JP5031790B2 - Method for producing catalyst for hydrorefining of light oil and hydrorefining method of light oil - Google Patents

Method for producing catalyst for hydrorefining of light oil and hydrorefining method of light oil Download PDF

Info

Publication number
JP5031790B2
JP5031790B2 JP2009072639A JP2009072639A JP5031790B2 JP 5031790 B2 JP5031790 B2 JP 5031790B2 JP 2009072639 A JP2009072639 A JP 2009072639A JP 2009072639 A JP2009072639 A JP 2009072639A JP 5031790 B2 JP5031790 B2 JP 5031790B2
Authority
JP
Japan
Prior art keywords
hydrorefining
catalyst
light oil
mass
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009072639A
Other languages
Japanese (ja)
Other versions
JP2010221158A (en
Inventor
浩幸 関
義明 福井
正典 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Petroleum Energy Center JPEC
Eneos Corp
Original Assignee
JXTG Nippon Oil and Energy Corp
Japan Petroleum Energy Center JPEC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JXTG Nippon Oil and Energy Corp, Japan Petroleum Energy Center JPEC filed Critical JXTG Nippon Oil and Energy Corp
Priority to JP2009072639A priority Critical patent/JP5031790B2/en
Publication of JP2010221158A publication Critical patent/JP2010221158A/en
Application granted granted Critical
Publication of JP5031790B2 publication Critical patent/JP5031790B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、軽油の水素化精製用触媒を製造するための方法に関する。さらには、軽油の水素化精製方法に関する。   The present invention relates to a process for producing a gas oil hydrorefining catalyst. Further, the present invention relates to a method for hydrorefining light oil.

近年、液体燃料においては、硫黄含有量をより低減させることが要求されている。その要求に対して、燃料油メーカーでは既に様々なクリーン燃料製造法を検討してきた。例えば、軽油においては軽油の硫黄分10ppm以下にするために、触媒の改良や設備の増設等の対応策を採ってきた。
一般に、石油を分留して得た軽油を脱硫するための水素化精製処理では、水素化精製用触媒を充填した固定床反応塔にて、水素気流中、高温高圧の反応条件で軽油を水素化精製する処理が行なわれる。水素化精製用触媒としては、アルミナ等の担体にモリブテンやコバルト等の活性金属が担持されたものが広く使用されている。
水素化精製における脱硫活性は、担体の種類、活性金属の種類や量に影響を受けることが知られている。例えば、非特許文献1には、担体(アルミナまたはシリカ)および活性金属(モリブテンまたはモリブテンとコバルトの混合)の影響が開示されている。
また、特許文献2には、担体として、アモルファス固体酸を用いることで、水素化活性が向上することが開示されている。
In recent years, liquid fuels have been required to further reduce the sulfur content. In response to this demand, fuel oil manufacturers have already considered various clean fuel production methods. For example, in light oil, measures have been taken to improve the catalyst and increase equipment to reduce the sulfur content of light oil to 10 ppm or less.
In general, in the hydrorefining process for desulfurizing light oil obtained by fractionating petroleum, hydrogen gas is hydrogenated in a hydrogen stream under high-temperature and high-pressure reaction conditions in a fixed-bed reaction tower packed with a hydrotreating catalyst. The process of chemical purification is performed. As hydrorefining catalysts, catalysts in which an active metal such as molybdenum or cobalt is supported on a carrier such as alumina are widely used.
It is known that the desulfurization activity in hydrorefining is affected by the type of support and the type and amount of active metal. For example, Non-Patent Document 1 discloses the influence of a support (alumina or silica) and an active metal (molybten or a mixture of molybten and cobalt).
Patent Document 2 discloses that hydrogenation activity is improved by using an amorphous solid acid as a carrier.

ところで、現在では、軽油として石油から得たものを主に用いているが、将来の石油枯渇を考慮すると、オイルサンド由来の合成原油から得た軽油を用いることも想定しなければならない。
合成原油からの軽油は、石油から得た軽油と比較してセタン価(またはセタン指数)が大幅に低い。したがって、合成原油からの軽油の水素化精製では、脱硫するだけではなく、セタン価を向上させることも必要になる。しかしながら、非特許文献1,2に記載された触媒を用いて水素化精製を行っても、合成原油から得た軽油のセタン価を向上させることはできなかった。
By the way, although the thing obtained from oil is mainly used as light oil now, when the future oil depletion is considered, it must also assume using the light oil obtained from the synthetic crude oil derived from an oil sand.
Light oil from synthetic crude oil has a significantly lower cetane number (or cetane index) than light oil obtained from petroleum. Therefore, hydrorefining of light oil from synthetic crude oil requires not only desulfurization but also improvement of the cetane number. However, even if hydrorefining was performed using the catalysts described in Non-Patent Documents 1 and 2, the cetane number of light oil obtained from synthetic crude oil could not be improved.

セタン価を向上するためには、芳香族を水素化する方法、ナフテンを開環させる方法などが挙げられ、ナフテンを開環させる方法としては、ゼオライト触媒を使用する方法が知られている(非特許文献3)。   In order to improve the cetane number, a method of hydrogenating aromatics, a method of ring opening of naphthene, and the like can be mentioned. As a method of ring opening of naphthene, a method using a zeolite catalyst is known (non- Patent Document 3).

アプライド・キャタリシスA:ジェネラル(Applied Catalysis A:General)、エルゼビア(Elsevier)社発行、257、2004年、p.157−164Applied Catalysis A: Applied Catalysis A: General, published by Elsevier, 257, 2004, p. 157-164 ジャーナル・オブ・キャタリシス(Journal of Catalysis)、エルゼビア(Elsevier)社発行、252、2007年、p.321−334Journal of Catalysis, published by Elsevier, 252, 2007, p. 321-334 アプライド・キャタリシスA:ジェネラル(Applied Catalysis A:General)、エルゼビア(Elsevier)社発行、294、2005年、p.1−21Applied Catalysis A: Applied Catalysis A: General, published by Elsevier, 294, 2005, p. 1-21

しかしながら、ゼオライトのような固体酸触媒を軽油の水素化精製に使用すると、分解が生じて軽質分が多く生成するため、軽油収率が減少して、プロセスの経済性が低下するという問題を生じた。
本発明の目的は、軽油の水素化精製の際にセタン価を向上させつつ軽質化を抑制する軽油の水素化精製用触媒を製造できる触媒の製造方法を提供することにある。また、軽油の水素化精製の際にセタン価を向上させつつ軽質化を抑制できる軽油の水素化精製方法を提供することにある。
However, when a solid acid catalyst such as zeolite is used for hydrorefining of light oil, decomposition occurs and a lot of light components are produced, resulting in a problem that the yield of light oil decreases and the economic efficiency of the process decreases. It was.
The objective of this invention is providing the manufacturing method of the catalyst which can manufacture the catalyst for hydrorefining of light oil which suppresses lightening, improving the cetane number in the case of hydrorefining of light oil. Moreover, it is providing the hydrorefining method of the light oil which can suppress lightening, improving the cetane number in the hydrorefining of a light oil.

本発明は、以下の構成を有する。
[1] シリカチタニア1次粒子にアルミナ前駆体を混合して酸化物ゲルを得る工程と、
前記酸化物ゲルを加熱して担体形成用材料を得る工程と、
前記担体形成用材料を成型して成型体を得る工程と、
前記成型体を焼成して担体を得る工程と、
前記担体にニッケルおよびタングステンを同時担持する工程とを有することを特徴とする軽油の水素化精製用触媒の製造方法。
[2] シリカチタニア1次粒子におけるシリカの割合が60〜95質量%であることを特徴とする[1]に記載の軽油の水素化精製用触媒の製造方法。
[3] シリカチタニア1次粒子は、シリカ前駆体として水ガラスを用いて得たことを特徴とする[1]または[2]に記載の軽油の水素化精製用触媒の製造方法。
[4] ニッケルおよびタングステンを同時担持する工程では、担体100質量%に対するニッケルの担持量を、酸化物換算で10〜25質量%、担体100質量%に対するタングステンの担持量を、酸化物換算で15〜25質量%にすることを特徴とする[1]〜[3]のいずれかに記載の軽油の水素化精製用触媒の製造方法。
[5] [1]〜[4]のいずれかに記載の軽油の水素化精製用触媒の製造方法により製造した水素化精製用触媒を用いて軽油を水素化精製することを特徴とする軽油の水素化精製方法。
The present invention has the following configuration.
[1] A step of mixing an alumina precursor with silica titania primary particles to obtain an oxide gel;
Heating the oxide gel to obtain a carrier-forming material;
Molding the carrier forming material to obtain a molded body;
Baking the molded body to obtain a carrier;
A method for producing a catalyst for hydrorefining gas oil, comprising the step of simultaneously supporting nickel and tungsten on the carrier.
[2] The method for producing a gas oil hydrorefining catalyst according to [1], wherein the silica content in the silica titania primary particles is 60 to 95% by mass.
[3] The method for producing a gas oil hydrorefining catalyst according to [1] or [2], wherein the silica titania primary particles are obtained using water glass as a silica precursor.
[4] In the step of simultaneously supporting nickel and tungsten, the supported amount of nickel with respect to 100% by mass of the carrier is 10 to 25% by mass in terms of oxide, and the supported amount of tungsten with respect to 100% by mass of the carrier is 15 in terms of oxide. The method for producing a gas oil hydrorefining catalyst according to any one of [1] to [3], wherein the catalyst is made to be 25 mass%.
[5] A gas oil characterized by hydrorefining gas oil using the hydrorefining catalyst produced by the method for producing a gas oil hydrotreating catalyst according to any one of [1] to [4] Hydrorefining method.

本発明の水素化精製用触媒の製造方法によれば、軽油の水素化精製の際にセタン価を向上させるにもかかわらず、軽質化を抑制する軽油の水素化精製用触媒を製造できる。
本発明の水素化精製方法によれば、軽油の水素化精製の際にセタン価を向上させるにもかかわらず、軽質化を抑制できる。
According to the method for producing a hydrorefining catalyst of the present invention, it is possible to produce a gas oil hydrotreating catalyst that suppresses lightening, even though the cetane number is improved during hydrotreating of light oil.
According to the hydrorefining method of the present invention, it is possible to suppress lightening, although the cetane number is improved during hydrorefining of light oil.

(軽油の水素化精製用触媒の製造方法)
本発明の軽油の水素化精製用触媒の製造方法は、酸化物ゲルを得る工程(以下、第1の工程という。)と、酸化物ゲルから担体形成用材料を得る工程(以下、第2の工程という。)と、担体形成用材料を用いて成型体を得る工程(以下、第3の工程という。)と、成型体を用いて担体を得る工程(以下、第4の工程という。)と、担体を用いて水素化精製用触媒を得る工程(以下、第5の工程という。)とを有する。
(Method for producing a catalyst for hydrorefining light oil)
The method for producing a gas oil hydrorefining catalyst of the present invention comprises a step of obtaining an oxide gel (hereinafter referred to as a first step), and a step of obtaining a carrier forming material from the oxide gel (hereinafter referred to as a second step). Step), a step of obtaining a molded body using the carrier forming material (hereinafter referred to as the third step), a step of obtaining a carrier using the molded body (hereinafter referred to as the fourth step), and And a step of obtaining a hydrorefining catalyst using a carrier (hereinafter referred to as a fifth step).

[第1の工程]
第1の工程では、シリカチタニアの1次粒子にアルミナ前駆体を混合して、ケーキ状の酸化物ゲルを得る。
シリカチタニア1次粒子におけるシリカ(SiO)の割合は60〜95質量%であることが好ましく、75〜90質量%であることがより好ましい。シリカチタニア1次粒子に含まれるシリカの割合が60質量%以上かつ95質量%以下であれば、軽油のセタン価向上が顕著になる。
[First step]
In the first step, an alumina precursor is mixed with primary particles of silica titania to obtain a cake-like oxide gel.
The ratio of silica (SiO 2 ) in the silica titania primary particles is preferably 60 to 95% by mass, and more preferably 75 to 90% by mass. When the proportion of silica contained in the silica titania primary particles is 60% by mass or more and 95% by mass or less, the cetane number of the light oil is significantly improved.

シリカチタニア1次粒子を得るためのシリカ前駆体としては、例えば、珪酸ナトリウム、水ガラスが挙げられ、中でも、水ガラス(珪酸ナトリウムの水溶液)が好ましい。シリカ前駆体として水ガラスを用いると、得られる担体の表面積を大きくできるため、活性金属量を多く担持でき、触媒活性を高くできる。
シリカチタニア1次粒子を得るためのチタニア前駆体としては、例えば、硫酸チタン(硫酸チタニル)、四塩化チタン、チタンアルコキシド、アモルファス酸化チタンなどが挙げられる。
Examples of the silica precursor for obtaining silica titania primary particles include sodium silicate and water glass, and water glass (aqueous solution of sodium silicate) is particularly preferable. When water glass is used as the silica precursor, the surface area of the obtained carrier can be increased, so that a large amount of active metal can be supported and the catalytic activity can be increased.
Examples of the titania precursor for obtaining silica titania primary particles include titanium sulfate (titanyl sulfate), titanium tetrachloride, titanium alkoxide, and amorphous titanium oxide.

シリカチタニア1次粒子に混合するアルミナ前駆体としては、例えば、ベーマイト、硫酸アルミニウム、アルミン酸ナトリウムなどが挙げられる。これらは1種を単独で使用してもよいし、2種以上を併用してもよい。
シリカチタニア1次粒子に対するアルミナ(Al)の割合は20〜60質量%であることが好ましい。アルミナの割合が20質量%以上であれば、成型体の強度を高くでき、60質量%以下であれば、セタン価をより向上させることができる。
Examples of the alumina precursor mixed with the silica titania primary particles include boehmite, aluminum sulfate, sodium aluminate and the like. These may be used individually by 1 type and may use 2 or more types together.
The ratio of alumina (Al 2 O 3 ) to silica titania primary particles is preferably 20 to 60% by mass. If the ratio of alumina is 20% by mass or more, the strength of the molded body can be increased, and if it is 60% by mass or less, the cetane number can be further improved.

[第2の工程]
第2の工程は、第1の工程で得た酸化物ゲルを加熱し、熟成して、担体形成用材料を得る。
加熱温度は50〜110℃であることが好ましく、70〜100℃であることがより好ましい。加熱温度が50℃以上かつ110℃以下であれば、セタン価をより向上させることができる。
加熱時間は6〜15時間であることが好ましい。加熱時間が6時間以上であれば、充分に熟成でき、15時間以下であれば、第2の工程の生産性を高くできる。
加熱前には、酸化物ゲルのpHを、アンモニア等のアルカリ化合物を用いて、9.0〜11.5にすることが好ましい。酸化物ゲルのpHが9.0未満であると、シリカ・チタニア・アルミナの3成分のゲルが形成されにくく、pHが11.5を超えると、得られた担体の表面積が小さくなる傾向にある。
加熱後には、アルカリ化合物等の担体において不純物になるものを除去するために、蒸留水で洗浄することが好ましい。
[Second step]
In the second step, the oxide gel obtained in the first step is heated and aged to obtain a carrier forming material.
The heating temperature is preferably 50 to 110 ° C, and more preferably 70 to 100 ° C. If the heating temperature is 50 ° C. or higher and 110 ° C. or lower, the cetane number can be further improved.
The heating time is preferably 6 to 15 hours. If the heating time is 6 hours or more, it can be sufficiently aged, and if it is 15 hours or less, the productivity of the second step can be increased.
Prior to heating, the pH of the oxide gel is preferably adjusted to 9.0 to 11.5 using an alkali compound such as ammonia. When the pH of the oxide gel is less than 9.0, a three-component gel of silica, titania, and alumina is difficult to form, and when the pH exceeds 11.5, the surface area of the obtained carrier tends to be small. .
After the heating, it is preferable to wash with distilled water in order to remove impurities that are impurities in the carrier such as an alkali compound.

[第3の工程]
第3の工程では、第2の工程で得た担体形成用材料を成型して成型体を得る。
担体形成用材料の成型方法としては、例えば、押出成型法、圧縮成型法などが挙げられる。
成型体の形状としては、例えば、シリンダー型ペレット、三つ葉型ペレットなどが挙げられる。
成型前には、加熱可能なニーダー等を用い、水分を含んだ担体形成用材料を加熱しながら捏和して、所定の水分量になるまで濃縮してもよい。
[Third step]
In the third step, the carrier-forming material obtained in the second step is molded to obtain a molded body.
Examples of the method for molding the carrier forming material include an extrusion molding method and a compression molding method.
Examples of the shape of the molded body include cylinder-type pellets and trefoil-type pellets.
Prior to molding, a heatable kneader or the like may be used to knead the carrier-forming material containing moisture while heating, and concentrate until a predetermined moisture content is reached.

[第4の工程]
第4の工程では、第3の工程で得た成型体を焼成して担体を得る。
成型体の焼成温度は450℃〜580℃であることが好ましく、500〜550℃であることがより好ましい。焼成温度が450℃以上であれば、軽油のセタン価をより向上させることができ、580℃以下であれば、セタン価を向上させつつ、軽質分の生成をより防止できる。
焼成時間は1〜5時間であることが好ましい。焼成時間が1時間以上であれば、充分に焼成でき、5時間以下であれば、第4の工程の生産性を高くできる。
[Fourth step]
In the fourth step, the molded body obtained in the third step is fired to obtain a carrier.
The firing temperature of the molded body is preferably 450 ° C. to 580 ° C., more preferably 500 to 550 ° C. If the calcination temperature is 450 ° C. or higher, the cetane number of the light oil can be further improved, and if it is 580 ° C. or lower, generation of light components can be further prevented while improving the cetane number.
The firing time is preferably 1 to 5 hours. If the firing time is 1 hour or longer, sufficient firing can be achieved, and if it is 5 hours or shorter, the productivity of the fourth step can be increased.

[第5の工程]
第5の工程では、第4の工程で得た担体にニッケルおよびタングステンを担持して、水素化活性用触媒を得る。
担持方法としては、例えば、担体に活性金属の溶液を含浸させた後、乾燥、焼成する含浸法が挙げられる。含浸法としては、下記(a)〜(d)の方法が挙げられる。
(a)担体を活性金属の溶液に浸漬した後、溶媒を蒸発させる蒸発乾固法。
(b)担体を活性金属の過剰の溶液に浸漬し、放置後、ろ過、乾燥する平衡吸着法。
(c)担体に活性金属の溶液を少しずつ添加し、全体が濡れた状態で添加を終了し、乾燥させる方法であるインシピエントウェットネス(Incipient Wetness)法。
(d)担体の細孔容積と同量の活性金属の溶液を調製し、これを担体に添加するポアフィリング(Pore filling)法。
上記(a)〜(d)法の中でも、容易でかつ経済的である点では、インシピエントウェットネス法が好ましい。
本発明では、ニッケルとタングステンの担持は同時に行う。ニッケルとタングステンとを別々に担体に担持すると、軽油のセタン価が向上しにくくなる。
[Fifth step]
In the fifth step, nickel and tungsten are supported on the support obtained in the fourth step to obtain a hydrogenation activity catalyst.
Examples of the supporting method include an impregnation method in which a support is impregnated with an active metal solution, and then dried and fired. Examples of the impregnation method include the following methods (a) to (d).
(A) An evaporating and drying method in which the support is immersed in a solution of the active metal and then the solvent is evaporated.
(B) An equilibrium adsorption method in which the support is immersed in an excess solution of the active metal, allowed to stand, filtered and dried.
(C) Incipient wetness method, which is a method in which an active metal solution is added little by little to a support, and the addition is completed when the whole is wet, followed by drying.
(D) A pore filling method in which a solution of an active metal having the same amount as the pore volume of the carrier is prepared and added to the carrier.
Among the above methods (a) to (d), the incipient wetness method is preferable because it is easy and economical.
In the present invention, nickel and tungsten are supported simultaneously. When nickel and tungsten are separately supported on a carrier, it becomes difficult to improve the cetane number of light oil.

第5の工程では、担体100質量%に対するニッケルの担持量を、酸化物換算で10〜25質量%にすることが好ましい。ニッケル酸化物を10質量%以上にすれば、脱硫活性およびセタン価向上の効果をより発揮でき、25質量%以下にすれば、含浸させる際の活性金属溶液の粘度を小さくでき、円滑に含浸させることができる。
また、第5の工程では、担体100質量%に対するタングステンの担持量を、酸化物換算で15〜25質量%にすることが好ましい。タングステンの担持量を15質量%以上にすれば、セタン価をより向上させることができ、25質量%以下であれば、担持後のタングステンの凝集を防止でき、触媒活性の低下を防ぐことができる。
In the fifth step, it is preferable that the supported amount of nickel with respect to 100% by mass of the support is 10 to 25% by mass in terms of oxide. If the nickel oxide content is 10% by mass or more, the desulfurization activity and the effect of improving the cetane number can be exhibited more. be able to.
In the fifth step, it is preferable that the supported amount of tungsten with respect to 100% by mass of the carrier is 15 to 25% by mass in terms of oxide. If the supported amount of tungsten is 15% by mass or more, the cetane number can be further improved, and if it is 25% by mass or less, aggregation of tungsten after the support can be prevented and a decrease in catalytic activity can be prevented. .

上記第1〜第5の工程を有する水素化精製用触媒の製造方法では、軽油の水素化精製の際にセタン価を向上させつつも沸点145℃以下の軽質分の生成を抑制する水素化精製用触媒を製造できる。具体的には、本発明の水素化精製用触媒によれば、水素化精製の際にセタン価を2以上向上させつつ、軽質分を5質量%以下にできる。   In the method for producing a hydrorefining catalyst having the first to fifth steps, hydrorefining that suppresses the production of light components having a boiling point of 145 ° C. or lower while improving the cetane number during hydrorefining of light oil. Catalyst can be produced. Specifically, according to the hydrorefining catalyst of the present invention, the light fraction can be reduced to 5% by mass or less while improving the cetane number by 2 or more during hydrorefining.

(軽油の水素化精製方法)
本発明の軽油の水素化精製方法は、上記軽油の水素化精製用触媒の製造方法により製造した水素化精製用触媒を用いて軽油を水素化精製する方法である。
具体的に、軽油の水素化精製は、固定床反応装置に触媒を充填し、水素雰囲気下、高温高圧の条件で行なわれる。
(Method for hydrorefining light oil)
The method for hydrorefining light oil of the present invention is a method for hydrorefining light oil using the hydrorefining catalyst produced by the above method for producing a hydrorefining catalyst for light oil.
Specifically, hydrorefining of light oil is performed under conditions of high temperature and high pressure in a hydrogen atmosphere by filling a fixed bed reactor with a catalyst.

本発明における軽油とは、沸点240〜360℃の範囲にある留分を70質量%以上含む留分である。軽油の原料油は特に限定されず、例えば、石油系の原油、オイルサンド由来の合成原油、石炭液化油、ビチュメン改質油などが挙げられる。これらの中でも、本発明の効果が特に発揮される点では、オイルサンド由来の合成原油、石炭液化油、ビチュメン改質油が好ましい。   The light oil in the present invention is a fraction containing 70% by mass or more of a fraction having a boiling point in the range of 240 to 360 ° C. The light oil feedstock is not particularly limited, and examples thereof include petroleum-based crude oil, synthetic crude oil derived from oil sand, liquefied coal oil, bitumen reformed oil, and the like. Among these, synthetic crude oil derived from oil sand, coal liquefied oil, and bitumen reformed oil are preferable in that the effects of the present invention are particularly exerted.

水素化精製における反応圧力(水素分圧)は1.0〜10.0MPaであることが好ましく、3.0〜8.0MPaであることがより好ましい。反応圧力が1.0MPa以上であれば、脱硫活性およびセタン価向上性がより高くなり、10.0MPa以下であれば、水素消費量を抑制でき、運転コストの増加を抑えることができる上に、軽質化をより抑制できる。
反応温度は300〜410℃であることが好ましく、350〜400℃であることがより好ましい。反応温度が300℃以上であれば、脱硫活性およびセタン価向上性がより高くなり、410℃以下であれば、触媒劣化を抑制できると共に軽質化をより抑制できる。
液空間速度は0.3〜4.0h−1であることが好ましく、0.5〜2.0h−1であることがより好ましい。液空間速度が0.3h−1以上であれば、処理量が多くなり、生産性を向上させることができ、4.0h−1以下であれば、反応温度を低くでき、触媒劣化を抑制できる。
水素油比は500〜8000scfb(1バレルあたりの標準立方フィート)であることが好ましく、800〜3000scfbであることがより好ましい。水素油比が500scfb以上であれば、脱硫活性をより向上させることができ、8000scfb以下であれば、運転コストの増加を抑えることができる。
The reaction pressure (hydrogen partial pressure) in hydrorefining is preferably 1.0 to 10.0 MPa, and more preferably 3.0 to 8.0 MPa. If the reaction pressure is 1.0 MPa or more, desulfurization activity and cetane number improvement are higher, and if it is 10.0 MPa or less, hydrogen consumption can be suppressed, and an increase in operating cost can be suppressed. Lightening can be further suppressed.
The reaction temperature is preferably 300 to 410 ° C, and more preferably 350 to 400 ° C. If reaction temperature is 300 degreeC or more, desulfurization activity and a cetane number improvement property will become higher, and if it is 410 degrees C or less, catalyst deterioration can be suppressed and lightening can be suppressed more.
Preferably the liquid hourly space velocity is 0.3~4.0h -1, and more preferably 0.5~2.0h -1. If the liquid hourly space velocity 0.3h -1 or more, more amount of processing, it is possible to improve the productivity, if 4.0 h -1 or less, can be lowered and the reaction temperature, it is possible to suppress the catalyst deterioration .
The hydrogen oil ratio is preferably 500 to 8000 scfb (standard cubic feet per barrel), more preferably 800 to 3000 scfb. If the hydrogen oil ratio is 500 scfb or more, the desulfurization activity can be further improved, and if it is 8000 scfb or less, an increase in operating cost can be suppressed.

上記の水素化精製方法では、上述した製造方法により得た水素化精製用触媒を用いるため、軽油のセタン価を向上させるにもかかわらず、軽質化を抑制できる。   In the above hydrorefining method, since the hydrorefining catalyst obtained by the above-described production method is used, it is possible to suppress lightening despite improving the cetane number of light oil.

以下、実施例及び比較例により本発明を具体的に説明するが、本発明は下記実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited to the following Example.

[触媒調製]
(触媒1)
スチームジャケット付100Lタンクに硫酸チタニル溶液8.4kg(チタニア(TiO)換算で5質量%)、純水5.7kg、硫酸1.1kgを入れ、40℃で1時間攪拌した後、攪拌しながら8.5質量%水ガラス19.8kgを1.5時間かけて滴下した。滴下終了後、40℃で2.5時間攪拌を継続した。得られた溶液にpHが7.2になるまで15質量%アンモニア水を添加した後、pHが7.2の状態を2時間保持して、シリカチタニア1次粒子含有液を得た。
次いで、そのシリカチタニア1次粒子含有液の温度を60℃に調整し、ベーマイトを含むアルミナスラリー(アルミナ(Al)換算で3.6質量%)を25kg添加した後、pHが7.2になるように、15質量%アンモニア水を添加した。pHが7.2の状態を1時間保持した後、平板フィルターを用いて脱水し、0.3質量%アンモニア水溶液150Lで洗浄して、酸化物ゲルのスラリーを得た。
得られた酸化物ゲルのスラリーをイオン交換水で希釈してアルミナ濃度で8質量%になるようにした後、15質量%アンモニア水でpHを10.5に調整した。pHを調整したスラリーを還流機付熟成タンクに移し、攪拌しながら95℃で10時間加熱し、熟成させて、担体形成用材料のスラリーを得た。
担体形成用材料のスラリーを脱水し、スチームジャケットを備えた双腕式ニーダーにて練りながら所定の水分量まで濃縮捏和した。得られた捏和物を、押し出し成型機を用い、長さ2〜3mm、直径1/16インチの形状になるように成型して、シリンダー型ペレットを得た。
このシリンダー型ペレットを、焼成炉を用いて550℃で3時間焼成して、担体を得た。得られた担体の組成は、シリカ:チタニア:アルミナ=56:14:30(質量基準)であった。
得られた担体1kgを取り出し、これに硝酸ニッケル909gとメタタングステン酸アンモニウム615gとを溶解させた水溶液を少しずつ添加し、全体が濡れた状態で添加を終了した。
得られた含浸品を乾燥させた後、550℃で1時間焼成して触媒1を得た。触媒1における酸化ニッケルの含有量は15質量%、酸化タングステンの質量は20質量%であった(ただし、担体を100質量%とする。)。
[Catalyst preparation]
(Catalyst 1)
In a 100 L tank with a steam jacket, 8.4 kg of titanyl sulfate solution (5% by mass in terms of titania (TiO 2 )), 5.7 kg of pure water, and 1.1 kg of sulfuric acid were placed, stirred at 40 ° C. for 1 hour, and then stirred. 19.8 kg of 8.5% by weight water glass was added dropwise over 1.5 hours. After completion of dropping, stirring was continued at 40 ° C. for 2.5 hours. After adding 15 mass% ammonia water to the obtained solution until pH became 7.2, the state of pH 7.2 was hold | maintained for 2 hours, and the silica titania primary particle containing liquid was obtained.
Next, the temperature of the silica titania primary particle-containing liquid was adjusted to 60 ° C., 25 kg of alumina slurry containing boehmite (3.6% by mass in terms of alumina (Al 2 O 3 )) was added, and then the pH was 7. 2% by mass ammonia water was added so as to be 2. After maintaining the pH at 7.2 for 1 hour, it was dehydrated using a flat plate filter and washed with 150 L of a 0.3 mass% ammonia aqueous solution to obtain an oxide gel slurry.
The obtained oxide gel slurry was diluted with ion-exchanged water so that the alumina concentration was 8% by mass, and then the pH was adjusted to 10.5 with 15% by mass ammonia water. The slurry whose pH was adjusted was transferred to an aging tank equipped with a reflux machine, heated at 95 ° C. for 10 hours with stirring, and aged to obtain a slurry for carrier forming material.
The slurry of the carrier forming material was dehydrated and concentrated and kneaded to a predetermined moisture content while being kneaded with a double arm kneader equipped with a steam jacket. The obtained kneaded material was molded into a shape having a length of 2 to 3 mm and a diameter of 1/16 inch by using an extrusion molding machine to obtain a cylinder type pellet.
This cylindrical pellet was fired at 550 ° C. for 3 hours using a firing furnace to obtain a carrier. The composition of the obtained carrier was silica: titania: alumina = 56: 14: 30 (mass basis).
1 kg of the obtained carrier was taken out, and an aqueous solution in which 909 g of nickel nitrate and 615 g of ammonium metatungstate were dissolved was added little by little, and the addition was completed while the whole was wet.
The obtained impregnated product was dried and then calcined at 550 ° C. for 1 hour to obtain Catalyst 1. The content of nickel oxide in catalyst 1 was 15% by mass, and the mass of tungsten oxide was 20% by mass (provided that the carrier was 100% by mass).

(触媒2)
硫酸チタニルの量を6.0kg、水ガラスの量を21.2kg、硝酸ニッケルの量を 727gおよびメタタングステン酸アンモニウムの量を707gに変更したこと以外は、触媒1と同様の調製方法により触媒2を得た。
この調製法における担体組成は、シリカ:チタニア:アルミナ=60:10:30(質量基準)であった。また、担体100質量%に対して、酸化ニッケルが12質量%、酸化タングステンが23質量%であった。
(Catalyst 2)
Catalyst 2 was prepared in the same manner as Catalyst 1 except that the amount of titanyl sulfate was 6.0 kg, the amount of water glass was 21.2 kg, the amount of nickel nitrate was 727 g, and the amount of ammonium metatungstate was 707 g. Got.
The carrier composition in this preparation method was silica: titania: alumina = 60: 10: 30 (mass basis). In addition, nickel oxide was 12% by mass and tungsten oxide was 23% by mass with respect to 100% by mass of the carrier.

(触媒3)
ニッケルを担持した後にタングステンを担持したこと以外は、触媒1と同様の調製法により触媒3を得た。
(Catalyst 3)
A catalyst 3 was obtained by the same preparation method as the catalyst 1 except that tungsten was supported after nickel was supported.

(触媒4)
担体としてアルミナ(アルミナ前駆体としてベーマイト使用)を使用したこと以外は、触媒1と同様の調製法により触媒4を得た。
(Catalyst 4)
Catalyst 4 was obtained by the same preparation method as Catalyst 1 except that alumina (boehmite used as the alumina precursor) was used as the carrier.

(触媒5)
硝酸ニッケル909gの代わりに硝酸コバルト305gを用いたこと以外は触媒1と同様の調製方法により、触媒5を得た。得られた触媒5における酸化コバルトの含有量は5質量%であった。
(Catalyst 5)
Catalyst 5 was obtained by the same preparation method as Catalyst 1, except that 305 g of cobalt nitrate was used instead of 909 g of nickel nitrate. The content of cobalt oxide in the obtained catalyst 5 was 5% by mass.

[予備硫化方法]
流通式固定床反応装置に触媒100mlを充填し、混合ガス(水素:硫化水素=97:3容量%)を30L/時間の流速で流しながら、全圧6MPaにて反応塔を室温から10℃/分の速度で加熱昇温した。次いで、240℃で4時間保持した後、再び340℃まで昇温した。340℃で24時間保持して、予備硫化を終了した。
[Pre-sulfurization method]
The flow-through fixed bed reactor was filled with 100 ml of catalyst, and the reaction tower was moved from room temperature to 10 ° C. at a total pressure of 6 MPa while flowing a mixed gas (hydrogen: hydrogen sulfide = 97: 3% by volume) at a flow rate of 30 L / hour. The temperature was raised by heating at a rate of minutes. Next, after maintaining at 240 ° C. for 4 hours, the temperature was raised to 340 ° C. again. The preliminary sulfidation was completed by maintaining at 340 ° C. for 24 hours.

(実施例1)
上記予備硫化を行なった触媒1(100ml)を固定床反応装置に充填し、石油系軽油(沸点範囲260〜360℃、硫黄分1.48質量%、セタン価56.7)を150ml/時間の速度で流通し、水素化精製を行なった。その際の反応条件は、水素分圧6MPa、液空間速度1.5h−1、水素油比1,200scfb、反応温度350℃および370℃とした。
水素化精製後の軽油のセタン価および軽質分(沸点145℃以下)を表1に示す。
Example 1
The presulfided catalyst 1 (100 ml) was charged into a fixed bed reactor, and petroleum gas oil (boiling point range 260 to 360 ° C., sulfur content 1.48% by mass, cetane number 56.7) was 150 ml / hour. It was distributed at a speed and hydrorefined. The reaction conditions at that time were a hydrogen partial pressure of 6 MPa, a liquid space velocity of 1.5 h −1 , a hydrogen oil ratio of 1,200 scfb, reaction temperatures of 350 ° C. and 370 ° C.
Table 1 shows the cetane number and light components (boiling point 145 ° C. or lower) of the light oil after hydrorefining.

(実施例2)
石油系軽油の代わりにオイルサンド由来の合成原油(シンクルード社製)の蒸留により得た軽油(沸点範囲260〜360℃、硫黄分0.12質量%、セタン価38.5)を使用したこと以外は、実施例1と同様に水素化精製を行った。水素化精製後の軽油のセタン価および軽質分(沸点145℃以下)を表1に示す。
(Example 2)
Other than using light oil (boiling range 260-360 ° C., sulfur content 0.12 mass%, cetane number 38.5) obtained by distillation of synthetic crude oil (produced by Sinclude) instead of petroleum-based light oil Was hydrorefined in the same manner as in Example 1. Table 1 shows the cetane number and light components (boiling point 145 ° C. or lower) of the light oil after hydrorefining.

(実施例3)
触媒1の代わりに触媒2を使用したこと以外は、実施例1と同様に水素化精製を行なった。水素化精製後の軽油のセタン価および軽質分(沸点145℃以下)を表1に示す。
(Example 3)
The hydrorefining was performed in the same manner as in Example 1 except that the catalyst 2 was used instead of the catalyst 1. Table 1 shows the cetane number and light components (boiling point 145 ° C. or lower) of the light oil after hydrorefining.

(実施例4)
触媒1の代わりに触媒2を使用したこと以外は、実施例2と同様に水素化精製を行なった。水素化精製後の軽油のセタン価および軽質分(沸点145℃以下)を表1に示す。
Example 4
The hydrorefining was performed in the same manner as in Example 2 except that the catalyst 2 was used instead of the catalyst 1. Table 1 shows the cetane number and light components (boiling point 145 ° C. or lower) of the light oil after hydrorefining.

(比較例1)
触媒1の代わりに触媒3を使用したこと以外は、実施例2と同様に水素化精製を行なった。水素化精製後の軽油のセタン価および軽質分(沸点145℃以下)を表1に示す。
(Comparative Example 1)
The hydrorefining was performed in the same manner as in Example 2 except that the catalyst 3 was used instead of the catalyst 1. Table 1 shows the cetane number and light components (boiling point 145 ° C. or lower) of the light oil after hydrorefining.

(比較例2)
触媒1の代わりに触媒4を使用したこと以外は、実施例1と同様に水素化精製を行なった。水素化精製後の軽油のセタン価および軽質分(沸点145℃以下)を表1に示す。
(Comparative Example 2)
The hydrorefining was performed in the same manner as in Example 1 except that the catalyst 4 was used instead of the catalyst 1. Table 1 shows the cetane number and light components (boiling point 145 ° C. or lower) of the light oil after hydrorefining.

(比較例3)
触媒1の代わりに触媒4を使用したこと以外は、実施例2と同様に水素化精製を行なった。水素化精製後の軽油のセタン価および軽質分(沸点145℃以下)を表1に示す。
(Comparative Example 3)
The hydrorefining was performed in the same manner as in Example 2 except that the catalyst 4 was used instead of the catalyst 1. Table 1 shows the cetane number and light components (boiling point 145 ° C. or lower) of the light oil after hydrorefining.

(比較例4)
触媒1の代わりに触媒5を使用したこと以外は、実施例2と同様に水素化精製を行なった。水素化精製後の軽油のセタン価および軽質分(沸点145℃以下)を表1に示す。
(Comparative Example 4)
The hydrorefining was performed in the same manner as in Example 2 except that the catalyst 5 was used instead of the catalyst 1. Table 1 shows the cetane number and light components (boiling point 145 ° C. or lower) of the light oil after hydrorefining.

Figure 0005031790
Figure 0005031790

シリカチタニアの1次粒子にアルミナ前駆体を混合する工程を有して担体を調製し、担体にニッケルとタングステンを同時に担持させる工程を有する実施例1〜4の製造方法によれば、軽油の水素化精製の際にセタン価を向上させつつ軽質化を抑制する触媒を製造できた。
これに対し、ニッケルの後にタングステンを担持して得た比較例1の触媒では、軽油の水素化精製の際にセタン価を向上させることができず、軽質化を抑制できなかった。
担体としてアルミナのみを用いて得た比較例2,3の触媒では、軽油の水素化精製の際にセタン価を向上させることができなかった。
ニッケルの代わりにコバルトを活性金属とした比較例4の触媒においても、軽油の水素化精製の際にセタン価を向上させることができなかった。
According to the production method of Examples 1 to 4, which has a step of mixing an alumina precursor with silica titania primary particles, and a step of simultaneously supporting nickel and tungsten on the carrier, The catalyst which suppresses lightening while improving the cetane number during the chemical purification could be produced.
On the other hand, in the catalyst of Comparative Example 1 obtained by supporting tungsten after nickel, the cetane number could not be improved during hydrorefining of light oil, and lightening could not be suppressed.
In the catalysts of Comparative Examples 2 and 3 obtained using only alumina as a carrier, the cetane number could not be improved during hydrorefining of light oil.
Even in the catalyst of Comparative Example 4 in which cobalt was used as the active metal instead of nickel, the cetane number could not be improved during hydrorefining of light oil.

Claims (5)

シリカチタニア1次粒子にアルミナ前駆体を混合して酸化物ゲルを得る工程と、
前記酸化物ゲルを加熱して担体形成用材料を得る工程と、
前記担体形成用材料を成型して成型体を得る工程と、
前記成型体を焼成して担体を得る工程と、
前記担体にニッケルおよびタングステンを同時担持する工程とを有することを特徴とする軽油の水素化精製用触媒の製造方法。
A step of mixing an alumina precursor with silica titania primary particles to obtain an oxide gel;
Heating the oxide gel to obtain a carrier-forming material;
Molding the carrier forming material to obtain a molded body;
Baking the molded body to obtain a carrier;
A method for producing a catalyst for hydrorefining gas oil, comprising the step of simultaneously supporting nickel and tungsten on the carrier.
シリカチタニア1次粒子におけるシリカの割合が60〜95質量%であることを特徴とする請求項1に記載の軽油の水素化精製用触媒の製造方法。   The method for producing a catalyst for hydrorefining gas oil according to claim 1, wherein the ratio of silica in the silica titania primary particles is 60 to 95% by mass. シリカチタニア1次粒子は、シリカ前駆体として水ガラスを用いて得たことを特徴とする請求項1または2に記載の軽油の水素化精製用触媒の製造方法。   The method for producing a catalyst for hydrorefining gas oil according to claim 1 or 2, wherein the silica titania primary particles are obtained using water glass as a silica precursor. ニッケルおよびタングステンを同時担持する工程では、担体100質量%に対するニッケルの担持量を、酸化物換算で10〜25質量%、担体100質量%に対するタングステンの担持量を、酸化物換算で15〜25質量%にすることを特徴とする請求項1〜3のいずれかに記載の軽油の水素化精製用触媒の製造方法。   In the step of simultaneously supporting nickel and tungsten, the supported amount of nickel with respect to 100% by mass of the carrier is 10 to 25% by mass in terms of oxide, and the supported amount of tungsten with respect to 100% by mass of the carrier is 15 to 25% by mass in terms of oxide. The method for producing a catalyst for hydrorefining gas oil according to any one of claims 1 to 3, wherein 請求項1〜4のいずれかに記載の軽油の水素化精製用触媒の製造方法により製造した水素化精製用触媒を用いて軽油を水素化精製することを特徴とする軽油の水素化精製方法。   A method for hydrorefining light oil, comprising hydrorefining light oil using the hydrorefining catalyst produced by the method for producing a hydrorefining catalyst for light oil according to any one of claims 1 to 4.
JP2009072639A 2009-03-24 2009-03-24 Method for producing catalyst for hydrorefining of light oil and hydrorefining method of light oil Active JP5031790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009072639A JP5031790B2 (en) 2009-03-24 2009-03-24 Method for producing catalyst for hydrorefining of light oil and hydrorefining method of light oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009072639A JP5031790B2 (en) 2009-03-24 2009-03-24 Method for producing catalyst for hydrorefining of light oil and hydrorefining method of light oil

Publications (2)

Publication Number Publication Date
JP2010221158A JP2010221158A (en) 2010-10-07
JP5031790B2 true JP5031790B2 (en) 2012-09-26

Family

ID=43038925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009072639A Active JP5031790B2 (en) 2009-03-24 2009-03-24 Method for producing catalyst for hydrorefining of light oil and hydrorefining method of light oil

Country Status (1)

Country Link
JP (1) JP5031790B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101875423B (en) * 2009-04-30 2014-04-02 奥尔索拉·帕特里尼 Container associable with airless pumps and method for production thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6115739A (en) * 1984-04-25 1986-01-23 Toa Nenryo Kogyo Kk Hydrogenating-treatment catalyst
JPH0813328B2 (en) * 1990-03-26 1996-02-14 株式会社コスモ総合研究所 Catalyst composition for hydrotreatment of hydrocarbon oil and hydrodesulfurization method using the same
JPH03281595A (en) * 1990-03-28 1991-12-12 Cosmo Sogo Kenkyusho:Kk Hydrodesulfurization catalyst composition for hydrocarbon oil, its production and hydrodesulfurization process using the catalyst
JP4249632B2 (en) * 2004-01-09 2009-04-02 新日本石油株式会社 Hydrodesulfurization catalyst and hydrodesulfurization method for petroleum hydrocarbons

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101875423B (en) * 2009-04-30 2014-04-02 奥尔索拉·帕特里尼 Container associable with airless pumps and method for production thereof

Also Published As

Publication number Publication date
JP2010221158A (en) 2010-10-07

Similar Documents

Publication Publication Date Title
CN103240114B (en) A kind of hydrocracking catalyst and Synthesis and applications thereof
JP4878824B2 (en) Manufacturing method of environmentally low load type fuel and environmentally low load type fuel
JP6134334B2 (en) Silica-containing alumina support, catalyst produced therefrom and method of use thereof
JP5492431B2 (en) Hydrocracking catalyst, method for hydrocracking, and method for producing hydrocracking catalyst
US8795513B2 (en) Hydrocracking catalyst for heavy oil and method for hydrotreating heavy oil using same
WO2011040224A1 (en) Hydrodesulfurization catalyst for a hydrocarbon oil, manufacturing method therefor, and hydrorefining method
JP5922372B2 (en) Hydrotreating catalyst and method for producing the same
WO2015007230A1 (en) Iron-based hydrogenation catalyst and applications thereof
CN103285909B (en) A kind of hydrocracking catalyst containing mesoporous-microporomolecular molecular sieve and preparation method thereof
CN105709789B (en) A kind of hydrocracking heavy oil catalyst and its preparation method and application
WO2013092808A1 (en) Process for preparing hydrocracking catalyst compositions
JP2011072928A (en) Hydrodesulfurization catalyst for hydrocarbon oil and method for manufacturing the same
JP5841481B2 (en) Method for hydrotreating heavy residual oil
JP6013259B2 (en) Hydrotreating catalyst support, method for producing the same, hydrotreating catalyst, and method for producing the same
CN104549345B (en) Active hydrocracking proppant and preparation method thereof
JP5091401B2 (en) Method for producing hydrogen, method for producing reformed gasoline, and method for producing aromatic hydrocarbon
JP5031790B2 (en) Method for producing catalyst for hydrorefining of light oil and hydrorefining method of light oil
JPH10296091A (en) Catalyst for hydrogenation treatment and method for hydrogenation treatment for hydrocarbon oil using the same
CN103374387A (en) Method for hydrotreating heavy oil with high nickel and vanadium contents
JP5340101B2 (en) Hydrorefining method of hydrocarbon oil
JP5863096B2 (en) Method for producing hydrotreating catalyst
JP5150540B2 (en) Hydrorefining method of hydrocarbon oil
JP5841480B2 (en) Method for hydrotreating heavy residual oil
JP3812374B2 (en) Heavy hydrocarbon oil hydrodemetallation catalyst
JP2010221117A (en) Catalyst for use in hydrogenation purification, method of producing the same, and method of hydrogenating/purifying hydrocarbon oil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120627

R150 Certificate of patent or registration of utility model

Ref document number: 5031790

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250