JPH08111937A - General purpose compensating apparatus - Google Patents

General purpose compensating apparatus

Info

Publication number
JPH08111937A
JPH08111937A JP6244489A JP24448994A JPH08111937A JP H08111937 A JPH08111937 A JP H08111937A JP 6244489 A JP6244489 A JP 6244489A JP 24448994 A JP24448994 A JP 24448994A JP H08111937 A JPH08111937 A JP H08111937A
Authority
JP
Japan
Prior art keywords
compensation
current
phase
component
limiter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6244489A
Other languages
Japanese (ja)
Inventor
Masayoshi Tamura
公良 田村
Junichi Shimomura
潤一 下村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP6244489A priority Critical patent/JPH08111937A/en
Publication of JPH08111937A publication Critical patent/JPH08111937A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)
  • Power Conversion In General (AREA)

Abstract

PURPOSE: To always effectively use the apparatus output up to the maximum value thereof without generating unbalance of compensation by providing a limiter for respectively limiting reactive component, harmonics component and inversed phase component in the two-phase side and by changing compensation to that within the rating of the apparatus through comparison between the rated current of apparatus and detected compensation. CONSTITUTION: An arithmetic circuit 4 for obtaining compensation for reactive current of basic wave of the reactive current compensating part A, a filter circuit 9 in an inversed phase compensating part B, a filter circuit 18 of harmonics compensating part C and limiters 5, 11, 19 which can respectively be set variably are connected. Calculation for changing the setting of the limiters 5, 11, 19 is executed using a CPU of the controller. Namely, the compensating currents Iu*, Iv*, Iw* are obtained by adding the compensation of two phases and then converting the phase into three phases. Here, when the current Iu* exceeds the rated current of the apparatus, the limiters 5, 11, 19 are caused to output new compensation of two phases by changing the setting of the limiters to limit the overall compensations Iu*, Iv*, Iw*.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電力系統の無効分,高
調波分,逆相分を一括して補償する汎用補償装置、詳し
くは補償量が装置定格を越えることのないようにした汎
用補償装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a general-purpose compensator for collectively compensating reactive components, harmonic components, and anti-phase components of a power system, and more specifically, a general-purpose compensator for preventing the compensation amount from exceeding the device rating. Compensation device

【0002】[0002]

【従来の技術】図5に汎用補償装置の制御ブロックの構
成を示す。同図において、ESは系統電源、Sは系統配
電線、Lは系統負荷、INVは汎用補償装置のインバー
タ、C1はインバータの直流側に接続された直流コンデ
ンサ、(1〜34)はインバータの制御回路である。
2. Description of the Related Art FIG. 5 shows the structure of a control block of a general-purpose compensator. In the figure, E S is a system power supply, S is a system distribution line, L is a system load, INV is an inverter of a general-purpose compensator, C 1 is a DC capacitor connected to the DC side of the inverter, and (1 to 34) are inverters. Control circuit.

【0003】1は図示省略の電圧検出器で検出した系統
電圧Vu,Vv,Vwの基本波を抽出するフィルタ、2
はその基本波電圧の実効値を求める実効値変換回路、3
は設定電圧Vsと求めた実効値との差を検出するつき合
わせ器、4はその差電圧を比例積分演算して基本波無効
電流補償分−Id(−は直流を示す)を求める基本波無
効電流演算回路。
Reference numeral 1 is a filter for extracting the fundamental waves of the system voltages Vu, Vv, Vw detected by a voltage detector (not shown).
Is an effective value conversion circuit that calculates the effective value of the fundamental wave voltage, 3
Is a matching device for detecting the difference between the set voltage Vs and the obtained effective value, and 4 is the integral integral calculation of the difference voltage to obtain the fundamental wave reactive current compensation component -Id (-indicates DC). Current calculation circuit.

【0004】6は検出した系統電圧から後述の各回転座
標変換回路の座標を系統電圧の角速度ωで回転させる位
相同期信号を得るためのPLL回路、7は電流検出器C
T1で検出した系統電流Iu,Iv,Iwを2相電流i
α,iβに変換する逆回転座標αβ変換回路、8はこの
2相電流をd,q軸電流(2相電流)に変換する逆回転
座標dq変換回路。
Reference numeral 6 is a PLL circuit for obtaining a phase synchronization signal for rotating the coordinates of each rotational coordinate conversion circuit, which will be described later, at the angular velocity ω of the system voltage from the detected system voltage, and 7 is a current detector C.
The system currents Iu, Iv, and Iw detected at T1 are the two-phase current i
Reverse rotation coordinate αβ conversion circuit for converting into α, iβ, 8 is a reverse rotation coordinate dq conversion circuit for converting this two-phase current into d, q-axis current (two-phase current).

【0005】9は変換された電流id,iqの交流分
(逆相分)〜Id,〜Iqを抽出するフィルタ回路、1
2はこのフィルタからの交流分を2相電流iα,iβに
変換する逆回転座標dq逆変換回路、13はその変換さ
れた2相電流を3相電流(逆相分)*Iu2,*Iv2
*Iw2に変換する逆回転座標α,β逆変換回路。
Reference numeral 9 is a filter circuit for extracting alternating current components (reverse phase components) to Id, to Iq of the converted currents id and iq, 1
Reference numeral 2 denotes an inverse rotation coordinate dq inverse conversion circuit for converting the AC component from this filter into two-phase currents iα and iβ, and 13 denotes the converted two-phase current (three-phase currents) (Iu 2 and * Iv). 2 ,
* Inverse rotation coordinate α, β inverse conversion circuit for converting to Iw 2 .

【0006】15はCT1からの系統電流と、検出した
逆相分電流をつき合わせて正相分電流を検出するつき合
わせ器、16はその系統電流の正相分を2相電流iα,
iβに変換する回転座標変換回路、17はその2相電流
をd,q軸電流(2相電流)に変換する回転座標dq変
換回路、18はこの電流id,iqの交流分(高調波電
流分)〜id〜iqを抽出するフィルタ回路。
Reference numeral 15 is a matching device for detecting a positive-phase component current by matching the system current from CT1 with the detected negative-phase component current, and 16 is a two-phase current iα for the positive-phase component of the system current.
A rotation coordinate conversion circuit for converting into iβ, 17 is a rotation coordinate dq conversion circuit for converting the two-phase current into d and q axis currents (two-phase current), and 18 is an alternating current component (harmonic current component) of the currents id and iq. ) -A filter circuit that extracts id-iq.

【0007】21はインバータINVの直流電圧の設定
値Vdcsetと検出値Vdcとの差電圧△Vdcを検出す
るつき合わせ器、22はその直流差電圧の変化分を除去
するフィルタ、23は高調波電流補償分〜Idと基本波
無効電流補償分−Idとを加算して補償分*Idを出力
する加算器、24は高調波電流補償分〜Iqと直流差電
圧△Vdcを加算して補償分*Iqを出力する加算器。
Reference numeral 21 is a matching device for detecting the difference voltage ΔVdc between the set value Vdcset of the DC voltage of the inverter INV and the detected value Vdc, 22 is a filter for removing the variation of the DC difference voltage, and 23 is the harmonic current. An adder for adding the compensation component ~ Id and the fundamental wave reactive current compensation component -Id to output a compensation component * Id, and 24 is a compensation component by adding the harmonic current compensation component ~ Iq and the DC difference voltage ΔVdc * An adder that outputs Iq.

【0008】25は補償分*Id,*Iqを2相電流*
Id,*iβに変換する回転座標dq逆変換回路、26
はその2相電流を3相電流(正相分)*Iu1,*Iv1
*Iw1に変換する回転座標αβ逆変換回路、31はこ
の正相分電流と逆相分電流を加算し総合補償量(補償電
流)*Iu,*Iv,*Iwを出力する加算器、33は
この補償電流と電流検出器CT2で検出したインバータ
出力電流との差を検出するつき合わせ器、34はこの電
流差に応じてインバータINVを制御するPWM制御回
路である。
Reference numeral 25 is a compensation phase * Id, * Iq for two-phase current *
Id, * iβ rotation coordinate dq inverse transformation circuit, 26
Shows the 2-phase current as the 3-phase current (for the positive phase) * Iu 1 , * Iv 1
A rotation coordinate αβ inverse conversion circuit for converting to * Iw 1 , 31 is an adder for adding the positive phase current and the negative phase current and outputting a total compensation amount (compensation current) * Iu, * Iv, * Iw, 33 Is a matching device that detects the difference between the compensation current and the inverter output current detected by the current detector CT2, and 34 is a PWM control circuit that controls the inverter INV according to the current difference.

【0009】この汎用補償装置は、無効電圧補償装置
(SVC),無効電圧発生装置(SWG)と同様に負荷
の基本波無効電力を補償して電圧変動を抑制し電圧を一
定に保つ機能と、アクティブフィルタ同様に負荷の高調
波電流を補償する機能及び負荷の逆相分電流を補償し、
負荷の不平衡による電圧不平衡を補償する機能を有す
る。
This general-purpose compensator, like the reactive voltage compensator (SVC) and reactive voltage generator (SWG), has a function of compensating the fundamental reactive power of the load to suppress voltage fluctuations and maintain a constant voltage. Similar to the active filter, the function to compensate the harmonic current of the load and the reverse phase current of the load are compensated,
It has the function of compensating for voltage imbalance due to load imbalance.

【0010】[0010]

【発明が解決しようとする課題】上記汎用補償装置の制
御方式は、無効電流,高調波電流,逆相電流を、負荷電
流を3相2相変換することにより、Id,Iq電流とし
て求め、加算し、最後に2相3相変換して3相電流とし
て補償する方式である。
In the control system of the above-mentioned general-purpose compensator, the reactive current, the harmonic current, and the negative phase current are obtained as Id and Iq currents by converting the load current into three phases and two phases, and then added. Then, finally, it is a system in which two-phase / three-phase conversion is performed to compensate as a three-phase current.

【0011】この制御方式によれば、基本波無効電流=
Idの直流分,高調波電流=Id,Iqの交流分(2ω
分を除く),逆相電流=Id,Iqの2ω分として表さ
れる。
According to this control method, the fundamental wave reactive current =
DC component of Id, harmonic current = Id, AC component of Iq (2ω
However, the negative-phase current is represented by 2ω of Id and Iq.

【0012】一方、補償装置出力=出力電圧実効値×出
力電流実効値で表される。
On the other hand, the output of the compensator = output voltage effective value × output current effective value.

【0013】よって求められた補償電流が装置の定格出
力を越える場合は適切なリミッタを設定し、補償電流の
上下値を決め、装置定格出力以上とならないようにする
必要がある。また、上記3種類の補償電流は負荷の状態
により変化するため、負荷に応じてリミッタの値は可変
とする必要がある。
When the compensation current thus obtained exceeds the rated output of the device, it is necessary to set an appropriate limiter to determine the upper and lower values of the compensation current so as not to exceed the device rated output. Further, since the above three types of compensation currents change depending on the load condition, it is necessary to make the limiter value variable according to the load.

【0014】現在のリミッタは半固定で、負荷状態に応
じて手動にて設定変更をかけるものが多く、繁雑である
と同時にリミッタの設定のバランスを間違えて補償量の
大きいところのリミッタの値を小さく設定したりする
と、全体としての補償効果が有効に働かなくなる。
Current limiters are semi-fixed, and in many cases the settings are manually changed according to the load condition, which is complicated, and at the same time the limiter setting balance is wrong and the limiter value at the large compensation amount is changed. If set to a small value, the compensation effect as a whole will not work effectively.

【0015】本発明は、このような問題点に鑑みてなさ
れたものであり、その目的とするところは、装置出力を
負荷の大きさに応じて有効に利用できる汎用補償装置を
提供することにある。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a general-purpose compensator capable of effectively utilizing the output of the device according to the size of the load. is there.

【0016】[0016]

【課題を解決するための手段】上記目的を達成するため
に、本発明における汎用補償装置は、負荷電流を3相2
相変換することにより無効分,高調波分,逆相分を2相
電流として求め、これを加算し、2相3相変換すること
により検出した補償量でインバータを制御する汎用補償
装置において、前記2相側における無効分,高調波分,
逆相分をそれぞれ制限するリミッタを設け、又は前記3
相の補償量を制限するリミッタを設け、装置定格電流と
検出補償量とを比較して検出補償量が装置定格を越えた
とき、リミッタの設定を補償量が装置定格以内となるよ
うに変更するものである。
To achieve the above object, a general-purpose compensator according to the present invention uses a load current of three phases and two phases.
In the general-purpose compensator for controlling the inverter by the compensation amount obtained by obtaining the reactive component, the harmonic component, and the anti-phase component as the two-phase current by performing the phase conversion and adding the two-phase current, Reactive component, harmonic component on the 2-phase side,
A limiter for limiting the amount of each negative phase is provided, or the above 3
A limiter is provided to limit the amount of phase compensation, and when the detected compensation amount exceeds the device rating by comparing the device rated current with the detected compensation amount, the limiter setting is changed so that the compensation amount is within the device rating. It is a thing.

【0017】[0017]

【作用】2相側の各リミッタの値の設定を同じく変えて
いるので、2相3相変換された補償量における無効分,
高調波分,逆相分は同じ比率で変わる。また、3相の補
償量を制限するリミッタの設定を変えた場合も、補償量
における無効分、高調波分,逆相分は同じ比率で変わ
る。従って補償量のアンバランスは生じない。リミッタ
の設定は補償量が装置定格を越えた場合のみ補償量が装
置定格以内となるように変えられるので、常に装置出力
の最大値まで利用できる。
Since the setting of the limiter values on the two-phase side is also changed, the invalid component in the compensation amount converted by the two-phase and three-phase is
Harmonics and anti-phase components change at the same ratio. Further, even when the limiter setting that limits the compensation amount of the three phases is changed, the invalid component, the harmonic component, and the anti-phase component in the compensation amount change at the same ratio. Therefore, the imbalance of the compensation amount does not occur. Since the limiter setting can be changed so that the compensation amount is within the device rating only when the compensation amount exceeds the device rating, the maximum value of the device output can always be used.

【0018】[0018]

【実施例】【Example】

実施例1 図1は補償量検出部の2相側にリミッタを設けた場合の
汎用補償装置の制御ブロックの構成を示す。なお、図1
において従来図5に示したものと同一構成部分には同一
符号を付してその重複する説明を省略する。
Embodiment 1 FIG. 1 shows the configuration of a control block of a general-purpose compensator when a limiter is provided on the two-phase side of a compensation amount detector. FIG.
In FIG. 5, the same components as those shown in FIG. 5 of the related art are designated by the same reference numerals, and the duplicate description thereof will be omitted.

【0019】図1において、5は無効電流補償部Aの基
本波無効電流補償分演算回路4に接続された設定変更可
能なリミッタ、11は逆相補償部Bにおけるフィルタ回
路9に接続された設定可変のリミッタ、19は高周波補
償部Bのフィルタ18に接続された設定変更可能なリミ
ッタである。その他の構成は図5のものと変わりはな
い。
In FIG. 1, reference numeral 5 is a limiter connected to the fundamental wave reactive current compensating portion arithmetic circuit 4 of the reactive current compensating section A, whose setting is changeable, and 11 is a setting connected to the filter circuit 9 in the anti-phase compensating section B. A variable limiter 19 is a limiter connected to the filter 18 of the high-frequency compensator B and whose setting can be changed. Other configurations are the same as those in FIG.

【0020】上記各リミッタ5,11,19の設定を変
えるためのリミッタ計算は、制御部のCPUを用いて図
2に示すフローで行う。即ち、フィルタ回路18,9及
び演算回路4から出力される高調波電流補償分〜Id,
〜Iq,逆相分補償分〜Id,Iq,基本波無効電流補
償分−Idを用い(S1〜S3)、これら2相の補償分
を加算して3相に変換して補償電流*Iu,*Iv,*
Iwを求める(S4)。
The limiter calculation for changing the settings of the limiters 5, 11, and 19 is performed by the CPU shown in FIG. That is, the harmonic current compensation components output from the filter circuits 18 and 9 and the arithmetic circuit 4 to Id,
.About.Iq, antiphase compensation component .about.Id, Iq, fundamental wave reactive current compensation component-Id (S1 to S3), these two phase compensation components are added and converted into three phases to obtain compensation current * Iu, * Iv, *
Iw is calculated (S4).

【0021】そしてこの電流*Iuを装置定格電流IL
と比較して*IU>ILの場合はILと*IUとの比kを求
め(S5,S6)、上記2相の各補償量がk倍(k<
1)となるようにリミッタ5,11,19のリミッタ設
定を変えて新たな2相の補償量をリミッタ5,11,1
9から出力させる(S8)。このため、総合補償量はk
倍(k<1)に制限される。*IU>ILでない場合はk
=1としてリミットをかけない(S7)。
Then, this current * Iu is used as a device rated current I L
When * I U > I L , the ratio k between I L and * I U is calculated (S5, S6), and the compensation amounts of the above two phases are multiplied by k (k <
1), the limiter settings of the limiters 5, 11, and 19 are changed to obtain new two-phase compensation amounts.
It is output from 9 (S8). Therefore, the total compensation amount is k
Limited to double (k <1). * K if I U > I L
No limit is set as = 1 (S7).

【0022】以上のように構成されているので、総合補
償量*u,*Iv,*Iwをk倍(k<1)に制限でき
ると共に、制御されるので、補償量のアンバランスが生
ずることがないので装置出力を負荷に応じて有効に利用
できる。
With the above-mentioned structure, the total compensation amount * u, * Iv, * Iw can be limited to k times (k <1) and controlled, so that the compensation amount is unbalanced. Therefore, the device output can be effectively used according to the load.

【0023】実施例2 図3は検出した総合補償量にリミッタを設けた場合の汎
用補償装置の制御ブロックを示す。なお、図3において
従来図5に示したものと同一構成部分には同一符号を付
してその重複する説明を省略する。
Embodiment 2 FIG. 3 shows a control block of a general-purpose compensator when a limiter is provided for the detected total compensation amount. In FIG. 3, the same components as those shown in FIG. 5 of the related art are designated by the same reference numerals, and the duplicated description thereof will be omitted.

【0024】図3において、32は加算器31とつき合
わせ器33との間に接続した設定変更可能なリミッタで
ある。その他の構成は図5のものと変わりがない。
In FIG. 3, reference numeral 32 is a limiter connected between the adder 31 and the matching device 33, the setting of which can be changed. Other configurations are the same as those in FIG.

【0025】上記リミッタ32のリミット計算は図4に
示すフローで行う。即ち、実施例1の図2に示したフロ
ート同様にkの値を求め(S1〜S6)、リミッタ32
から出力される総合補償量がk倍(k<1)となるよう
にリミッタの設定を変えてリミッタ32から新たな総合
補償量が出力させる(S8)。*IU>ILでない場合は
k=1としてリミッタをかけない(S7)。従って実施
例1と同様に装置出力を負荷の大きさに応じて有効に利
用できる。
The limit calculation of the limiter 32 is performed by the flow shown in FIG. That is, similarly to the float shown in FIG. 2 of the first embodiment, the value of k is obtained (S1 to S6), and the limiter 32 is used.
The limiter 32 changes the setting of the limiter so that the total amount of compensation output from (1) becomes k times (k <1) (S8). * If I U > I L , then k = 1 and no limiter is applied (S7). Therefore, similarly to the first embodiment, the device output can be effectively used according to the magnitude of the load.

【0026】[0026]

【発明の効果】本発明は、上述のとおり構成されている
ので、次に記載する効果を奏する。
Since the present invention is configured as described above, it has the following effects.

【0027】(1)補償すべき電流の大きさに応じてリ
ミットの値が変化して補償量が変わるので、補償量のア
ンバランスが発生することがない。このため装置出力を
負荷に応じて有効に利用できる。
(1) Since the limit value changes according to the magnitude of the current to be compensated and the compensation amount changes, imbalance of the compensation amount does not occur. Therefore, the device output can be effectively used according to the load.

【0028】(2)リミットは求めた補償量が装置定格
電流を越えた場合、定格電流と求めた補償量の比でかか
るので、常に装置出力の最大値まで利用することができ
る。
(2) When the calculated compensation amount exceeds the device rated current, the limit is taken as the ratio of the rated current and the calculated compensation amount, so that the maximum value of the device output can always be used.

【0029】(3)2相リミッタ方式の場合は、無効
分,高調波分,逆相分のkの値を独立に外部設定可能と
することにより、特定の機能を持った装置、例えば無効
分,逆相分のk値を0とすれば、アクティブフィルタの
みの機能のみを有する装置として使用できる。
(3) In the case of the two-phase limiter system, the value of k for the invalid component, the harmonic component, and the antiphase component can be independently set externally, so that a device having a specific function, for example, the invalid component can be set. By setting the k value of the negative phase component to 0, the device can be used as a device having only the function of the active filter.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1にかかる汎用制御装置の制御ブロック
構成図。
FIG. 1 is a control block configuration diagram of a general-purpose control device according to a first embodiment.

【図2】リミット計算フロー図。FIG. 2 is a flow chart of limit calculation.

【図3】実施例2にかかる制御ブロック構成図。FIG. 3 is a control block configuration diagram according to the second embodiment.

【図4】リミット計算フロー図。FIG. 4 is a flow chart of limit calculation.

【図5】従来例にかかる制御ブロック図。FIG. 5 is a control block diagram according to a conventional example.

【符号の説明】[Explanation of symbols]

S…系統 INV…汎用制御装置のインバータ部 4…基本波無効電流補償分算回路。 5…リミッタ 7…逆回転座標αβ変換回路 8…逆回転座標dq変換回路 9…ティルタ回路 11…リミッタ 12…逆回転座標dq逆変換回路 13…逆回転座標αβ逆変換回路 16…回転座標αβ変換回路 17…回転座標dq変換回路 18…フィルタ回路 19…リミッタ 22…フィルタ回路 25…回転座標dq逆変換回路 26…回転座標αβ逆変換回路 34…PWM制御回路。 S ... System INV ... Inverter section of general-purpose control device 4 ... Fundamental wave reactive current compensation division circuit. 5 ... Limiter 7 ... Reverse rotation coordinate αβ conversion circuit 8 ... Reverse rotation coordinate dq conversion circuit 9 ... Tilter circuit 11 ... Limiter 12 ... Reverse rotation coordinate dq reverse conversion circuit 13 ... Reverse rotation coordinate αβ reverse conversion circuit 16 ... Rotation coordinate αβ conversion Circuit 17 ... Rotational coordinate dq conversion circuit 18 ... Filter circuit 19 ... Limiter 22 ... Filter circuit 25 ... Rotational coordinate dq inverse conversion circuit 26 ... Rotational coordinate αβ inverse conversion circuit 34 ... PWM control circuit.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 検出した3相負荷電流の無効分,高調波
分,逆相分を2相電流として求め、これを加算し、その
加算した成分を3相電流に変えて検出した補償量でイン
バータを制御し、前記各成分を一括補償する汎用補償装
置において、 前記無効分,高調波分,逆相分を出力する各2相回路
に、それぞれ設定変更可能なリミッタを接続し、装置定
格電流と前記補償量とを比較して補償量が装置定格を越
えたとき前記各リミッタの設定を変えて補償量が装置定
格以内となるようにしたことを特徴とした汎用補償装
置。
1. A compensation amount detected by calculating a reactive component, a harmonic component, and an antiphase component of a detected three-phase load current as a two-phase current, adding them, and changing the added component into a three-phase current. In a general-purpose compensator for controlling an inverter and collectively compensating for each of the components, a limiter whose setting can be changed is connected to each of the two-phase circuits that output the reactive component, the harmonic component, and the antiphase component, and the device rated current And a compensation amount, and when the compensation amount exceeds the device rating, the setting of each limiter is changed so that the compensation amount is within the device rating.
【請求項2】 検出した3相負荷電流の無効分,高調波
分,逆相分を2相電流として求め、これを加算し、その
加算した成分を3相電流に変えて検出した補償量でイン
バータを制御し、前記各成分を一括補償する汎用補償装
置において、 前記検出した補償量を出力する回路に設定変更可能なリ
ミッタを接続し、装置定格電流と検出した補償量とを比
較して補償量が装置定格を越えたとき前記リミッタの設
定を変えて補償量が装置定格以内となるようにしたこと
を特徴とした汎用補償装置。
2. A reactive amount, a harmonic component, and an anti-phase component of the detected three-phase load current are obtained as a two-phase current, and these are added, and the added component is changed to a three-phase current to detect the compensation amount. In a general-purpose compensator that controls an inverter and collectively compensates each component, a limiter whose setting can be changed is connected to a circuit that outputs the detected compensation amount, and the device rated current is compared with the detected compensation amount to perform compensation. A general-purpose compensator, characterized in that when the amount exceeds the device rating, the setting of the limiter is changed so that the amount of compensation is within the device rating.
JP6244489A 1994-10-11 1994-10-11 General purpose compensating apparatus Pending JPH08111937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6244489A JPH08111937A (en) 1994-10-11 1994-10-11 General purpose compensating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6244489A JPH08111937A (en) 1994-10-11 1994-10-11 General purpose compensating apparatus

Publications (1)

Publication Number Publication Date
JPH08111937A true JPH08111937A (en) 1996-04-30

Family

ID=17119436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6244489A Pending JPH08111937A (en) 1994-10-11 1994-10-11 General purpose compensating apparatus

Country Status (1)

Country Link
JP (1) JPH08111937A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008141887A (en) * 2006-12-04 2008-06-19 Kyosan Electric Mfg Co Ltd Instantaneous voltage drop compensation circuit, power converting device, instantaneous voltage drop compensation method and instantaneous voltage drop compensation program
JP2008271633A (en) * 2007-04-17 2008-11-06 Fuji Electric Systems Co Ltd Control method of voltage fluctuation compensator
JP2009089556A (en) * 2007-10-02 2009-04-23 Fuji Electric Systems Co Ltd Method of controlling reactive power compensation device
WO2019106903A1 (en) * 2017-11-30 2019-06-06 株式会社 東芝 Voltage compensation device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008141887A (en) * 2006-12-04 2008-06-19 Kyosan Electric Mfg Co Ltd Instantaneous voltage drop compensation circuit, power converting device, instantaneous voltage drop compensation method and instantaneous voltage drop compensation program
JP2008271633A (en) * 2007-04-17 2008-11-06 Fuji Electric Systems Co Ltd Control method of voltage fluctuation compensator
JP2009089556A (en) * 2007-10-02 2009-04-23 Fuji Electric Systems Co Ltd Method of controlling reactive power compensation device
WO2019106903A1 (en) * 2017-11-30 2019-06-06 株式会社 東芝 Voltage compensation device
JPWO2019106903A1 (en) * 2017-11-30 2021-01-07 株式会社東芝 Voltage compensator
US11211876B2 (en) 2017-11-30 2021-12-28 Kabushiki Kaisha Toshiba Voltage compensation device

Similar Documents

Publication Publication Date Title
US5212630A (en) Parallel inverter system
JP5542609B2 (en) Reactive power compensator
JPH10225131A (en) Controller of power converter
JPH1141812A (en) Controller of power system self-excited converter
JP2002238163A (en) Power converter
JP2708648B2 (en) Parallel operation control device
JPH08111937A (en) General purpose compensating apparatus
JP3112386B2 (en) Reactive power generator
JP3266966B2 (en) Positive / negative phase component detection circuit for three-phase electricity
JP2674402B2 (en) Parallel operation control device for AC output converter
JPH07135782A (en) Control circuit for three-level inverter
JPH07123726A (en) Power converter
JP3247252B2 (en) Control device for power converter
JPH10127056A (en) Pulse width modulation converter device
JPH11103600A (en) Method of controlling voltage of induction generator
JPH10111725A (en) System for sharing compensation power 0f power line conditioner
JP3242814B2 (en) Power system compensation controller
JPH10201099A (en) Active filter
JP3135600B2 (en) Unbalance compensator
AU2021436898B2 (en) Power conversion device and control device
CN111799816B (en) Angular joint chained STATCOM current optimization method
CN112701694B (en) Chained SVG direct current bus voltage control method and control system
JP3309894B2 (en) Control method of self-excited var compensator
JPH1146446A (en) Equipment and method for reactive power generator
JP2000222053A (en) Reactive power generating device