en) 1991-12-05
JPH0813328B2 true JPH0813328B2 (en) 1996-02-14

Family

ID=13604423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2076408A Expired - Fee Related JPH0813328B2 (en) 1990-03-26 1990-03-26 Catalyst composition for hydrotreatment of hydrocarbon oil and hydrodesulfurization method using the same

Country Status (1)

Country Link
JP (1) JPH0813328B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4545328B2 (en) * 2001-02-15 2010-09-15 コスモ石油株式会社 Method for producing hydrotreating catalyst for hydrocarbon oil and hydrotreating method for hydrocarbon oil
JP5013658B2 (en) * 2004-03-11 2012-08-29 Jx日鉱日石エネルギー株式会社 Hydrodesulfurization catalyst and hydrodesulfurization method for petroleum hydrocarbon oil
JP5031790B2 (en) * 2009-03-24 2012-09-26 Jx日鉱日石エネルギー株式会社 Method for producing catalyst for hydrorefining of light oil and hydrorefining method of light oil

Also Published As

Publication number Publication date
JPH03275143A (en) 1991-12-05

Similar Documents

Publication Publication Date Title
US5223472A (en) Demetallation catalyst
US10507458B2 (en) Hydrotreating catalyst and process for preparing the same
US5089453A (en) Hydroconversion catalyst and method for making the catalyst
US8431510B2 (en) Composition useful in the catalytic hydroprocessing of hydrocarbon feedstocks, a method of making such catalyst, and a process of using such catalyst
US7642212B2 (en) Hydroconversion catalysts and methods of making and using same
EP0449144B2 (en) Catalyst composition for hydrotreating of hydrocarbons and hydrotreating process using the same
US5210061A (en) Resid hydroprocessing catalyst
US5002919A (en) Catalyst composition for hydrogenation of heavy hydrocarbon oil and process for producing the catalyst
EP1153107B1 (en) Hydroprocessing catalyst and use thereof
US4886582A (en) Resid hydroprocessing catalyst and method of preparation
US7186329B2 (en) High-macropore hydroprocessing catalyst and its use
JP2631704B2 (en) Catalyst composition for hydrotreating heavy hydrocarbon oils
US4969990A (en) Hydroprocessing with a catalyst having a narrow pore size distribution
JP2996423B2 (en) Catalyst for hydrotreating hydrocarbon oils
JPH10296091A (en) Catalyst for hydrogenation treatment and method for hydrogenation treatment for hydrocarbon oil using the same
US4716140A (en) Hydrotreating catalysts prepared from hydrogels
JPH0813328B2 (en) Catalyst composition for hydrotreatment of hydrocarbon oil and hydrodesulfurization method using the same
JPH01164440A (en) Production of hydrogen purifying catalyst from hydrogel
JP2794320B2 (en) Method for producing hydrotreating catalyst composition for hydrocarbon oil
JP2556343B2 (en) Method for producing hydrogenated catalyst from hydrogel
US4880526A (en) Hydrotreating catalysts prepared from hydrogels
US4810684A (en) Hydrotreating catalysts prepared from hydrogels
US4820680A (en) Hydrotreating catalysts prepared from hydrogels
JPH08243407A (en) Preparation of hydrogenated catalyst
JP2001314770A (en) Catalyst for hydrogenating heavy hydrocarbon oil and hydrogenating method to use the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080214

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090214

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100214

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees