JP2001314770A - Catalyst for hydrogenating heavy hydrocarbon oil and hydrogenating method to use the same - Google Patents

Catalyst for hydrogenating heavy hydrocarbon oil and hydrogenating method to use the same

Info

Publication number
JP2001314770A
JP2001314770A JP2000138263A JP2000138263A JP2001314770A JP 2001314770 A JP2001314770 A JP 2001314770A JP 2000138263 A JP2000138263 A JP 2000138263A JP 2000138263 A JP2000138263 A JP 2000138263A JP 2001314770 A JP2001314770 A JP 2001314770A
Authority
JP
Japan
Prior art keywords
catalyst
zinc
hydrotreating
heavy hydrocarbon
hydrocarbon oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000138263A
Other languages
Japanese (ja)
Other versions
JP4408527B2 (en
Inventor
Yoshinori Kato
芳範 加藤
Norito Chiyoda
範人 千代田
Yoshihiro Mizutani
喜弘 水谷
Kazuo Idei
一夫 出井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Japan Petroleum Energy Center JPEC
Original Assignee
Cosmo Oil Co Ltd
Petroleum Energy Center PEC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd, Petroleum Energy Center PEC filed Critical Cosmo Oil Co Ltd
Priority to JP2000138263A priority Critical patent/JP4408527B2/en
Publication of JP2001314770A publication Critical patent/JP2001314770A/en
Application granted granted Critical
Publication of JP4408527B2 publication Critical patent/JP4408527B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogenation catalyst improved in microporosity without deteriorating the strength and excellent in activity stability, and to provide a hydrogenating method using the hydrogenation catalyst. SOLUTION: This hydrogenation catalyst, which has 20-35 nm average pore diameter, 9 N/mm or higher strength and 70-150 m2/g specific surface area, is obtained by depositing the metal of group VI in the periodical table on a zinc-containing alumina carrier containing zinc of 1-15 wt.% (based on the carrier) expressed in terms of zinc oxide in alumina. The zinc-containing alumina carrier after compacted is sintered at >=600 deg.C to have the characteristic peak at 2θ=55.5 deg. in the powder X-ray diffraction pattern. Heavy hydrocarbon oil is catalytically hydrogenated by using this catalyst at 300-500 deg.C under 3-20 MPa under the condition that the hydrogen/oil ratio is 400-3,000 m3/m3 and LHSV is 0.1-3 h-1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、重質炭化水素油の
水素化処理触媒及びそれを用いる水素化処理方法に関
し、特に硫黄分、アスファルテン分、ニッケルやバナジ
ウム等の重金属分を含有する重質炭化水素油から重金属
分を効果的に除去するのに適した触媒と、この触媒を用
いて重質炭化水素油を触媒床前段部分において脱金属処
理するのに適した水素化処理方法とに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst for hydrotreating heavy hydrocarbon oil and a hydrotreating method using the same, and more particularly to a heavy hydrocarbon oil containing sulfur, asphaltene, and heavy metals such as nickel and vanadium. The present invention relates to a catalyst suitable for effectively removing heavy metals from a hydrocarbon oil, and a hydrotreating method suitable for demetallizing a heavy hydrocarbon oil in a former stage of a catalyst bed using the catalyst.

【0002】[0002]

【技術背景】近年、酸性雨等の環境問題に対応するため
低硫黄重油の必要性は、ますます高まっている。一方、
世界的な原油の重質化に伴い、硫黄分、アスファルテ
ン、金属分等の含有量が多い原油を処理する傾向が大き
くなり、常圧残渣油や減圧残渣油を水素化処理して低硫
黄重油を得る条件は厳しくなっている。また、中間留分
不足の需要構造が長期化することも背景にある。
[Technical Background] In recent years, the need for low-sulfur fuel oil has been increasing more and more in response to environmental problems such as acid rain. on the other hand,
As the world's crude oil becomes heavier, the tendency to treat crude oils with a high content of sulfur, asphaltenes, metals, etc. has increased. The conditions for obtaining are becoming stricter. Also, the demand structure for middle distillates shortage is prolonged.

【0003】以上のようなことから、重質油を水素化処
理して低硫黄重油の増産を図ることを目的として、水素
化処理触媒の高活性化、高寿命化に関する研究が盛んに
行われている。
[0003] In view of the above, studies on high activation and long life of hydrotreating catalysts have been actively conducted for the purpose of increasing the production of low sulfur heavy oil by hydrotreating heavy oil. ing.

【0004】ところで、多くの重質炭化水素油は、ニッ
ケルやバナジウム等に代表される金属分を多量に含有し
ている。これらの重質炭化水素油は、水素化処理する際
に、これらの金属分が、触媒上に堆積して、触媒活性点
の被覆や触媒細孔の閉塞を引き起こし、触媒活性を低下
させ、触媒寿命を短縮させる。従って、このような重質
炭化水素油を水素化処理する際には、一般にこれらの金
属分の除去機能に優れた脱金属触媒によって、予め、該
重質炭化水素油から金属分を除去しておくことが好まし
い。
[0004] Many heavy hydrocarbon oils contain a large amount of metals such as nickel and vanadium. When these heavy hydrocarbon oils are hydrotreated, these metals deposit on the catalyst, causing the catalyst active sites to be covered and the catalyst pores to be blocked, reducing the catalyst activity, Shorten life. Therefore, when hydrotreating such a heavy hydrocarbon oil, generally, the metal component is removed from the heavy hydrocarbon oil in advance by a demetalization catalyst having an excellent function of removing these metals. Preferably.

【0005】重質炭化水素油中に存在する金属分は、ア
スファルテン分のような巨大分子量成分中に多量に含有
されている。そのため、触媒細孔径を大きくし、金属分
を含んだ巨大分子量成分の拡散性を向上させた触媒は、
優れた脱金属機能を有する。しかし、一般に触媒の平均
細孔径を大きくすればする程、触媒の強度は低下する傾
向にある。ここで、触媒強度の尺度としてSCS(Si
de Crushing Strength)があり、
通常、SCSが9N/mm以下になると、工業装置で使
用する場合、触媒が粉砕され、触媒床の詰まりを生じる
問題があるとされている。
[0005] Metals present in heavy hydrocarbon oils are contained in large amounts in macromolecular components such as asphaltenes. For this reason, catalysts with large catalyst pore diameters and improved diffusivity of macromolecular components containing metals,
Has excellent metal removal function. However, in general, the larger the average pore diameter of the catalyst, the lower the strength of the catalyst tends to be. Here, SCS (Si
de Crushing Strength)
Usually, when the SCS is 9 N / mm or less, when used in industrial equipment, it is said that there is a problem that the catalyst is pulverized and the catalyst bed is clogged.

【0006】[0006]

【発明の目的】本発明は、触媒の強度を低下させること
なく、触媒の平均細孔径を向上させて、触媒活性の安定
性に優れた水素化処理触媒と、この水素化処理触媒を使
用する重質炭化水素油の水素化処理方法を提供すること
を目的とする。
An object of the present invention is to use a hydrotreating catalyst which has an improved average pore diameter of the catalyst without deteriorating the strength of the catalyst and has excellent stability in catalytic activity, and the hydrotreating catalyst. It is an object of the present invention to provide a method for hydrotreating heavy hydrocarbon oil.

【0007】[0007]

【発明の概要】上記目的を達成するために、本発明の水
素化処理触媒は、亜鉛を担体基準、酸化物換算で1〜1
5質量%含有する含亜鉛アルミナ担体に、少なくとも1
種の第VI族金属を担持し、平均細孔径が20〜35n
m、強度がSCSで9N/mm以上、比表面積が70〜
150m/gであることを特徴とし、このとき、成型
後の含亜鉛アルミナ担体が、600℃以上で焼成され、
粉末X線回折パターンにおいて2θ=55.5°に特徴
的なピークを有することが好ましい。また、本発明の水
素化処理方法は、上記の水素化処理触媒の存在下、温度
300〜500℃、圧力3〜20MPa、水素/油比4
00〜3000m/m、LHSV0.1〜3h−1
の条件で、重質炭化水素油の接触反応を行うことを特徴
とし、特に重質炭化水素油を触媒床前段部で水素化処理
するのに適した方法であって、この方法で得られる生成
油は、低硫黄重油としてそのまま、あるいは中間留分と
して好適に使用することができる。
SUMMARY OF THE INVENTION In order to achieve the above object, the hydrotreating catalyst of the present invention is characterized in that zinc is 1 to 1 in terms of oxide on a carrier basis.
A zinc-containing alumina carrier containing 5% by mass contains at least 1
Carrying a group VI metal and having an average pore size of 20 to 35 n
m, strength is more than 9N / mm in SCS, specific surface area is 70 ~
150 m 2 / g, wherein the zinc-containing alumina support after molding is fired at 600 ° C. or higher,
It preferably has a characteristic peak at 2θ = 55.5 ° in the powder X-ray diffraction pattern. Further, the hydrotreating method of the present invention can be carried out in the presence of the above-mentioned hydrotreating catalyst, at a temperature of 300 to 500 ° C, a pressure of 3 to 20 MPa, and a hydrogen / oil ratio of 4
00 to 3000 m 3 / m 3 , LHSV 0.1 to 3 h −1
A catalytic reaction of heavy hydrocarbon oil under the conditions described above, and is a method particularly suitable for hydrotreating heavy hydrocarbon oil in the former stage of the catalyst bed, and the production obtained by this method The oil can be suitably used as it is as a low sulfur heavy oil or as a middle distillate.

【0008】本発明の水素化処理触媒は、担体として、
亜鉛を担体基準、酸化物換算で1〜15質量%、好まし
くは2〜12質量%含有する含亜鉛アルミナを用いる。
亜鉛が1質量%未満であると、触媒の平均細孔径や触媒
強度を上げることができず、15質量%を超えると、比
表面積を本発明の範囲内のものとすることができず、水
素化活性を十分上げることができない。
[0008] The hydrotreating catalyst of the present invention comprises
Zinc-containing alumina containing 1 to 15% by mass, preferably 2 to 12% by mass of zinc as a carrier based on oxides is used.
If the zinc content is less than 1% by mass, the average pore size and the catalyst strength of the catalyst cannot be increased, and if it exceeds 15% by mass, the specific surface area cannot be within the range of the present invention. Activation activity cannot be sufficiently increased.

【0009】本発明の水素化処理触媒は、上記含亜鉛ア
ルミナ担体に、少なくとも1種の第VI族金属を担持す
る。第VI族金属としては、Mo、W等が挙げられ、特
にMoが好ましい。第VI族金属は、触媒中に、金属単
体の形態で存在してもよいし、金属硫化物等の金属化合
物の形態で存在してもよい。第VI族金属は、1種単独
で使用してもよいし、2種以上を組合せて使用してもよ
い。
The hydrotreating catalyst of the present invention carries at least one Group VI metal on the zinc-containing alumina support. Examples of Group VI metals include Mo, W, and the like, with Mo being particularly preferred. The Group VI metal may be present in the catalyst in the form of a simple metal or a metal compound such as a metal sulfide. The Group VI metal may be used alone or in combination of two or more.

【0010】本発明の水素化処理触媒は、第2金属成分
として他の水素化活性金属を担持してもよい。第2金属
成分としての他の水素化活性金属としては、Ni、C
o、Fe等の第VIII族金属が好ましい。第2金属成
分として担持させる水素化活性金属は、1種単独で使用
してもよいし、2種以上を組合せて使用してもよい。具
体的な組合せとしては、Mo−Ni、Mo−Co、W−
Ni等の種々の組合せがあるが、Mo−Niの組合せが
好適である。
The hydrotreating catalyst of the present invention may carry another hydrogenation-active metal as the second metal component. Other hydrogenation active metals as the second metal component include Ni, C
Group VIII metals such as o and Fe are preferred. The hydrogenation active metal supported as the second metal component may be used alone or in combination of two or more. Specific combinations include Mo-Ni, Mo-Co, W-
Although there are various combinations such as Ni, a combination of Mo-Ni is preferable.

【0011】第VI族金属の担持量は、特に制限はない
が、第2金属成分と併用しない場合(以下、単独使用の
場合)は、担体基準、酸化物換算で、2〜15質量%、
好ましくは4〜12質量%であり、第2金属成分と併用
する場合(以下、併用使用の場合)は、2〜15質量
%、好ましくは5〜10質量%である。第2金属成分と
しての他の水素化活性金属の担持量は、適宜選定すれば
よいが、上記の第VI族金属の担持量において、触媒基
準、酸化物換算で0.001〜5質量%、好ましくは1
〜4質量%である。他の水素化活性金属の担持量を増加
させると、水素化処理活性、特に脱金属活性は増加する
が、触媒寿命は短くなる傾向があり、減少させると、十
分な水素化処理活性、特に脱金属活性が得られない傾向
がある。
The amount of the Group VI metal to be carried is not particularly limited, but when it is not used in combination with the second metal component (hereinafter, when used alone), it is 2 to 15% by mass in terms of oxide on a carrier basis.
It is preferably 4 to 12% by mass, and when used in combination with the second metal component (hereinafter, in the case of combined use), it is 2 to 15% by mass, preferably 5 to 10% by mass. The amount of the other hydrogenation-active metal supported as the second metal component may be appropriately selected, but the amount of the group VI metal supported is 0.001 to 5% by mass in terms of an oxide in terms of a catalyst. Preferably 1
44% by mass. Increasing the amount of other hydrogenation-active metals supported increases the hydrotreating activity, especially the demetallizing activity, but tends to shorten the catalyst life. There is a tendency that metal activity cannot be obtained.

【0012】本発明の水素化処理触媒の平均細孔径は、
20〜35nm、好ましくは20nmを超え30nm以
下である。平均細孔径が20nm未満であると、十分な
脱金属活性が得られず、35nmを超えると水素化処理
活性が低下する。
The average pore size of the hydrotreating catalyst of the present invention is as follows:
It is 20 to 35 nm, preferably more than 20 nm and 30 nm or less. If the average pore diameter is less than 20 nm, sufficient demetalization activity cannot be obtained, and if it exceeds 35 nm, the hydrotreating activity decreases.

【0013】触媒強度は、SCSで9N/mm以上であ
る。SCSは、触媒を横置きにして荷重を加え、触媒が
破壊される荷質量を求め、触媒長さで割った値であり、
触媒単位長さ当たりの破壊強度である。SCSが9N/
mm以下であると反応装置内での触媒割れを起こし、使
用が困難になる。
The catalyst strength is 9 N / mm or more in SCS. SCS is a value obtained by applying a load with the catalyst placed sideways, finding the load mass at which the catalyst is destroyed, and dividing by the catalyst length.
It is the breaking strength per unit length of the catalyst. SCS is 9N /
If it is less than mm, catalyst cracking occurs in the reactor, making it difficult to use.

【0014】比表面積は、70〜150m/g、好ま
しくは90〜140m/gである。比表面積が70m
/g未満であると、十分な水素化処理活性が得られ
ず、150m/gを超えると、平均細孔径が低下し、
脱金属活性も低下する。
The specific surface area is 70 to 150 m 2 / g, preferably 90 to 140 m 2 / g. The specific surface area is 70m
When it is less than 2 / g, a sufficient hydrotreating activity can not be obtained, and when it exceeds 150 meters 2 / g, average pore diameter is reduced,
The demetallation activity also decreases.

【0015】本発明の水素化処理触媒の好適な調製法と
しては、次のような工程による方法が挙げられる。先
ず、アルミナの原料を含む水溶液をゲル化し、生成した
ゲルを加熱熟成し、酸性水溶液処理、不純物の洗浄除
去、水分調整することにより得られるアルミナゲルに、
含亜鉛物質を混合する。次に、この混合物を、成型、乾
燥、焼成等の通常の処理法で処理して、含亜鉛アルミナ
担体を調製する。この含亜鉛アルミナ担体に、第VI族
金属を担持し、更に他の活性金属を担持して、水素化処
理触媒を調製する。
A preferred method for preparing the hydrotreating catalyst of the present invention includes a method comprising the following steps. First, the aqueous solution containing the raw material of alumina is gelled, and the resulting gel is heated and aged, and then treated with an acidic aqueous solution, washing and removing impurities, and adjusting the water content to obtain an alumina gel.
Mix the zinc containing material. Next, this mixture is treated by a usual treatment method such as molding, drying and baking to prepare a zinc-containing alumina carrier. A hydrotreating catalyst is prepared by carrying a Group VI metal on this zinc-containing alumina carrier and further carrying another active metal.

【0016】アルミナの原料は、アルミニウムを含む物
質であればどのようなものでも使用できるが、硫酸アル
ミニウム、硝酸アルミニウム等のアルミニウム塩が好ま
しい。これらのアルミナ原料は、通常は水溶液として供
され、その濃度は特に制限されないが、2〜50質量
%、好ましくは5〜40質量%である。含亜鉛物質は、
亜鉛を含む物質であればどのようなものでも使用できる
が、酸化亜鉛、硝酸亜鉛、硫酸亜鉛、炭酸亜鉛、塩化亜
鉛、酢酸亜鉛、水酸化亜鉛、シュウ酸亜鉛等が使用で
き、中でも酸化亜鉛、硝酸亜鉛、硫酸亜鉛が好ましい。
As the raw material for alumina, any material containing aluminum can be used, but aluminum salts such as aluminum sulfate and aluminum nitrate are preferable. These alumina raw materials are usually provided as an aqueous solution, and the concentration thereof is not particularly limited, but is 2 to 50% by mass, preferably 5 to 40% by mass. Zinc-containing substances are
Any substance can be used as long as it contains zinc, but zinc oxide, zinc nitrate, zinc sulfate, zinc carbonate, zinc chloride, zinc acetate, zinc hydroxide, zinc oxalate, etc. can be used. Zinc nitrate and zinc sulfate are preferred.

【0017】アルミナゲルの調製方法は、アルミナ原料
を含む水溶液を、アンモニア等の塩基、アルミン酸、ア
ルミン酸ナトリウム等の中和剤で中和する方法、あるい
はヘキサメチレンテトラミン、炭酸カルシウム等の沈殿
剤と混合する方法がある。中和剤の使用量は、特に制限
されないが、アルミナ原料を含む水溶液と中和剤の合計
量に対して30〜70質量%が好ましい。沈殿剤の使用
量は、特に制限されないが、アルミナ原料を含む水溶液
と沈殿剤の合計量に対して30〜70質量%が好まし
い。
A method for preparing an alumina gel is to neutralize an aqueous solution containing an alumina raw material with a base such as ammonia or a neutralizing agent such as aluminate or sodium aluminate, or a precipitant such as hexamethylenetetramine or calcium carbonate. There is a way to mix. The amount of the neutralizing agent used is not particularly limited, but is preferably 30 to 70% by mass based on the total amount of the aqueous solution containing the alumina raw material and the neutralizing agent. The amount of the precipitant used is not particularly limited, but is preferably 30 to 70% by mass based on the total amount of the aqueous solution containing the alumina raw material and the precipitant.

【0018】所望の平均細孔径を有する水素化処理触媒
を得るには、中和剤あるいは沈澱剤によりゲル化させる
時のpH、温度等をコントロールすればよい。具体的に
言えば、pHは4〜8、温度は30〜90℃の範囲内
で、それぞれ適宜コントロールすることにより、上記触
媒の平均細孔径を、本発明の範囲内の所望値のものとす
ることがきる。なお、ゲル生成時にアルカリ側にpHを
高くすると、大きい平均細孔径を持つ触媒を得ることが
できる。
In order to obtain a hydrotreating catalyst having a desired average pore diameter, the pH, temperature, and the like when gelling with a neutralizing agent or a precipitant may be controlled. Specifically, the average pore diameter of the catalyst is set to a desired value within the range of the present invention by appropriately controlling the pH within the range of 4 to 8 and the temperature within the range of 30 to 90 ° C. I can do it. When the pH is increased toward the alkali side during gel formation, a catalyst having a large average pore diameter can be obtained.

【0019】また、アルミナゲルの加熱熟成によっても
平均細孔径を調整することができる。熟成時間は、5時
間以上が好ましく、時間が長い程、平均細孔径が大きく
なり、細孔分布がシャープになる。熟成温度は、80〜
95℃が好ましく、高温程、時間を短くできるが、高す
ぎると変質する。熟成時のpHは、9〜12が好まし
い。pH9未満であると熟成が遅れ、pH12を超える
とアルミナが変質する。
The average pore size can also be adjusted by heating and aging the alumina gel. The aging time is preferably 5 hours or more, and the longer the time, the larger the average pore diameter and the sharper the pore distribution. Aging temperature is 80 ~
The temperature is preferably 95 ° C., and the higher the temperature, the shorter the time can be. The pH during aging is preferably from 9 to 12. When the pH is lower than 9, aging is delayed, and when the pH is higher than 12, alumina is deteriorated.

【0020】熟成によるアルミナゲルの変質を抑制する
ために、上記の加熱熟成を行った後のアルミナゲルを、
酸性水溶液処理する。この酸性水溶液は、硝酸、塩酸、
硫酸等を用いることができ、好ましくは硝酸である。酸
性水溶液は、pH1〜5.5、好ましくはpH2〜4で
ある。pH1未満では酸によりアルミナの結晶構造が崩
壊し、pH5.5を超えると熟成が停止するのに時間が
掛かる。酸性水溶液処理の好ましい一態様は、アルミナ
ゲルに硝酸水溶液を加え、pH2〜3に調整し、温度が
室温〜60℃の状態で、充分攪拌させ、熟成を完了する
態様がある。
In order to suppress the deterioration of the alumina gel due to aging, the alumina gel after the above-mentioned heat aging is
Treat with acidic aqueous solution. This acidic aqueous solution contains nitric acid, hydrochloric acid,
Sulfuric acid or the like can be used, and nitric acid is preferred. The acidic aqueous solution has a pH of 1 to 5.5, preferably a pH of 2 to 4. When the pH is lower than 1, the crystal structure of alumina is destroyed by the acid, and when the pH is higher than 5.5, it takes time to stop the ripening. In a preferred embodiment of the acidic aqueous solution treatment, an aqueous solution of nitric acid is added to the alumina gel, the pH is adjusted to 2 to 3, and the mixture is sufficiently stirred at a temperature of room temperature to 60 ° C to complete ripening.

【0021】酸性水溶液処理を行ったアルミナゲルに、
アルカリ水溶液を添加し、pH9〜13、好ましくはp
H=10〜12とする。このアルカリ水溶液は、アンモ
ニア水溶液が好ましい。pH調整したアルミナゲルを、
濾過又は乾燥して水分調整する。水分調整は、濾過又は
乾燥の他、加水によっても行われる。水分調整は、触媒
の成型を容易にするために行う。水分調整後の水含有量
は、60〜95質量%が好ましい。
The alumina gel treated with the acidic aqueous solution is
An alkaline aqueous solution is added, and the pH is 9 to 13, preferably p.
Let H = 10-12. The aqueous alkaline solution is preferably an aqueous ammonia solution. pH adjusted alumina gel,
Filter or dry to adjust the water content. The water content is adjusted by adding water in addition to filtration or drying. The moisture adjustment is performed to facilitate the molding of the catalyst. The water content after moisture adjustment is preferably from 60 to 95% by mass.

【0022】なお、水分調整のための乾燥の際の温度や
方法を調整することで、アルミナの微細表面構造を制御
することができる。本発明では、水分調整のための乾燥
温度を100℃未満にすることが好ましく、特に熱を極
力加えず充分な濾過による乾燥によって調製するが好ま
しい。これにより、脱金属性能を増加させることができ
る。
The fine surface structure of alumina can be controlled by adjusting the temperature and the method of drying for adjusting the water content. In the present invention, the drying temperature for adjusting the water content is preferably set to less than 100 ° C., and particularly preferably prepared by drying by sufficient filtration without applying heat as much as possible. Thereby, the metal removal performance can be increased.

【0023】次に、水分調整されたアルミナゲルに含亜
鉛物質を、出来上がった担体を基準として亜鉛の酸化物
換算で1〜15質量%となるように、混合する。
Next, a zinc-containing substance is mixed with the alumina gel whose water content has been adjusted so as to be 1 to 15% by mass in terms of zinc oxide based on the completed carrier.

【0024】なお、亜鉛をアルミナへ含有させる方法
は、上記の水分調整されたアルミナゲルに含亜鉛物質を
混合する方法の他に、アルミナと亜鉛を共沈させて亜鉛
・アルミナゲルを作る方法、アルミナ担体をイオン交換
や含浸担持により含亜鉛アルミナ担体化する方法等があ
るが、平均細孔径及び触媒強度を本発明の範囲内とする
ためには上記の水分調整されたアルミナゲルに含亜鉛物
質を添加する方法が好ましい。
The method of adding zinc to alumina includes, in addition to the method of mixing a zinc-containing substance with the above-mentioned moisture-controlled alumina gel, a method of co-precipitating alumina and zinc to form a zinc-alumina gel, There is a method of converting the alumina carrier into a zinc-containing alumina carrier by ion exchange or impregnation loading, but in order to keep the average pore diameter and the catalyst strength within the scope of the present invention, the above-mentioned moisture-adjusted alumina gel is added to the zinc-containing substance. Is preferred.

【0025】上記の含亜鉛物質とアルミナゲルの混合物
を成型する。成型は、押出成型、加圧成型等の種々の成
型方法により行うことができる。成型した含亜鉛アルミ
ナ担体を、乾燥し、焼成する。このときの乾燥温度は、
常温〜約150℃が好ましく、特に好ましくは100〜
120℃であり、乾燥時間は、約2時間以上が好まし
く、特に好ましくは3〜11時間である。焼成温度は、
600℃以上が好ましく、特に好ましくは700〜90
0℃であり、焼成時間は、約30分以上が好ましく、特
に好ましくは1〜4時間である。焼成温度を600℃以
上とすることにより、添加した亜鉛とアルミナとの間で
結合を生じ、粉末X線パターンにおいて2θ=55.5
°に亜鉛アルミネートに由来する特徴的なピークが現れ
る。この特徴的なピークが現れることにより、触媒細孔
径を大きくしても触媒強度の低下を抑制できると考えら
れる。なお、この含亜鉛アルミナ担体におけるX線回折
パターンは、該担体に活性成分を担持した後であって
も、すなわち本発明の水素化処理触媒となっても、その
まま維持される。
A mixture of the above zinc-containing substance and alumina gel is molded. The molding can be performed by various molding methods such as extrusion molding and pressure molding. The formed zinc-containing alumina carrier is dried and fired. The drying temperature at this time is
Room temperature to about 150 ° C. is preferred, and particularly preferably 100 to
The drying time is preferably about 2 hours or more, particularly preferably 3 to 11 hours. The firing temperature is
600 ° C. or higher is preferable, and particularly preferably 700 to 90.
The temperature is 0 ° C., and the baking time is preferably about 30 minutes or more, and particularly preferably 1 to 4 hours. By setting the firing temperature to 600 ° C. or higher, bonding occurs between the added zinc and alumina, and 2θ = 55.5 in the powder X-ray pattern.
At °, a characteristic peak derived from zinc aluminate appears. It is considered that the appearance of this characteristic peak can suppress a decrease in catalyst strength even when the catalyst pore diameter is increased. The X-ray diffraction pattern of the zinc-containing alumina carrier is maintained even after the active component is carried on the carrier, that is, even when the hydrogenation catalyst of the present invention is used.

【0026】上記のようにして調製した含亜鉛アルミナ
担体への第VI族金属や第2金属成分としての他の水素
化活性金属の担持方法は、含浸法、共沈法等の公知の方
法でよい。例えば、含亜鉛アルミナ担体をこれらの水素
化活性金属成分を含有する溶液中に浸漬した状態で水素
化活性金属成分を沈澱させる方法のように、含亜鉛アル
ミナ担体を水素化活性金属成分を含有する溶液と接触さ
せて、水素化活性金属を含亜鉛アルミナ担体上に担持さ
せる方法が採用できる。なお、複数の水素化活性金属を
担持させる場合は、これら複数の水素化活性金属を一度
に担持させてもよいし、順序にはこだわらず順々に担持
させてもよい。
The method for supporting the group VI metal or other hydrogenation active metal as the second metal component on the zinc-containing alumina carrier prepared as described above may be performed by a known method such as an impregnation method or a coprecipitation method. Good. For example, as in a method in which a zinc-containing alumina carrier is precipitated in a state where the zinc-containing alumina carrier is immersed in a solution containing these hydrogenation-active metal components, the zinc-containing alumina carrier contains a hydrogenation-active metal component. A method may be employed in which the metal is contacted with a solution and the hydrogenation active metal is supported on a zinc-containing alumina carrier. When a plurality of hydrogenation-active metals are supported, the plurality of hydrogenation-active metals may be supported at once, or may be supported sequentially without depending on the order.

【0027】このようにして水素化活性金属を担持した
含亜鉛アルミナ担体は、乾燥し、焼成すれば、本発明の
水素化処理触媒となる。このときの乾燥温度や乾燥時間
は、上記の含亜鉛アルミナ担体の乾燥温度や乾燥時間と
同様、温度は常温〜約150℃が好ましく、特に好まし
くは100〜120℃であり、時間は約2時間以上が好
ましく、特に好ましくは3〜12時間である。また、焼
成温度は、350〜800℃が好ましく、特に好ましく
は400〜700℃であり、焼成時間は、約1時間以上
が好ましく、特に好ましくは3〜12時間である。
[0027] The zinc-containing alumina support carrying the hydrogenation active metal in this manner is dried and calcined to become the hydrotreating catalyst of the present invention. The drying temperature and the drying time at this time are preferably room temperature to about 150 ° C., particularly preferably 100 to 120 ° C., and the time is about 2 hours, similarly to the drying temperature and the drying time of the zinc-containing alumina carrier. The above is preferable, and particularly preferable is 3 to 12 hours. Further, the firing temperature is preferably 350 to 800 ° C, particularly preferably 400 to 700 ° C, and the firing time is preferably about 1 hour or more, and particularly preferably 3 to 12 hours.

【0028】本発明の水素化処理触媒の触媒形状は、特
に限定されるものではなく、通常の触媒形状に用いられ
る種々の形状にすることができるが、三葉型や四葉型が
好ましい。触媒径は、1.1〜2.5mm程度であれば
よい。本発明の水素化処理触媒は、実際のプロセスに用
いる場合は、公知の触媒あるいは公知の無機質酸化物担
体と混合して用いてもよい。
[0028] The shape of the hydrotreating catalyst of the present invention is not particularly limited, and may be any of various shapes used for ordinary catalyst shapes, but is preferably a three-leaf or four-leaf type. The catalyst diameter may be about 1.1 to 2.5 mm. When the hydrotreating catalyst of the present invention is used in an actual process, it may be used by mixing with a known catalyst or a known inorganic oxide carrier.

【0029】また、本発明の水素化処理触媒は、重質炭
化水素油の水素化処理に使用する前に予備硫化すること
が好ましい。予備硫化の方法は、約1質量%又はそれ以
上の硫黄を含有する炭化水素油や気相硫化物を高温、高
圧下で触媒上に通じる方法等が採用される。この予備硫
化を行うと、水素化活性金属成分は大部分硫化物とな
る。なお、水素化処理中に重質炭化水素油の硫黄分によ
っても、水素化活性金属成分は、一部あるいは全部が硫
化物となることもある。
The hydrotreating catalyst of the present invention is preferably pre-sulfurized before being used for hydrotreating heavy hydrocarbon oil. As the method of pre-sulfurization, a method of passing a hydrocarbon oil or a gas-phase sulfide containing about 1% by mass or more of sulfur over a catalyst under high temperature and high pressure is employed. When this pre-sulfurization is performed, the hydrogenation-active metal component becomes mostly sulfide. In addition, depending on the sulfur content of the heavy hydrocarbon oil during the hydrotreating, the hydrogenation-active metal component may be partially or entirely turned into sulfide.

【0030】以上詳述した本発明の水素化処理触媒は、
硫黄分、アスファルテン分、ニッケルやバナジウム等の
重金属分を含有する重質炭化水素油から重金属分を効果
的に除去するのに適した触媒であって、重質炭化水素油
から中間留分やそのまま製品となる低硫黄重油を生成す
るのに適した触媒である。従って、例えば、重質炭化水
素油を多段で水素化処理する場合の、触媒床前段部にお
いて、特に脱金属触媒として好適に使用することができ
る。
The hydrotreating catalyst of the present invention described in detail above
A catalyst suitable for effectively removing heavy metals from heavy hydrocarbon oils containing heavy metals such as sulfur, asphaltenes, nickel, and vanadium. It is a catalyst suitable for producing low-sulfur heavy oil as a product. Therefore, for example, in a case where heavy hydrocarbon oil is subjected to hydrotreatment in multiple stages, it can be suitably used particularly as a demetallization catalyst in the former stage of the catalyst bed.

【0031】本発明の重質炭化水素油の水素化処理方法
は、上記した本発明の水素化処理触媒を使用して行わ
れ、特に重質炭化水素油から中間留分やそのまま製品と
なる低硫黄重油を生成する方法として、あるいは重質炭
化水素油の多段水素化処理方法における触媒床前段部の
脱金属処理方法として行うことが好ましい。本発明の水
素化処理方法における重質炭化水素油は、原油から蒸留
により得られる常圧蒸留残油、減圧蒸留残油、熱分解油
であるビスブレーキング油、石油以外の重質油であるタ
ールサンド油、シェールオイル等、又はこれらの混合物
である。
The method for hydrotreating heavy hydrocarbon oil of the present invention is carried out using the above-mentioned hydrotreating catalyst of the present invention. It is preferably carried out as a method for producing sulfur heavy oil or as a method for demetallizing the front part of the catalyst bed in a multistage hydrotreating method for heavy hydrocarbon oil. The heavy hydrocarbon oil in the hydrotreating method of the present invention is an atmospheric distillation residue obtained by distillation from crude oil, a vacuum distillation residue, a visbreaking oil which is a pyrolysis oil, and a heavy oil other than petroleum. Tar sand oil, shale oil and the like, or a mixture thereof.

【0032】本発明における重質炭化水素油の水素化処
理とは、重質炭化水素油と水素との接触による処理を言
い、比較的反応条件の過酷度の低い水素化精製、比較的
過酷度の高い若干の分解反応を伴う水素化精製、水添異
性化、水素化脱アルキル、脱金属、その他の水素存在下
における重質炭化水素油の反応を包含し、特に中間留分
等としての低硫黄重油の生成反応、重質炭化水素油の多
段水素化処理方法における触媒床前段部での脱金属反応
が好ましい。例えば、常圧蒸留の残油、減圧蒸留の留出
液や残油の水素化脱硫、水素化脱窒素、水素化分解、あ
るいはワックスや潤滑油留分の水素化精製等を含む。
In the present invention, the term "hydrotreating of heavy hydrocarbon oil" means a treatment by contact of heavy hydrocarbon oil with hydrogen, and hydrorefining with relatively low reaction conditions and relatively severe reaction. Including hydrocracking, hydroisomerization, hydrodealkylation, demetallization, and other reactions of heavy hydrocarbon oils in the presence of hydrogen, especially with low Preference is given to the production reaction of sulfur heavy oil and the demetallization reaction in the former stage of the catalyst bed in the multistage hydrotreating method for heavy hydrocarbon oil. Examples include hydrodesulfurization, hydrodenitrogenation, hydrocracking of residual oil from atmospheric distillation, distillate and residual oil from vacuum distillation, and hydrorefining of wax and lubricating oil fractions.

【0033】本発明の水素化処理方法における水素化処
理条件は、温度が300〜500℃、好ましくは350
〜450℃、圧力(水素分圧)が3〜20MPa、好ま
しくは8〜17MPa、水素/油比が400〜3000
/m、好ましくは500〜1800m/m
LHSV(液空間速度)が0.1〜3h−1、好ましく
は0.2〜2h−1であり、要求される反応程度等によ
り、これらの範囲内から適宜選定すればよい。
The hydrotreating conditions in the hydrotreating method of the present invention are such that the temperature is 300 to 500 ° C., preferably 350 ° C.
~ 450 ° C, pressure (hydrogen partial pressure) 3 ~ 20MPa, preferably 8 ~ 17MPa, hydrogen / oil ratio 400 ~ 3000
m 3 / m 3, preferably 500~1800m 3 / m 3,
LHSV (liquid hourly space velocity) is 0.1~3H -1, preferably 0.2~2H -1, the reaction order or the like which is required, may be appropriately selected from within these ranges.

【0034】温度が300℃未満では、触媒活性、特に
脱金属活性を十分に発揮できず、500℃を越えると、
重質炭化水素油の熱分解が進行しすぎるため、触媒劣化
が大きくなる。水素分圧が3MPa未満では、水素化反
応が進行し難く、20MPaを越えると脱金属活性が向
上しすぎるため触媒寿命が短くなる。水素/油比が40
0m/m未満では水素化活性が低下し、3000m
/mを越えると経済性が低下する。液空間速度が
0.1h−1未満では経済性が低下し、3h−1を越え
ると触媒活性が低下する。
If the temperature is lower than 300 ° C., the catalytic activity, especially the demetalizing activity cannot be sufficiently exhibited.
Since the thermal decomposition of the heavy hydrocarbon oil proceeds too much, the catalyst deteriorates. When the hydrogen partial pressure is less than 3 MPa, the hydrogenation reaction hardly proceeds, and when it exceeds 20 MPa, the catalyst life is shortened because the demetalization activity is excessively improved. Hydrogen / oil ratio of 40
If it is less than 0 m 3 / m 3 , the hydrogenation activity decreases, and
3 / m 3 to more than the economical efficiency is lowered. Liquid hourly space velocity is lowered economical efficiency is less than 0.1 h -1, the catalytic activity decreases exceeds 3h -1.

【0035】本発明の水素化処理方法を商業規模で実施
するには、本発明の水素化処理触媒を適当な反応器にお
いて固定床、移動床又は流動床として使用し、該反応器
に処理すべき重質炭化水素油を導入して行う。一般的に
は、本発明の水素化処理触媒を固定床として維持し、重
質炭化水素油が該固定床を下方に通過するようにする。
本発明の水素化処理触媒は、単独の反応器で使用しても
よいし、連続した幾つかの反応器で使用することもで
き、特に多段反応器を使用するのが極めて好ましい。な
お、本発明の触媒は、前記のように、重質炭化水素油の
前処理的な脱金属処理に適したものであり、このように
単独反応器、連続複数反応器、多段反応器で使用する場
合にあっても、これらの反応器が重質炭化水素油の多段
水素化処理における触媒床前段部に位置するように使用
することが好ましい。
In order to carry out the hydrotreating process of the present invention on a commercial scale, the hydrotreating catalyst of the present invention is used as a fixed bed, a moving bed or a fluidized bed in a suitable reactor, and is treated in the reactor. This is done by introducing heavy hydrocarbon oil to be used. Generally, the hydroprocessing catalyst of the present invention is maintained as a fixed bed such that heavy hydrocarbon oil passes down through the fixed bed.
The hydrotreating catalyst of the present invention may be used in a single reactor or may be used in several continuous reactors, and it is particularly preferable to use a multi-stage reactor. As described above, the catalyst of the present invention is suitable for pretreatment demetallization of heavy hydrocarbon oil, and is used in a single reactor, a continuous multiple reactor, and a multi-stage reactor. Even in such a case, it is preferable that these reactors are used so as to be located at the front stage of the catalyst bed in the multi-stage hydrotreating of heavy hydrocarbon oil.

【0036】[0036]

【実施例】実施例1 (水素化処理触媒Aの調製)5質量%のアルミン酸ナト
リウム水溶液10kgを60℃に加熱した後、25質量
%の硫酸アルミニウム水溶液2.8kgをゆっくり加
え、最終的に溶液のpHを7とした。この時、溶液の温
度は60℃を保持した。以上の操作により生成したアル
ミナスラリーを濾過し、濾別されたアルミナゲルを0.
3質量%のアンモニア水溶液で繰り返し洗浄した。
EXAMPLES Example 1 (Preparation of Hydrotreating Catalyst A) After heating 10 kg of a 5 mass% aqueous sodium aluminate solution to 60 ° C., 2.8 kg of a 25 mass% aqueous aluminum sulfate solution was slowly added, and finally, The pH of the solution was set to 7. At this time, the temperature of the solution was maintained at 60 ° C. The alumina slurry produced by the above operation was filtered, and the alumina gel filtered was removed.
Washing was repeated with a 3% by mass aqueous ammonia solution.

【0037】洗浄後のアルミナゲルに水5kgを加え、
更に10質量%のアンモニア水溶液を加えてそのゲルの
水分散液をpH11に調整した。次に、ゲルの水分散液
を90℃に加熱し、撹拌、還流しながら40時間熟成し
た。
5 kg of water was added to the washed alumina gel,
The aqueous dispersion of the gel was adjusted to pH 11 by further adding a 10% by mass aqueous ammonia solution. Next, the aqueous dispersion of the gel was heated to 90 ° C. and aged for 40 hours while stirring and refluxing.

【0038】その後、5Nの硝酸水溶液を加えてpH2
に調整し、15分間撹拌した。更に、10質量%のアン
モニア水溶液を加えてpH11に調整した。得られたゲ
ルの水分散液を濾過した後、室温で加水して成型し易い
粘度になるように水分調整を行った。水分調整後のアル
ミナゲルの水含有量は、70質量%であった。
Thereafter, a 5N aqueous nitric acid solution was added to adjust the pH to 2
And stirred for 15 minutes. Further, the pH was adjusted to 11 by adding a 10% by mass aqueous ammonia solution. After filtering the resulting aqueous dispersion of the gel, water was adjusted at room temperature to adjust the water content to a viscosity that facilitates molding. The water content of the alumina gel after the adjustment of the water content was 70% by mass.

【0039】続いて、含亜鉛物質として酸化亜鉛を、担
体基準、酸化物換算でZn8質量%になるように加え、
ニーダーで充分均一になるまでよく混合した。得られた
含亜鉛アルミナゲルを押出成型し、110℃で10時間
乾燥し、800℃で2時間焼成した。
Subsequently, zinc oxide was added as a zinc-containing substance so as to be 8% by mass of Zn in terms of oxide on a carrier basis.
Mix well with a kneader until well homogenous. The obtained zinc-containing alumina gel was extruded, dried at 110 ° C. for 10 hours, and calcined at 800 ° C. for 2 hours.

【0040】焼成された含亜鉛アルミナ担体100g
を、パラモリブデン酸アンモニウムと硝酸ニッケルを各
々酸化物換算でMo9質量%、Ni2質量%となるよう
に100gの水に溶解した液に、含浸した。含浸後の含
亜鉛担体を110℃で4時間加熱乾燥し、550℃で3
時間焼成して、水素化処理触媒Aを調製した。
100 g of calcined zinc-containing alumina carrier
Was impregnated with a solution of ammonium paramolybdate and nickel nitrate dissolved in 100 g of water so as to be 9% by mass of Mo and 2% by mass of Ni, respectively, in terms of oxides. The impregnated zinc-containing carrier is dried by heating at 110 ° C. for 4 hours, and dried at 550 ° C. for 3 hours.
After calcination for a period of time, a hydrotreating catalyst A was prepared.

【0041】水素化処理触媒AのZn含有量は担体基
準、酸化物換算で8質量%、水素化活性金属量は該触媒
基準、酸化物換算でMo9質量%、Ni2質量%であっ
た。水素化処理触媒Aの形状は、四葉型であり、径は
1.3mmであった。この触媒Aの粉末X線パターン
を、X線回折装置(RIGAKU DENKI社製RI
NT−2500V)を使用し、Cu管球により、管電圧
50kV、管電流300mA、発散スリット1°、散乱
スリット1°、受光スリット0.3mmで測定し、図1
に示した。
The Zn content of the hydrotreating catalyst A was 8% by mass in terms of oxide on a carrier basis, and the hydrogenation active metal amount was 9% by mass of Mo and 2% by mass of Ni in terms of oxide on the basis of the catalyst. The shape of the hydrotreating catalyst A was a four-leaf type, and the diameter was 1.3 mm. The powder X-ray pattern of the catalyst A was converted to an X-ray diffractometer (RIGAKU DENKI, RI
NT-2500V), using a Cu tube, measuring at a tube voltage of 50 kV, a tube current of 300 mA, a divergence slit of 1 °, a scattering slit of 1 °, and a light receiving slit of 0.3 mm.
It was shown to.

【0042】実施例2 (水素化処理触媒Bの調製)Zn量が、水素化処理触媒
Bにおける担体基準、酸化物換算で12質量%となるよ
う亜鉛含有物質を添加し、実施例1と同様の方法で水素
化処理触媒Bを調製した。
Example 2 (Preparation of hydrotreating catalyst B) A zinc-containing substance was added so that the amount of Zn was 12% by mass in terms of oxide based on the carrier of hydrotreating catalyst B, and was the same as in Example 1. The hydrotreating catalyst B was prepared by the method described above.

【0043】実施例3 (水素化処理触媒Cの調製)Zn量が、水素化処理触媒
Cにおける担体基準、酸化物換算で4質量%となるよう
亜鉛含有物質を添加し、実施例1と同様の方法で水素化
処理触媒Cを調製した。この触媒Cの粉末X線回折パタ
ーンを、実施例1と同様にして測定し、図2に示した。
Example 3 (Preparation of hydrotreating catalyst C) A zinc-containing substance was added so that the amount of Zn was 4% by mass in terms of oxide on the basis of the carrier in hydrotreating catalyst C. The hydrotreating catalyst C was prepared by the method described above. The powder X-ray diffraction pattern of this catalyst C was measured in the same manner as in Example 1 and shown in FIG.

【0044】実施例4 (水素化処理触媒Dの調製)Zn量が、水素化処理触媒
Dにおける担体基準、酸化物換算で2質量%となるよう
亜鉛含有物質を添加し、実施例1と同様の方法で水素化
処理触媒Dを調製した。
Example 4 (Preparation of hydrotreating catalyst D) A zinc-containing substance was added so that the amount of Zn was 2% by mass in terms of oxide, based on the carrier of hydrotreating catalyst D, and was the same as in Example 1. A hydrotreating catalyst D was prepared by the method described above.

【0045】実施例5 (水素化処理触媒Eの調製)実施例1において、アルミ
ナゲルの水分散液の熟成時間を25時間、押出成形後の
焼成温度を750℃とした以外は、実施例1と同様にし
て水素化処理触媒Eを調製した。この触媒Eの粉末X線
回折パターンを、実施例1と同様にして測定し、図3に
示した。
Example 5 (Preparation of hydrotreating catalyst E) Example 1 was repeated except that the aging time of the aqueous dispersion of alumina gel was changed to 25 hours and the firing temperature after extrusion was set to 750 ° C. A hydrotreating catalyst E was prepared in the same manner as described above. The powder X-ray diffraction pattern of this catalyst E was measured in the same manner as in Example 1 and shown in FIG.

【0046】実施例6 (水素化処理触媒Fの調製)実施例1において、アルミ
ナゲルの水分散液の熟成時間を50時間、押出成形後の
焼成温度を850℃とした以外は、実施例1と同様にし
て水素化処理触媒Fを調製した。
Example 6 (Preparation of hydrotreating catalyst F) Example 1 was repeated except that the aging time of the aqueous dispersion of alumina gel was changed to 50 hours and the firing temperature after extrusion was set to 850 ° C. A hydrotreating catalyst F was prepared in the same manner as described above.

【0047】実施例7 (水素化処理触媒Gの調製)活性金属を水素化処理触媒
G基準、酸化物換算でMo9質量%のみとなるようにし
た以外は、実施例1と同様にして水素化処理触媒Gを調
製した。
Example 7 (Preparation of Hydrotreating Catalyst G) Hydrogenation was carried out in the same manner as in Example 1 except that the active metal was only 9% by mass of Mo in terms of oxide based on the amount of the hydrotreating catalyst G. A treatment catalyst G was prepared.

【0048】実施例8 (水素化処理触媒Hの調製)タングステン酸アンモニウ
ムを用い、活性金属を水素化処理触媒H基準、酸化物換
算でW9質量%のみとなるようにした以外は、実施例3
と同様にして水素化触媒Hを調製した。
Example 8 (Preparation of hydrotreating catalyst H) Example 3 was repeated except that ammonium tungstate was used and the active metal was only 9% by mass in terms of oxides based on hydrotreating catalyst H.
A hydrogenation catalyst H was prepared in the same manner as described above.

【0049】比較例1 (水素化処理触媒Qの調製)亜鉛を添加しない以外は、
実施例1と同様の方法で水素化処理触媒Qを調製した。
この触媒Qの粉末X線回折パターンを、実施例1と同様
にして測定し、図4に示した。
Comparative Example 1 (Preparation of Hydrotreating Catalyst Q) Except that zinc was not added,
Hydrotreating catalyst Q was prepared in the same manner as in Example 1.
The powder X-ray diffraction pattern of this catalyst Q was measured in the same manner as in Example 1 and shown in FIG.

【0050】比較例2 (水素化処理触媒Rの調製)実施例1において、亜鉛を
添加せず、アルミナゲルの水分散液の熟成時間を18時
間、押出成形後の焼成温度を680℃とした以外は、実
施例1と同様にして水素化処理触媒Rを調製した。この
触媒Rの粉末X線回折パターンを、実施例1と同様にし
て測定し、図5に示した。
Comparative Example 2 (Preparation of Hydrotreating Catalyst R) In Example 1, the aging time of the aqueous dispersion of alumina gel was changed to 18 hours without adding zinc, and the firing temperature after extrusion molding was set to 680 ° C. A hydrogenation catalyst R was prepared in the same manner as in Example 1 except for the above. The powder X-ray diffraction pattern of this catalyst R was measured in the same manner as in Example 1, and is shown in FIG.

【0051】比較例3 (水素化処理触媒Sの調製)Zn量が、水素化処理触媒
Sにおける担体基準、酸化物換算で18質量%となるよ
う亜鉛含有物質を添加し、実施例1と同様の方法で水素
化処理触媒Sを調製した。
Comparative Example 3 (Preparation of hydrotreating catalyst S) A zinc-containing substance was added so that the amount of Zn was 18% by mass in terms of oxide, based on the carrier of hydrotreating catalyst S, and was the same as in Example 1. The hydrotreating catalyst S was prepared by the method described above.

【0052】(水素化処理触媒の分析)実施例1〜8及
び比較例1〜3で調製した水素化処理触媒A〜H、Q〜
Sの性状を表1及び表2に示す。なお、各性状は次の要
領で測定した。
(Analysis of Hydrotreating Catalysts) The hydrotreating catalysts AH and Q prepared in Examples 1 to 8 and Comparative Examples 1 to 3
Tables 1 and 2 show the properties of S. In addition, each property was measured in the following manner.

【0053】(1)平均細孔径:水銀ポロシメーター
(MICROMERITECS社製AUTOPORE
9220)を使用し、水銀圧入法により細孔容積を求
め、この時の細孔容積をそれ以上の径の部分と、それ以
下の径の部分とに均等に2分する細孔直径とした。水銀
圧入時の圧力は0〜415MPaとし、接触角130
゜、表面張力4.7×10−5N/mとして、次式によ
り細孔直径を求めた。 r=−2σ×cosθ/P r:平均細孔半径、σ:表面張力、θ:接触角、P:水
銀圧入時の圧力 (2)比表面積:高精度全自動ガス吸着装置(BEL
JAPAN社製BELSORP28)により、窒素吸着
等温線からBET法により求めた。 (3)触媒強度(SCS):550℃で1時間の前処理
を行った水素化処理触媒を使用し、破壊強度測定装置
(KYOWA SEIKO社製KA−300B RHE
OROBOT)により、11.5N/秒の割合で荷重を
加え、触媒が破壊される荷重を求め、この触媒の長さで
割って求めた。
(1) Average pore diameter: mercury porosimeter (AUTOPORE manufactured by MICROMERITECS)
9220) was used to determine the pore volume by the mercury intrusion method, and the pore volume at this time was defined as a pore diameter that equally divides into a portion having a larger diameter and a portion having a smaller diameter. The pressure at the time of mercury injection is 0 to 415 MPa, and the contact angle is 130
細孔, assuming that the surface tension was 4.7 × 10 −5 N / m, the pore diameter was determined by the following equation. r = −2σ × cos θ / P r: average pore radius, σ: surface tension, θ: contact angle, P: pressure at the time of mercury injection (2) Specific surface area: high-precision fully automatic gas adsorption device (BEL)
BELSORP28, manufactured by JAPAN Co., Ltd.), and determined by the BET method from a nitrogen adsorption isotherm. (3) Catalyst strength (SCS): Using a hydrotreating catalyst pretreated at 550 ° C. for 1 hour, using a breaking strength measuring device (KA-300B RHE manufactured by KYOWA SEIKO)
(OROBOT), a load was applied at a rate of 11.5 N / sec, the load at which the catalyst was broken was determined, and the load was divided by the length of the catalyst.

【0054】[0054]

【表1の1】 [Table 1-1]

【0055】[0055]

【表1の2】 [Table 1-2]

【0056】[0056]

【表2】 [Table 2]

【0057】実施例9〜16、比較例4〜6 (水素化処理触媒の反応)固定床流通式マイクロリアク
ターに、水素化処理触媒A〜H、Q〜Sを各々10cc
充填した。各触媒A〜H、Q〜Sの予備硫化は、二硫化
炭素を5質量%含有するLGOにより、LHSV=1.
0h−1、水素分圧=10MPa、370℃で4時間行
った。予備硫化の後、ボスカン原油(Ni120pp
m、V1300ppm、硫黄分4.7質量%、アルファ
ルテン分11質量%含有)を連続的に通油し、395℃
の反応温度、10MPaの水素分圧、1.0h−1のL
HSV、1690m/mの水素/油比で水素化処理
反応を行った。
Examples 9 to 16 and Comparative Examples 4 to 6 (Reaction of hydrotreating catalyst) 10 cc of each of hydrotreating catalysts A to H and Q to S was added to a fixed bed flow type microreactor.
Filled. The preliminary sulfurization of each of the catalysts A to H and Q to S was performed by LGO containing 5% by mass of carbon disulfide, and LHSV = 1.
It carried out at 0 h < -1 >, hydrogen partial pressure = 10 Mpa, and 370 degreeC for 4 hours. After pre-sulfurization, Boscan crude oil (Ni120pp
m, V1300ppm, sulfur content 4.7% by mass, alfalten content 11% by mass) were passed continuously,
Reaction temperature, hydrogen partial pressure of 10 MPa, L of 1.0 h -1
The hydrotreating reaction was performed at a hydrogen / oil ratio of 1690 m 3 / m 3 with HSV.

【0058】(生成油の分析)上記の水素化処理反応で
得た生成油から求めた結果を表3〜4に示す。なお、表
3〜4の脱金属率と脱アスファルテン率は、運転日数1
5日目のものである。アスファルテン分は、2波長吸光
光度法(JPI−5S−45−95)に準拠し、全自動
アスファルテン試験器(COSMO TRADE &
SERVICE社製APD−500A)によって求め
た。また、表3〜4の運転日数は、脱金属率が60%以
下となるまでの日数である。
(Analysis of Product Oil) Tables 3 and 4 show the results obtained from the product oil obtained by the above hydrotreating reaction. The demetallization rates and deasphalten rates in Tables 3 and 4 are calculated based on the number of operating days of 1
It is the fifth day. The asphaltene component is based on the two-wavelength absorption spectrophotometry (JPI-5S-45-95) and is fully automatic asphaltene tester (COSMO TRADE &
SERVICE APD-500A). Further, the number of operating days in Tables 3 and 4 is the number of days until the demetalization rate becomes 60% or less.

【0059】[0059]

【表3】 [Table 3]

【0060】[0060]

【表4】 [Table 4]

【0061】表1〜表4から明らかなように、本発明に
よれば、触媒強度を高く保った平均細孔径の大きい水素
化処理触媒を用いることにより、重質炭化水素油中の重
金属分の大部分を容易に除去することができる。従っ
て、本発明の水素化処理方法は、重質炭化水素油を多段
で水素化処理する場合に、最前段の水素化処理方法とし
て適していることが判る。
As is clear from Tables 1 to 4, according to the present invention, by using a hydrotreating catalyst having a large average pore diameter while maintaining a high catalyst strength, the content of heavy metals in heavy hydrocarbon oil can be improved. Most can be easily removed. Therefore, it can be seen that the hydrotreating method of the present invention is suitable as the first-stage hydrotreating method when heavy hydrocarbon oil is hydrotreated in multiple stages.

【0062】[0062]

【発明の効果】本発明の水素化処理触媒は、触媒強度が
強く、触媒活性に優れ、触媒寿命が長く、硫黄分、アス
ファルテン分、ニッケルやバナジウム等の重金属分を含
有する重質炭化水素油から重金属分を効果的に除去する
ことができる。また、この水素化処理触媒を使用する本
発明の水素化処理方法は、重質炭化水素油の効率的な水
素化接触反応、特に脱金属反応を行うことができ、特に
重質炭化水素油の多段水素化処理における触媒床前段部
分での水素化処理に効果的に適用することができる。
Industrial Applicability The hydrotreating catalyst of the present invention is a heavy hydrocarbon oil having high catalyst strength, excellent catalytic activity, long catalyst life, and containing sulfur, asphaltene, and heavy metals such as nickel and vanadium. Heavy metal components can be effectively removed. In addition, the hydrotreating method of the present invention using the hydrotreating catalyst can carry out an efficient hydrogenation catalytic reaction of heavy hydrocarbon oil, particularly a demetallization reaction, and particularly for heavy hydrocarbon oil. The present invention can be effectively applied to a hydrotreating process in a preceding stage of a catalyst bed in a multi-stage hydrotreating process.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1で得られた本発明の水素化処理触媒の
粉末X線パターンを示す図である。
FIG. 1 is a view showing a powder X-ray pattern of the hydrotreating catalyst of the present invention obtained in Example 1.

【図2】実施例3で得られた本発明の水素化処理触媒の
粉末X線パターンを示す図である。
FIG. 2 is a view showing a powder X-ray pattern of the hydrotreating catalyst of the present invention obtained in Example 3.

【図3】実施例5で得られた本発明の水素化処理触媒の
粉末X線パターンを示す図である。
FIG. 3 is a view showing a powder X-ray pattern of the hydrotreating catalyst of the present invention obtained in Example 5.

【図4】比較例1で得られた比較の水素化処理触媒の粉
末X線パターンを示す図である。
FIG. 4 is a view showing a powder X-ray pattern of a comparative hydrotreating catalyst obtained in Comparative Example 1.

【図5】比較例2で得られた比較の水素化処理触媒の粉
末X線パターンを示す図である。
FIG. 5 is a view showing a powder X-ray pattern of a comparative hydrotreating catalyst obtained in Comparative Example 2.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 千代田 範人 埼玉県幸手市権現堂1134−2 コスモ石油 株式会社研究開発センター内 (72)発明者 水谷 喜弘 埼玉県幸手市権現堂1134−2 コスモ石油 株式会社研究開発センター内 (72)発明者 出井 一夫 埼玉県幸手市権現堂1134−2 コスモ石油 株式会社研究開発センター内 Fターム(参考) 4G069 AA01 AA03 AA15 BA01A BA01B BB04A BB04B BC35A BC35B BC57A BC59B BC60B BC68B CC02 DA05 EC02X EC02Y EC03X EC03Y EC15X EC15Y EC25 ED03 4H029 CA00 DA00  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Norihito Chiyoda 1134-2 Gongendo, Satte City, Saitama Prefecture Cosmo Oil Co., Ltd. (72) Yoshihiro Mizutani 1134-2 Gongendo, Satte City, Saitama Cosmo Oil R & D Center Co., Ltd. (72) Inventor Kazuo Dei 1134-2, Gondogendo, Satte City, Saitama Cosmo Oil R & D Center Co., Ltd. F Term (Reference) DA05 EC02X EC02Y EC03X EC03Y EC15X EC15Y EC25 ED03 4H029 CA00 DA00

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 アルミナ中に亜鉛が担体を基準とした酸
化物換算で1〜15質量%含有される含亜鉛アルミナ担
体に、少なくとも1種の第VI族金属が担持され、触媒
の平均細孔径が20〜35nm、触媒強度がSCSで9
N/mm以上、比表面積が70〜150m/gである
ことを特徴とする重質炭化水素油の水素化処理触媒。
1. A zinc-containing alumina support containing 1 to 15% by mass of zinc in alumina based on the oxide based on the support, at least one Group VI metal supported thereon, and an average pore diameter of a catalyst. Is 20 to 35 nm, and the catalyst strength is 9 in SCS.
N / mm or more, the heavy hydrocarbon oil hydroprocessing catalyst having a specific surface area, characterized in that a 70~150m 2 / g.
【請求項2】 成型後の含亜鉛アルミナ担体が、600
℃以上で焼成され、粉末X線回折パターンにおいて2θ
=55.5°に特徴的なピークを有する請求項1記載の
重質炭化水素油の水素化処理触媒。
2. The zinc-containing alumina carrier after molding is 600
° C or more and 2θ in the powder X-ray diffraction pattern.
The catalyst for hydrotreating heavy hydrocarbon oil according to claim 1, which has a characteristic peak at 55.5 °.
【請求項3】 請求項1又は2記載の水素化処理触媒の
存在下、温度300〜500℃、圧力3〜20MPa、
水素/油比400〜3000m/m、及びLHSV
0.1〜3h−1の条件で、重質炭化水素油の接触反応
を行うことを特徴とする重質炭化水素油の水素化処理方
法。
3. In the presence of the hydrotreating catalyst according to claim 1 or 2, a temperature of 300 to 500 ° C., a pressure of 3 to 20 MPa,
Hydrogen / oil ratio 400~3000m 3 / m 3, and LHSV
A method for hydrotreating heavy hydrocarbon oil, comprising performing a catalytic reaction of heavy hydrocarbon oil under a condition of 0.1 to 3 h -1 .
JP2000138263A 2000-05-11 2000-05-11 Heavy hydrocarbon oil hydrotreating catalyst and hydrotreating method using the same Expired - Lifetime JP4408527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000138263A JP4408527B2 (en) 2000-05-11 2000-05-11 Heavy hydrocarbon oil hydrotreating catalyst and hydrotreating method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000138263A JP4408527B2 (en) 2000-05-11 2000-05-11 Heavy hydrocarbon oil hydrotreating catalyst and hydrotreating method using the same

Publications (2)

Publication Number Publication Date
JP2001314770A true JP2001314770A (en) 2001-11-13
JP4408527B2 JP4408527B2 (en) 2010-02-03

Family

ID=18645902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000138263A Expired - Lifetime JP4408527B2 (en) 2000-05-11 2000-05-11 Heavy hydrocarbon oil hydrotreating catalyst and hydrotreating method using the same

Country Status (1)

Country Link
JP (1) JP4408527B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006052390A (en) * 2004-07-15 2006-02-23 Cosmo Oil Co Ltd Method for producing hydrocarbon oil
WO2015046316A1 (en) 2013-09-27 2015-04-02 コスモ石油株式会社 Hydrogenation catalyst for heavy hydrocarbon oil and hydrogenation method for heavy hydrocarbon oil

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006052390A (en) * 2004-07-15 2006-02-23 Cosmo Oil Co Ltd Method for producing hydrocarbon oil
WO2015046316A1 (en) 2013-09-27 2015-04-02 コスモ石油株式会社 Hydrogenation catalyst for heavy hydrocarbon oil and hydrogenation method for heavy hydrocarbon oil
CN105579132A (en) * 2013-09-27 2016-05-11 克斯莫石油株式会社 Hydrogenation catalyst for heavy hydrocarbon oil and hydrogenation method for heavy hydrocarbon oil
KR20160061361A (en) 2013-09-27 2016-05-31 코스모세키유 가부시키가이샤 Hydrogenation catalyst for heavy hydrocarbon oil and hydrogenation method for heavy hydrocarbon oil
JPWO2015046316A1 (en) * 2013-09-27 2017-03-09 コスモ石油株式会社 Heavy hydrocarbon oil hydrotreating catalyst, and heavy hydrocarbon oil hydrotreating method
CN105579132B (en) * 2013-09-27 2018-04-27 克斯莫石油株式会社 The hydrotreating catalyst of heavy hydrocarbon oil and the hydrotreating method of heavy hydrocarbon oil
US10137436B2 (en) 2013-09-27 2018-11-27 Cosmo Oil Co., Ltd. Hydrogenation catalyst for heavy hydrocarbon oil and hydrogenation method for heavy hydrocarbon oil
KR102229870B1 (en) * 2013-09-27 2021-03-19 코스모세키유 가부시키가이샤 Hydrogenation catalyst for heavy hydrocarbon oil and hydrogenation method for heavy hydrocarbon oil

Also Published As

Publication number Publication date
JP4408527B2 (en) 2010-02-03

Similar Documents

Publication Publication Date Title
CA2429944C (en) Alumina having novel pore structure, method of making and catalysts made therefrom
US5223472A (en) Demetallation catalyst
EP1347832B1 (en) Hydroprocessing catalyst and use thereof
US5399259A (en) Hydroconversion process employing catalyst with specified pore size distribution
JP4033249B2 (en) Heavy hydrocarbon oil hydrotreating catalyst and hydrotreating method using the same
US5616530A (en) Hydroconversion process employing catalyst with specified pore size distribution
EP2750792B1 (en) Catalyst support and catalysts prepared therefrom
US5210061A (en) Resid hydroprocessing catalyst
JP6476525B2 (en) Heavy hydrocarbon oil hydrotreating catalyst and heavy hydrocarbon oil hydrotreating method
EP1567617B1 (en) Hydroprocessing of hydrocarbon using a mixture of catalysts
EP1392431B1 (en) High-macropore hydroprocessing catalyst and its use
JP4369871B2 (en) Heavy material HPC process using a mixture of catalysts
JP3692207B2 (en) Hydrotreating catalyst and hydrocarbon oil hydrotreating method using the same
JP2996423B2 (en) Catalyst for hydrotreating hydrocarbon oils
JP3802939B2 (en) Catalyst for hydrotreating
CN103374392A (en) Hydro-upgrading method of catalytic cracking raw oil
JP4408527B2 (en) Heavy hydrocarbon oil hydrotreating catalyst and hydrotreating method using the same
JPH06127931A (en) Silica-alumina, its production and catalyst for hydrogenation
JP3782893B2 (en) Hydrotreating catalyst and hydrotreating method of hydrocarbon oil using the hydrotreating catalyst
JP3782887B2 (en) Hydrotreating catalyst and hydrotreating method of hydrocarbon oil using the hydrotreating catalyst
JPH0813328B2 (en) Catalyst composition for hydrotreatment of hydrocarbon oil and hydrodesulfurization method using the same
JPH07194976A (en) Silica-alumina, production thereof and catalyst for hydrotreatment of light hydrocarbon oil
JPH06134312A (en) Hydrogenation treating catalyt composition

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20000511

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060804

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070816

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090609

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091110

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4408527

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term