JPH1141812A - Controller of power system self-excited converter - Google Patents

Controller of power system self-excited converter

Info

Publication number
JPH1141812A
JPH1141812A JP9196987A JP19698797A JPH1141812A JP H1141812 A JPH1141812 A JP H1141812A JP 9196987 A JP9196987 A JP 9196987A JP 19698797 A JP19698797 A JP 19698797A JP H1141812 A JPH1141812 A JP H1141812A
Authority
JP
Japan
Prior art keywords
voltage
phase component
negative
self
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9196987A
Other languages
Japanese (ja)
Inventor
Hiroo Konishi
博雄 小西
Hiroshige Kawazoe
裕成 川添
Toshiyuki Hayashi
敏之 林
Masahiro Takasaki
昌洋 高崎
Naoki Giho
直樹 宜保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Hitachi Ltd
Original Assignee
Central Research Institute of Electric Power Industry
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry, Hitachi Ltd filed Critical Central Research Institute of Electric Power Industry
Priority to JP9196987A priority Critical patent/JPH1141812A/en
Publication of JPH1141812A publication Critical patent/JPH1141812A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)
  • Filters And Equalizers (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress an overcurrent caused by a negative-phase voltage generated by an AC system failure, etc., by a method wherein a voltage at the linkage point of a self-excited converter and an AC system is detected and an negative-phase component contained therein is detected and the voltage signal of the negative-phase component is added to the voltage signal of a positive-phase component to generate a control output. SOLUTION: A voltage at the junction of a self-excited converter and an AC system is detected by an AC voltage transformer 111, and 3-phase AC voltages are converted into 2-phase AC voltages of d-axis and q-axis by a 2nd conversion circuit 112. The positive-phase components of the converted 2-phase signals are detected by positive- phase component detection circuits 113a and 113b and multiplied by a gain. Also, the negative-phase components of the converted 2-phase signals are detected by negative-phase component detection circuits 114a and 114b and multiplied by a gain. A PWM pulse is generated by using signals obtained by adding the negative-phase component voltage signals to other signals by 3rd 4th adding circuits 115 and 116. With this constitution, the negative-phase component in a system voltage is added to a control voltage by feed-forward and an output voltage whose negative-phase component is compensated can be obtained. Therefore, an overcurrent is not generated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は直流送電や無効電力
補償装置に適用される自励式変換器の制御装置に関し、
特に交流系統の事故時に過電流の発生を防止できる自励
式変換器の制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for a self-excited converter applied to a DC power transmission and a reactive power compensator,
In particular, the present invention relates to a control device for a self-excited converter that can prevent occurrence of overcurrent in the event of an AC system accident.

【0002】[0002]

【従来の技術】有効電力と無効電力が任意、高速かつ独
立に制御できることから自励式変換器の直流送電への適
用開発が進められている。開発中の自励式変換器は電圧
型であるために等価的に電圧源で表される。このため交
流系統故障時の故障インピーダンスが小さいときは過電
流が流れて、保護のために自励式変換器を停止せざるを
得なくなり、送電信頼度が低下すると言った問題があ
る。
2. Description of the Related Art Since active power and reactive power can be controlled arbitrarily, at high speed, and independently, application of self-excited converters to DC power transmission is being promoted. The self-commutated converter under development is equivalent to a voltage source because it is a voltage type. For this reason, when the fault impedance at the time of AC system failure is small, an overcurrent flows, and the self-excited converter must be stopped for protection, and there is a problem that power transmission reliability is reduced.

【0003】[0003]

【発明が解決しようとする課題】交流系統故障時の過電
流の発生要因には2つ考えられる。故障発生直後に発生
し、変換器の制御遅れに起因する過電流と、故障期間中
から故障除去後に発生し、逆相成分を十分補償できない
ために発生する過電流がある。
There are two possible causes of overcurrent when an AC system failure occurs. There are an overcurrent that occurs immediately after the occurrence of a failure and occurs due to a delay in control of the converter, and an overcurrent that occurs after the failure is removed during the failure period and occurs because the negative phase component cannot be sufficiently compensated.

【0004】交流系統故障時の過電流を抑制し、運転継
続を可能とする対策として先ず、制御系の応答の高速化
がある。このため、自励式変換器の制御回路では下記の
文献「Y.Tokiwa, et al., "Application of a digital
instantaneous current control for static induction
thyristor converters in th utility line", PCIM'88
Proceeding pp343‐351」に見られるように、変換器の
出力交流電流をdq変換し、d軸成分とq軸成分を非干
渉で高速に電流制御する非干渉ベクトル制御方法が考え
られている。
[0004] As a countermeasure for suppressing an overcurrent at the time of failure of the AC system and enabling the continuation of operation, first, there is a high-speed response of a control system. For this reason, in the control circuit of the self-excited converter, the following document "Y. Tokiwa, et al.," Application of a digital
instantaneous current control for static induction
thyristor converters in th utility line ", PCIM'88
As described in Proceeding pp. 343-351, a non-interference vector control method has been considered in which the output AC current of the converter is dq-converted, and the d-axis component and the q-axis component are current-controlled at high speed without interference.

【0005】しかし、交流系統の不平衡故障等により交
流電圧に逆相分が含まれる場合には、逆相成分に対する
制御を行っていないので制御出力に反映されず、このた
め交流系統と変換器の出力電圧の不平衡により過電流が
流れる。系統に20%の不平衡があると変換器には定格
電流の2倍(1+0.2/0.2:変換用変圧器のインピ
ーダンスを20%と仮定)を超える過電流が流れること
になり、装置保護のため装置を停止せざるを得なくな
る。
However, when the AC voltage includes a negative phase component due to an unbalanced fault in the AC system, the control output is not reflected because the control for the negative phase component is not performed. Overcurrent flows due to the imbalance in the output voltages of If there is an imbalance of 20% in the system, an overcurrent exceeding twice the rated current (1 + 0.2 / 0.2: assuming the impedance of the conversion transformer is 20%) will flow through the converter. The device must be stopped to protect the device.

【0006】本発明の目的は、交流系統の不平衡事故時
にも過電流の発生を防止し、電力系統用自励式変換器の
運転を継続できる制御装置を提供することにある。
An object of the present invention is to provide a control device capable of preventing the occurrence of overcurrent even in the event of an imbalance in an AC system and continuing the operation of the power system self-excited converter.

【0007】[0007]

【課題を解決するための手段】本発明は、GTO等の自
己消弧形素子で構成され、交流を直流または直流を交流
に変換する電力系統用自励式変換器を、電圧指令値と交
直連系点の交流電圧の主として正相成分(測定値または
測定値から検出した正相成分)の電圧信号に基づく制御
出力によって制御する制御装置において、前記自励式変
換器と交流系統との連系点の電圧を検出する手段、検出
された電圧に含まれる逆相成分を検出する手段、逆相成
分の電圧信号を前記正相成分の電圧信号に加算する手段
と、加算された電圧信号に基づいて前記制御出力を作成
する手段を設け、交流系統故障時等の逆相電圧による過
電流を抑制することを特徴とする。
SUMMARY OF THE INVENTION The present invention relates to a self-excited converter for a power system which comprises a self-extinguishing element such as a GTO and converts AC to DC or DC to AC. In a control device controlled by a control output based mainly on a voltage signal of a positive-phase component (a measured value or a positive-phase component detected from a measured value) of an AC voltage at a system point, a connection point between the self-excited converter and an AC system is provided. Means for detecting the voltage of the detected voltage, means for detecting the negative-phase component included in the detected voltage, means for adding the voltage signal of the negative-phase component to the voltage signal of the positive-phase component, based on the added voltage signal. A means for generating the control output is provided to suppress an overcurrent due to a reverse-sequence voltage at the time of an AC system failure or the like.

【0008】また、交流電圧に含まれる逆相成分を検出
し、非干渉ベクトル制御回路の出力制御信号にフィード
フォワードで加算することにより、自励式変換器の出力
電圧に逆相分電圧を載せ、系統の交流電圧との電位差を
無くして過電流の発生を防止することを特徴とする。
[0008] Further, by detecting a negative-phase component included in the AC voltage and adding the negative-phase component to the output control signal of the non-interference vector control circuit in a feed-forward manner, a negative-phase component voltage is placed on the output voltage of the self-excited converter. The present invention is characterized in that occurrence of an overcurrent is prevented by eliminating a potential difference from the AC voltage of the system.

【0009】前記非干渉ベクトル制御を行う制御装置
は、交流電圧をdqの2軸に変換する手段、変換された
d軸及びq軸各々の電圧の正相成分を検出する手段、変
換されたdq軸成分の各々の電圧の逆相成分を検出する
手段、検出された正相成分及び逆相成分の電圧信号をそ
れぞれゲイン倍した信号をd軸及びq軸各々の制御信号
に加算する手段、該加算された制御信号を2相から3相
に逆変換する手段を設け、該逆変換された3相信号に基
づいて前記制御出力を作成することを特徴とする。
The control device for performing the non-interference vector control includes a means for converting an AC voltage into two axes of dq, a means for detecting a positive phase component of each of the converted d-axis and q-axis voltages, Means for detecting a negative-phase component of each axis component voltage, means for adding a signal obtained by multiplying the detected positive-phase component and negative-phase component voltage signals by a gain to the respective d-axis and q-axis control signals, A means for inverting the added control signal from two phases to three phases is provided, and the control output is created based on the inverted three-phase signal.

【0010】本発明によれば、自励式変換器の出力電圧
に、検出された逆相分の電圧を載せ、系統の交流電圧と
の電位差を無くして過電流の発生を防止する。
According to the present invention, the detected voltage of the opposite phase is placed on the output voltage of the self-excited converter to eliminate the potential difference from the AC voltage of the system, thereby preventing the occurrence of overcurrent.

【0011】[0011]

【発明の実施の形態】以下、本発明の複数の実施例を図
面に従って詳細に説明する。なお、各図を通して同じ要
素には、同一の符号を付している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a plurality of embodiments of the present invention will be described in detail with reference to the drawings. Note that the same reference numerals are given to the same elements throughout the drawings.

【0012】図1に、第1の実施例による電力系統用自
励式変換器の制御装置の構成を示す。本実施例は直流送
電系統への適用例を示し、主回路が交流系統1,2、変
換用変圧器3,4、GTO等の自己消弧素子で構成され
る電圧型の自励式変換器5,6、直流回路7及び電圧平
滑用のコンデンサ8からなる。本例の制御装置は、自励
式変換器6の側のみ示し、同様の構成となる自励式変換
期5の側は図示を省略している。
FIG. 1 shows a configuration of a control device of a self-excited converter for a power system according to a first embodiment. This embodiment shows an example of application to a DC power transmission system, in which a main circuit is a voltage-type self-excited converter 5 composed of AC systems 1 and 2, conversion transformers 3 and 4, and a self-extinguishing element such as a GTO. , 6, a DC circuit 7 and a capacitor 8 for voltage smoothing. The control device of this example shows only the side of the self-excited converter 6, and the illustration of the side of the self-excited conversion period 5 having the same configuration is omitted.

【0013】本制御装置は非干渉ベクトル制御を行う例
で、以下のように構成されている。直流送電の運転状態
を指令する運転指令回路100と、運転指令回路100
からの有効電力または直流電圧指令値に従って、有効電
力または直流電圧を指令値に制御する有効電力制御回路
101と、運転指令回路100からの無効電力指令値に
従って、無効電力を指令値に制御する無効電力制御回路
102と、自励式変換器に流れる電流を検出する交流電
流検出器103と、3相交流電流をdq軸の2相に変換
する第1の変換回路104と、有効電力制御回路101
の出力と第1の変換回路104の出力であるd軸の電流
成分Idとの偏差を求める第1の加算回路105と、無
効電力制御回路102の出力と第1の変換回路104の
もう1つの出力であるq軸の電流成分Iqとの偏差を求
める第2の加算回路106と、第1の演算回路107
と、第2の演算回路108を有している。
This control device is an example of performing non-interference vector control, and is configured as follows. An operation command circuit 100 for instructing an operation state of DC power transmission, and an operation command circuit 100
The active power control circuit 101 controls the active power or the DC voltage to a command value according to the active power or the DC voltage command value from the controller, and the reactive power controls the reactive power to the command value according to the reactive power command value from the operation command circuit 100. A power control circuit 102, an AC current detector 103 for detecting a current flowing through the self-excited converter, a first conversion circuit 104 for converting a three-phase AC current into two phases of dq axes, and an active power control circuit 101
And a first addition circuit 105 for calculating a deviation between the output of the first conversion circuit 104 and the output of the first conversion circuit 104. A second adding circuit 106 for calculating a deviation from the q-axis current component Iq, which is an output, and a first arithmetic circuit 107
And a second arithmetic circuit 108.

【0014】第1の加算回路105と第1の演算回路1
07でd軸電流制御回路(有効電流制御回路)を、第2
の加算回路106と第2の演算回路108でq軸電流制
御回路(無効電流制御回路)を構成する。また、変換さ
れたd軸の電流成分Idに変換用変圧器のインピーダン
スを掛ける第3の演算回路109と、変換されたq軸の
電流成分Iqに変換用変圧器のインピーダンスを掛ける
第4の演算回路110を有している。
First adder 105 and first arithmetic circuit 1
07, the d-axis current control circuit (active current control circuit)
Adder circuit 106 and second arithmetic circuit 108 constitute a q-axis current control circuit (reactive current control circuit). A third operation circuit 109 multiplies the converted d-axis current component Id by the impedance of the conversion transformer, and a fourth operation multiplies the converted q-axis current component Iq by the impedance of the conversion transformer. The circuit 110 is provided.

【0015】さらに、自励式変換器の接続された接続点
の交流系統の電圧を検出する交流電圧変成器111と、
3相交流電圧をdq軸の2相に変換する第2の変換回路
112と、第2の変換回路112によりdqの2軸に変
換された信号から正相分を抽出しゲイン倍する正相分検
出回路で113a,bと、第2の変換回路112により
dqの2軸に変換された信号から逆相分を抽出しゲイン
倍する逆相分検出回路114a,bを有している。
Further, an AC voltage transformer 111 for detecting a voltage of an AC system at a connection point to which the self-excited converter is connected;
A second conversion circuit 112 for converting the three-phase AC voltage into two phases of dq axes; and a positive phase component for extracting a positive phase component from the signal converted to two axes of dq by the second conversion circuit 112 and multiplying the gain by a gain. The detection circuit includes 113a and 113b, and antiphase components detection circuits 114a and 114b that extract the antiphase component from the signal converted into two axes of dq by the second conversion circuit 112 and multiply the gain by a gain.

【0016】図2に示すように、正相分検出回路113
はフィルタ回路Fil(1)と増幅回路AMP(1)か
らなる。図3に、フィルタ回路Fil(1)の入出力特
性を示す。正相分は直流信号であるので、ローパスフィ
ルタ特性でよい。また、図4に示すように、逆相分検出
回路114はバンドパスフィルタ回路Fil(2)と増
幅回路AMP(2)からなる。図5に、バンドパスフィ
ルタ回路Fil(2)の入出力特性を示す。逆相分は基
本波の2倍周波であるので、2倍周波数に中心周波数を
持つバンドパスフィルタ特性となる。
As shown in FIG. 2, the positive phase component detection circuit 113
Is composed of a filter circuit Fil (1) and an amplifier circuit AMP (1). FIG. 3 shows the input / output characteristics of the filter circuit Fil (1). Since the positive phase component is a DC signal, a low-pass filter characteristic may be used. As shown in FIG. 4, the anti-phase component detection circuit 114 includes a band-pass filter circuit Fil (2) and an amplifier circuit AMP (2). FIG. 5 shows the input / output characteristics of the band-pass filter circuit Fil (2). Since the opposite phase component is a double frequency of the fundamental wave, it has a bandpass filter characteristic having a center frequency at the double frequency.

【0017】さらに、第1の演算回路107によるd軸
電流制御値、第4の演算回路110によるq軸の電流成
分Iqによるインピーダンスドロップの補償電圧換算
値、正相分検出回路113による正相分の電圧信号Vd
p及び逆相分検出回路114による逆相分の電圧信号V
dnを加算する第3の加算回路115と、同様に、第2
の演算回路108によるq軸電流制御値、第3の演算回
路109による電流成分Idによるインピーダンスドロ
ップの補償電圧換算値、正相分検出回路113による正
相分の電圧信号Vqp及び逆相分検出回路114による
逆相分の電圧信号Vqnを加算する第4の加算回路11
6と、第3の加算回路115のd軸制御出力と第4の加
算回路116のq軸制御出力との2相信号から3相信号
に逆変換する第3の変換回路117と、第3の変換回路
117の出力である3相の基準電圧信号に応じてPWM
パルスを作成するPWMパルス作成回路118を有して
いる。作成されたPWMパルスは、電圧型の自励式変換
器5,6の各素子をオンオフ制御する制御電圧、すなわ
ち制御出力となる。
Further, the d-axis current control value by the first arithmetic circuit 107, the compensation voltage conversion value of the impedance drop by the q-axis current component Iq by the fourth arithmetic circuit 110, and the positive-phase component by the positive-phase component detection circuit 113 Voltage signal Vd
p and the voltage signal V of the negative phase by the negative phase detection circuit 114
Similarly to the third adding circuit 115 for adding dn,
, The q-axis current control value by the arithmetic circuit 108, the compensation voltage conversion value of the impedance drop by the current component Id by the third arithmetic circuit 109, the positive-phase voltage signal Vqp and the negative-phase component detection circuit by the positive-phase component detection circuit 113. Fourth adding circuit 11 for adding voltage signal Vqn for the opposite phase by 114
6, a third conversion circuit 117 for inversely converting a two-phase signal of the d-axis control output of the third addition circuit 115 and the q-axis control output of the fourth addition circuit 116 into a three-phase signal, PWM according to the three-phase reference voltage signal output from the conversion circuit 117
It has a PWM pulse generating circuit 118 for generating a pulse. The generated PWM pulse becomes a control voltage for controlling on / off of each element of the voltage type self-excited converters 5, 6, that is, a control output.

【0018】以上のよう、本実施例の制御装置によれ
ば、系統電圧に含まれる逆相成分がフィードフォワード
で、制御装置から出力される制御電圧に加えられ、自励
式変換器6から逆相分が補償された出力電圧が得られ
る。これにより、系統電圧と出力電圧の差がなくなり、
自励式変換器5,6に過電流が発生しない。
As described above, according to the control device of the present embodiment, the negative-phase component included in the system voltage is fed forward and added to the control voltage output from the control device. The output voltage is compensated for. This eliminates the difference between the system voltage and the output voltage,
No overcurrent occurs in the self-excited converters 5, 6.

【0019】次に、本実施例の自励式変換器による直流
送電の動作を説明する。自励式変換器5を順変換器で、
自励式変換器6を逆変換器で運転し、順変換器5で有効
電力を制御し、逆変換器6で直流電圧を制御するものと
する。逆に、順変換器で直流電圧を制御し、逆変換器で
有効電力を制御する場合でも、自励式変換器が直流電圧
を指定値に保つように交流出力電圧の位相と大きさを制
御するか、有効電力を指定値に保つように交流出力電圧
の位相と大きさを制御するかの違いであり、どちらでも
制御動作に差は無い。
Next, the operation of DC power transmission by the self-excited converter of this embodiment will be described. The self-excited converter 5 is a forward converter,
It is assumed that the self-excited converter 6 is operated by an inverter, the forward converter 5 controls active power, and the inverter 6 controls a DC voltage. Conversely, even when the DC voltage is controlled by the forward converter and the active power is controlled by the inverse converter, the self-excited converter controls the phase and magnitude of the AC output voltage so that the DC voltage is maintained at the specified value. Or the control of the phase and magnitude of the AC output voltage so as to keep the active power at the specified value, and there is no difference in the control operation in either case.

【0020】順変換器側の制御装置の有効電力制御回路
101は、運転指令回路100から有効電力指令値を入
力し、有効電力が指定値になるように自励式変換器5の
出力交流電圧を制御する。一方、逆変換器側の制御装置
の有効電力制御回路101は、運転指令回路100から
直流電圧指令値を入力し、直流電圧が指定値になるよう
に自励式変換器6の出力交流電圧を制御する。
The active power control circuit 101 of the control device on the side of the forward converter receives an active power command value from the operation command circuit 100 and changes the output AC voltage of the self-excited converter 5 so that the active power becomes a specified value. Control. On the other hand, the active power control circuit 101 of the control device on the inverter side receives a DC voltage command value from the operation command circuit 100 and controls the output AC voltage of the self-excited converter 6 so that the DC voltage becomes a specified value. I do.

【0021】ここで、逆変換器側の交流系統の不平衡故
障により、逆変換器側の交流電圧に逆相分が重畳したと
する。通常は交流電圧が三相平衡し、逆相分検出回路1
14の出力は零であるが、不平衡になると逆相分が検出
される。逆相成分は基本波の2倍周波であるので、2倍
周波に中心周波数を持つバンドパスフィルタFil
(2)の特性によって検出され、AMP(2)でゲイン
倍される。
Here, it is assumed that a negative phase component is superimposed on the AC voltage on the inverter side due to an imbalance failure in the AC system on the inverter side. Normally, AC voltage is balanced in three phases,
The output of 14 is zero, but when it becomes unbalanced, a reverse phase component is detected. Since the antiphase component is a double frequency of the fundamental wave, a band-pass filter Fil having a center frequency at the double frequency is used.
It is detected by the characteristic of (2), and the gain is multiplied by AMP (2).

【0022】逆相分検出回路114a,bは、第2の変
換回路112によるd軸の電圧成分Vdとq軸の電圧成
分Vqから、逆相電圧成分Vdn,Vqnを検出し、第
3及び第4の加算回路115,116に出力する。
The negative phase component detection circuits 114a and 114b detect the negative phase voltage components Vdn and Vqn from the d-axis voltage component Vd and the q-axis voltage component Vq by the second conversion circuit 112, respectively. 4 to the adders 115 and 116.

【0023】加算回路115は電流成分Idの制御値や
d軸成分の正相分の正相電圧分Vdpなどに、逆相電圧
分Vdnを加算してd軸制御信号を作成し、加算回路1
16は電流成分Iqの制御値やq軸成分の正相分の正相
電圧分Vqpなどに、逆相電圧分Vqnを加算してq軸
制御信号を作成し、それらを第3の変換回路に出力す
る。
The adder 115 adds a negative phase voltage Vdn to the control value of the current component Id or the positive phase voltage Vdp of the positive phase of the d-axis component to generate a d-axis control signal.
Numeral 16 adds a negative-sequence voltage Vqn to a control value of the current component Iq and a positive-phase voltage Vqp for the positive phase of the q-axis component to create a q-axis control signal, and sends them to the third conversion circuit. Output.

【0024】第3の変換回路117は、加算回路11
5,116からのd,q2相の信号を3相信号に変換
し、逆相成分が加算された3相の電圧基準信号を作成す
る。さらに、PWMパルス作成回路118で、この3相
の電圧基準信号と等価な交流出力電圧を得るためのPW
Mパルスが作成される。
The third conversion circuit 117 includes the addition circuit 11
The d and q two-phase signals from 5,116 are converted into three-phase signals, and a three-phase voltage reference signal to which an anti-phase component is added is created. Further, the PWM pulse generation circuit 118 generates a PWM signal for obtaining an AC output voltage equivalent to the three-phase voltage reference signal.
M pulses are created.

【0025】このように、交流系統電圧に含まれる逆相
分がフィードフォワードでd軸及びq軸の制御信号に加
えられ、自励式変換器6から逆相分が補償された交流出
力電圧が得られるので、出力電圧と系統電圧の差が低減
されて自励式変換器に過電流が流れるのを防止する。
As described above, the negative phase component included in the AC system voltage is added to the d-axis and q-axis control signals in a feedforward manner, and the self-excited converter 6 obtains an AC output voltage in which the negative phase component is compensated. Therefore, the difference between the output voltage and the system voltage is reduced to prevent an overcurrent from flowing to the self-excited converter.

【0026】本発明の第2の実施例を説明する。第1の
実施例による図1の自励式変換器の制御装置では、交流
系統の電圧に含まれる逆相成分を検出し、自励式変換器
の出力電圧に系統電圧と同様な逆相分をのせる構成であ
ったが、第2の実施例では系統に流れる電流から逆相分
を検出して、電流指令値を補正するものである。
Next, a second embodiment of the present invention will be described. In the control device of the self-excited converter of FIG. 1 according to the first embodiment, a negative-phase component included in the voltage of the AC system is detected, and the same negative-phase component as the system voltage is output to the output voltage of the self-excited converter. However, in the second embodiment, the reverse-phase component is detected from the current flowing in the system, and the current command value is corrected.

【0027】図6に、第2の実施例による電力用自励式
変換装置の制御装置の構成を示す。図1と異なる点につ
いて説明すると、Vd,Vqから正相分及び逆相分の電
圧を検出する検出回路113,114に替えて、Id,
Iqから逆相分の電流を検出する検出回路120を設け
たことである。
FIG. 6 shows a configuration of a control device of the power self-excited converter according to the second embodiment. Explaining the points different from FIG. 1, Id, Vd and Vq are replaced with detection circuits 113 and 114 for detecting the positive-phase and negative-phase voltages.
That is, a detection circuit 120 for detecting the current of the opposite phase from Iq is provided.

【0028】逆相分検出回路120aっは、第1の変換
回路104のd軸の電流成分Idから逆相分を抽出しゲ
イン倍する。検出回路の基本構成は図4と同じでよく、
バンドパスフィルタ回路Fil(2)と増幅回路AMP
(2)からなる。逆相分検出回路120bは、第1の変
換回路104のq軸の電流成分Iqから逆相分を抽出し
ゲイン倍する。入力信号がIdからIqに変わるのみ
で、他は同様である。
The antiphase component detection circuit 120a extracts the antiphase component from the d-axis current component Id of the first conversion circuit 104 and multiplies the gain by a gain. The basic configuration of the detection circuit may be the same as FIG.
Bandpass filter circuit Fil (2) and amplifier circuit AMP
It consists of (2). The negative-phase component detection circuit 120b extracts the negative-phase component from the q-axis current component Iq of the first conversion circuit 104 and multiplies it by a gain. Other than that, only the input signal changes from Id to Iq.

【0029】電流成分Idの逆相分の電流信号は、有効
電力制御回路101のd軸電流制御の指令値から第5の
加算回路121で減算される。また、電流成分Iqの逆
相分の電流信号は、無効電力制御回路102のq軸電流
制御の指令値から第6の加算回路122で減算される。
The current signal for the negative phase of the current component Id is subtracted by the fifth adding circuit 121 from the command value for the d-axis current control of the active power control circuit 101. Further, the current signal of the negative phase of the current component Iq is subtracted by the sixth adding circuit 122 from the command value of the q-axis current control of the reactive power control circuit 102.

【0030】この結果、d軸電流制御の指令値及びq軸
電流制御の指令値は、交流電流に含まれる逆相分によっ
て補正された値となる。これら電流指令値とVd,Vq
などにより、加算回路115,116で図1の場合と同
様にd軸制御信号、q軸制御信号が作成される。
As a result, the command value for the d-axis current control and the command value for the q-axis current control are values corrected by the negative phase component included in the AC current. These current command values and Vd, Vq
Thus, the d-axis control signal and the q-axis control signal are generated by the adders 115 and 116 in the same manner as in the case of FIG.

【0031】本実施例の制御装置によれば、交流系統の
逆相成分によって補正された電流指令値にしたがって制
御出力を行う。常時は、系統に流れる電流に逆相分は含
まれないので逆相分検出回路120a,bの出力は零で
ある。故障等により系統電流に逆相分が含まれると、逆
相分検出回路120a,bに検出値が出力され、電流指
令値から逆相分が減算される。この電流指令値に一致す
る電流が変換器の出力に流れるように、制御装置の制御
出力によって自励式変換器の出力電圧が制御される。つ
まり、逆相電圧による逆相分の電流が流れないように、
自励式変換器の出力電圧が制御されるので、系統故障時
の逆相電圧による過電流の発生を防止できる。
According to the control device of this embodiment, the control output is performed according to the current command value corrected by the negative phase component of the AC system. Normally, the output of the negative phase detecting circuits 120a and 120b is zero because the negative phase component is not included in the current flowing through the system. If a negative phase component is included in the system current due to a failure or the like, a detection value is output to the negative phase component detection circuits 120a and 120b, and the negative phase component is subtracted from the current command value. The output voltage of the self-excited converter is controlled by the control output of the control device so that a current corresponding to the current command value flows to the output of the converter. In other words, so that the current of the negative phase due to the negative phase voltage does not flow,
Since the output voltage of the self-excited converter is controlled, it is possible to prevent the occurrence of overcurrent due to the reverse phase voltage at the time of a system failure.

【0032】本発明による第3の実施例を説明する。図
6の第2の実施例では、系統に流れる電流の逆相分を検
出し、電流制御回路の指令値に検出された逆相分を加算
して逆相電流が流れないように制御する構成であった
が、第3の実施例では電流の逆相分を検出し、これを電
圧に変換して図1と同様にフィードフォワードで補償す
るものである。
A third embodiment according to the present invention will be described. In the second embodiment shown in FIG. 6, a configuration is employed in which a negative phase component of a current flowing through a system is detected, and the detected negative phase component is added to a command value of a current control circuit so that a negative phase current does not flow. However, in the third embodiment, the reverse phase component of the current is detected, and this is converted into a voltage and compensated by feedforward as in FIG.

【0033】図7に、第3の実施例による電力系統用自
励式変換器の制御装置の構成を示す。図6と異なる点に
ついて説明すると、電流の逆相分検出回路120a,b
に替えて、Id,Iqから逆相分の電流を検出し、さら
に電圧信号に変換する逆相分検出・変換回路130a,
bを設けたことである。
FIG. 7 shows a configuration of a control device of a self-excited converter for a power system according to a third embodiment. The difference from FIG. 6 will be described. The negative-phase current detecting circuits 120a and 120b
, A negative-phase detection / conversion circuit 130a, which detects a current of the negative phase from Id and Iq and further converts the current into a voltage signal.
b.

【0034】逆相分検出・変換回路130aは、第1の
変換回路104のd軸の電流成分Idから逆相分を抽出
し、電圧換算を含むゲイン倍を行う。回路構成は、図4
と同じでよく、バンドパスフィルタ回路Fil(2)と
増幅回路AMP(2)からなる。増幅回路AMP(2)
は電流信号を電圧信号に変換する機能を兼ねている。電
流を電圧に変換する係数は、変換用変圧器の漏れリアク
タンス相当のインピーダンスに、逆相分制御回路の一巡
ループの減衰を加味した値をゲインをとる。
The negative phase detection / conversion circuit 130a extracts the negative phase component from the d-axis current component Id of the first conversion circuit 104, and performs gain multiplication including voltage conversion. The circuit configuration is shown in FIG.
And may include a band-pass filter circuit Fil (2) and an amplifier circuit AMP (2). Amplifier circuit AMP (2)
Has a function of converting a current signal into a voltage signal. The coefficient for converting the current into the voltage has a gain that is a value obtained by adding the attenuation corresponding to the loop of the negative-phase-sequence control circuit to the impedance corresponding to the leakage reactance of the conversion transformer.

【0035】逆相分検出・変換回路130bは、第1の
変換回路104の出力であるq軸の電流成分Iqから逆
相分を抽出しゲイン倍を行う。入力信号がIdからIq
に変わるのみで構成は同様である。
The antiphase component detection / conversion circuit 130b extracts the antiphase component from the q-axis current component Iq output from the first conversion circuit 104, and performs gain multiplication. Input signal is Id to Iq
The configuration is the same except for the change.

【0036】本実施例の動作は、図1で説明した第1の
実施例と同様になり、系統故障時の逆相電圧による過電
流の発生を防止できる。
The operation of this embodiment is the same as that of the first embodiment described with reference to FIG. 1, and it is possible to prevent the occurrence of an overcurrent due to a reverse-phase voltage at the time of a system failure.

【0037】以上の実施例では、検出された交流電圧ま
たは交流電流から逆相成分を検出する手段として、2倍
の商用周波数を中心周波数にもつバンドパスフィルタを
用いたが、検出信号から直接演算して求めることもでき
る。この場合、第1の変換回路104、第2の変換回路
112、逆相分検出回路120a,b、130a,bは
不要となる。逆相成分の検出は(1),(2)式で求め
られる。
In the above embodiment, a band-pass filter having a center frequency twice as high as the commercial frequency is used as a means for detecting a negative-phase component from the detected AC voltage or AC current. You can also ask. In this case, the first conversion circuit 104, the second conversion circuit 112, and the anti-phase component detection circuits 120a, b, 130a, b become unnecessary. The detection of the negative phase component is obtained by the equations (1) and (2).

【0038】[0038]

【数1】 (Equation 1)

【0039】式(1)は交流電流、式(2)は交流電圧
の逆相成分を求める式で、Iu,Iv,Iw は交流3相の
瞬時値電流、Vu,Vv,Vw は瞬時値電圧、e(j2π
/3)は2π/3進めることを示し、e(−j2π/
3)は2π/3遅らすことを示している。
Equation (1) is an equation for obtaining an alternating current, and equation (2) is an equation for obtaining a negative-phase component of an AC voltage. Iu, Iv, and Iw are three-phase instantaneous value currents, and Vu, Vv, and Vw are instantaneous value voltages. , E (j2π
/ 3) indicates that it advances by 2π / 3, and e (−j2π /
3) indicates that the delay is 2π / 3.

【0040】逆相成分は2倍周波の交流信号となるの
で、制御信号としてIdn,Vdnを求めるためには、
式(1),(2)の絶対値をとる等により直流分を求め
ればよい。
Since the negative phase component is an AC signal having a double frequency, to obtain Idn and Vdn as control signals,
The DC component may be obtained by taking the absolute values of the equations (1) and (2).

【0041】図8に、本発明の自励式変換器の制御装置
を無効電力補償装置に適用した例を示す。無効電力補償
装置は自励式変換器で構成される。
FIG. 8 shows an example in which the control device for a self-excited converter of the present invention is applied to a reactive power compensator. The reactive power compensator is composed of a self-excited converter.

【0042】概略を説明すると、交流系統1、負荷1
0、自励式無効電力補償装置を系統連系する変換用変圧
器11、GTO等で構成される電圧形の自励式変換器1
2及び自励式変換器の直流側の電力用コンデンサ13、
自励式変換器の出力交流電流を検出する交流電流変成器
203、自励式無効電力補償装置と交流系統を接続する
連系点の電圧を検出する交流電圧変成器211と、変換
器の無効電力と直流電圧値を指令値とする自励式無効電
力補償装置の運転指令回路200と、制御装置201か
ら構成される。
In brief, an AC system 1 and a load 1
0, a conversion transformer 11 for system-linking the self-excited reactive power compensator, a voltage-type self-excited converter 1 composed of GTO, etc.
2, and the power capacitor 13 on the DC side of the self-excited converter,
An AC current transformer 203 for detecting an output AC current of the self-excited converter, an AC voltage transformer 211 for detecting a voltage at a connection point connecting the self-excited reactive power compensator and the AC system, and a reactive power of the converter. It comprises an operation command circuit 200 of a self-excited reactive power compensator using a DC voltage value as a command value, and a control device 201.

【0043】制御装置201は、図1、図6または図7
のいずれかの制御装置から構成される。交流電流変成器
203と交流電圧変成器211は、制御装置201の制
御に必要な電流、電圧を検出し、制御装置201に取り
込まれる。制御装置201おどうの動作は、運転指令回
路200からの指令値が異なるのみで、実施例1〜3の
場合と同じになる。本発明の制御装置を適用することに
よって、自励式無効電力補償装置の系統故障時の逆相電
圧による過電流発生を防止できる。
The control device 201 is provided in accordance with FIG. 1, FIG. 6 or FIG.
Of the control device. The AC current transformer 203 and the AC voltage transformer 211 detect a current and a voltage necessary for control of the control device 201 and are taken into the control device 201. The operation of the control device 201 is the same as that of the first to third embodiments except that the command value from the operation command circuit 200 is different. By applying the control device of the present invention, it is possible to prevent the occurrence of overcurrent due to the reverse-phase voltage at the time of a system failure of the self-excited var compensator.

【0044】[0044]

【発明の効果】本発明によれば、交流系統の電圧または
電流の無効成分を検出する手段の追加など、従来の制御
装置の簡単な変更により、交流系統の不平衡事故時にも
過電流を発生すること無く運転継続が行え、自励式変換
器を適用したSVCやHVDCの運転信頼度を向上でき
る。
According to the present invention, an overcurrent is generated even in the event of an imbalance in an AC system by a simple change of a conventional control device such as addition of means for detecting an invalid component of the voltage or current of the AC system. The operation can be continued without performing, and the operation reliability of the SVC or HVDC to which the self-excited converter is applied can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例による電力用自励式変換
装置の制御装置と、その直流送電系統への適用を示す構
成図。
FIG. 1 is a configuration diagram showing a control device of a power self-excited converter according to a first embodiment of the present invention and its application to a DC transmission system.

【図2】正相分検出回路の構成図。FIG. 2 is a configuration diagram of a positive phase component detection circuit.

【図3】正相分検出回路のフィルタ特性を示す説明図。FIG. 3 is an explanatory diagram illustrating filter characteristics of a positive-phase-sequence detection circuit.

【図4】逆相分検出回路の構成図。FIG. 4 is a configuration diagram of an antiphase component detection circuit.

【図5】逆相分検出回路のフィルタ特性を示す説明図。FIG. 5 is an explanatory diagram showing filter characteristics of an antiphase component detection circuit.

【図6】本発明の第2の実施例による電力用自励式変換
装置の制御装置の構成図。
FIG. 6 is a configuration diagram of a control device of a power self-excited converter according to a second embodiment of the present invention.

【図7】本発明の第3の実施例による電力用自励式変換
装置の制御装置の構成図。
FIG. 7 is a configuration diagram of a control device of a power self-excited converter according to a third embodiment of the present invention.

【図8】本発明の制御装置を備えた自励式無効電力補償
装置の構成図。
FIG. 8 is a configuration diagram of a self-excited var compensator provided with the control device of the present invention.

【符号の説明】[Explanation of symbols]

1,2…交流系統、3,4,11…変換用変圧器、5,
6,12…自励式変換器、7…直流回路、8…電圧平滑
用のコンデンサ、10…負荷、13…電力用コンデン
サ、100,200…運転指令回路、101…有効電力
制御回路、102…無効電力制御回路、103,203
…交流電流検出器、104…第1の変換回路、105…
第1の加算回路、106…第2の加算回路、107…第
1の演算回路、108…第2の演算回路、109…第3
の演算回路、110…第4の演算回路、111,211
…交流電圧変成器、112…第2の変換回路、113
a,b…正相分検出回路、114a,b…逆相分検出回
路、115…第3の加算回路、116…第4の加算回
路、117…第3の変換回路、118…PWMパルス作
成回路、120a,b…逆相分検出回路、121…第5
の加算回路、122…第6の加算回路、130a,b…
逆相分検出・変換回路、201…制御装置。
1,2 ... AC system, 3,4,11 ... Conversion transformer, 5,
6, 12: self-excited converter, 7: DC circuit, 8: capacitor for voltage smoothing, 10: load, 13: power capacitor, 100, 200: operation command circuit, 101: active power control circuit, 102: invalid Power control circuit, 103, 203
... AC current detector, 104 ... first conversion circuit, 105 ...
1st addition circuit, 106 ... 2nd addition circuit, 107 ... 1st arithmetic circuit, 108 ... 2nd arithmetic circuit, 109 ... 3rd
Arithmetic circuit 110, fourth arithmetic circuit 111, 211
... AC voltage transformer, 112 ... second conversion circuit, 113
a, b: positive phase detection circuit, 114a, b: reverse phase detection circuit, 115: third addition circuit, 116: fourth addition circuit, 117: third conversion circuit, 118: PWM pulse generation circuit , 120a, b... Anti-phase component detection circuit, 121.
, A sixth addition circuit, and 130a, b ...
Negative phase detection / conversion circuit, 201 ... Control device.

フロントページの続き (72)発明者 林 敏之 東京都狛江市岩戸北二丁目11番1号 財団 法人電力中央研究所内 (72)発明者 高崎 昌洋 東京都狛江市岩戸北二丁目11番1号 財団 法人電力中央研究所内 (72)発明者 宜保 直樹 東京都狛江市岩戸北二丁目11番1号 財団 法人電力中央研究所内Continued on the front page (72) Inventor Toshiyuki Hayashi 2-1-1, Iwatokita, Komae-shi, Tokyo Inside the Central Research Institute of Electric Power Industry (72) Inventor Masahiro Takasaki 2-1-1, Iwatokita, Komae-shi, Tokyo Foundation Within the Central Research Institute of Electric Power Industry (72) Inventor Naoki Giho 2-1-1, Iwatokita, Komae-shi, Tokyo Inside the Central Research Institute of Electric Power Industry

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 GTO等の自己消弧形素子で構成され、
交流を直流または直流を交流に変換する電力系統用自励
式変換器を、電圧指令値と交直連系点の交流電圧の主と
して正相成分の電圧信号に基づく制御出力によって制御
する電力系統用自励式変換器の制御装置において、 前記自励式変換器と交流系統との連系点の電圧を検出す
る手段、検出された電圧に含まれる逆相成分を検出する
手段、逆相成分の電圧信号を前記正相成分の電圧信号に
加算する手段と、加算された電圧信号に基づいて前記制
御出力を作成する手段を設け、交流系統故障時等の逆相
電圧による過電流を抑制することを特徴とする電力系統
用自励式変換器の制御装置。
1. A self-extinguishing element such as GTO,
A self-excited power system converter that converts AC to DC or DC to AC is controlled by a control output based on a voltage command value and a voltage signal of mainly the positive-phase component of the AC voltage at the AC / DC interconnection point. In the converter control device, a means for detecting a voltage at an interconnection point between the self-excited converter and the AC system, a means for detecting a negative-phase component included in the detected voltage, and a voltage signal of the negative-phase component Means for adding to the voltage signal of the positive-phase component and means for creating the control output based on the added voltage signal are provided to suppress overcurrent due to reverse-phase voltage such as at the time of AC system failure. Control device for self-excited converter for power system.
【請求項2】 請求項1において、 交流電圧をdqの2軸に変換する手段、変換されたd軸
及びq軸各々の電圧の正相成分を検出する手段、変換さ
れたdq軸成分の各々の電圧の逆相成分を検出する手
段、検出された正相成分及び逆相成分の電圧信号をそれ
ぞれゲイン倍した信号をd軸及びq軸各々の制御信号に
加算する手段、該加算された制御信号を2相から3相に
逆変換する手段を設け、該逆変換された3相信号に基づ
いて前記制御出力を作成することを特徴とする電力系統
用自励式変換器の制御装置。
2. The apparatus according to claim 1, wherein the means for converting the AC voltage into two axes of dq, means for detecting the positive-phase components of the converted voltages of the d-axis and the q-axis, and each of the converted dq-axis components Means for detecting the negative-phase component of the voltage, means for adding a signal obtained by multiplying the detected positive-phase component and negative-phase component voltage signals by a gain to each of the d-axis and q-axis control signals, and the added control. A control device for a power system self-excited converter, comprising: means for inverting a signal from two phases to three phases, and generating the control output based on the inverted three-phase signal.
【請求項3】 請求項1または2において、 前記正相成分を検出する手段は、ローパスフィルタから
構成されることを特徴とする電力系統用自励式変換器の
制御装置。
3. The control device for a power system self-excited converter according to claim 1, wherein the means for detecting the positive-phase component comprises a low-pass filter.
【請求項4】 請求項1または2において、 前記逆相成分を検出する手段は、基本波の2倍周波数を
中心周波数に持つバンドパスフィルタから構成される電
力系統用自励式変換器の制御装置。
4. The control device for a power system self-excited converter according to claim 1, wherein the means for detecting the anti-phase component comprises a band-pass filter having a center frequency of twice a fundamental wave. .
【請求項5】 GTO等の自己消弧形素子で構成され、
交流を直流または直流を交流に変換する電力系統用自励
式変換器を、電流指令値と交直連系点の交流電流の主と
して正相成分の電流信号に基づく制御出力によって制御
する制御装置において、 前記自励式変換器から交流系統に流れる電流を検出する
手段、検出された電流に含まれる逆相成分を検出する手
段、該逆相成分を前記電流指令値に加算する手段を設
け、交流系統故障時等の逆相電圧による過電流を抑制す
ることを特徴とする電力系統用自励式変換器の制御装
置。
5. A self-extinguishing element such as GTO,
In a control device for controlling a power system self-excited converter for converting alternating current to direct current or direct current to alternating current by a control output based on a current command value and a current signal of mainly a positive-phase component of an alternating current at an AC / DC interconnection point, A means for detecting a current flowing from the self-excited converter to the AC system, a means for detecting a negative-phase component included in the detected current, and a means for adding the negative-phase component to the current command value. A control device for a self-excited converter for a power system, characterized by suppressing an overcurrent due to a negative-sequence voltage.
【請求項6】 請求項5において、 検出された交流電流をdqの2軸に変換する手段、変換
された各電流の逆相成分を検出する手段、検出された各
逆相成分の電流信号をゲイン倍してd軸及びq軸各々の
電流指令値に加算する手段を設けたことを特徴とする電
力系統用自励式変換器の制御装置。
6. The method according to claim 5, wherein the means for converting the detected AC current into two axes of dq, a means for detecting a negative-phase component of each converted current, and a current signal of each of the detected negative-phase components. A control device for a power system self-excited converter, comprising means for multiplying a gain and adding the current command value to each of a d-axis and a q-axis.
【請求項7】 請求項5または6において、 前記逆相成分を検出する手段は、基本波の2倍周波数を
中心周波数に持つバンドパスフィルタから構成される電
力系統用自励式変換器の制御装置。
7. The control device for a power system self-excited converter according to claim 5, wherein the means for detecting the anti-phase component comprises a band-pass filter having a center frequency of twice a fundamental wave. .
【請求項8】 GTO等の自己消弧形素子で構成され、
交流を直流または直流を交流に変換する電力系統用自励
式変換器を、電圧指令値と交直連系点の交流電圧の主と
して正相成分の電圧信号に基づく制御出力によって制御
する制御装置において、 前記自励式変換器から交流系統に流れる電流を検出する
手段、検出された電流に含まれる逆相成分を検出する手
段、検出された逆相成分の電流値を電圧信号に変換する
手段、変換された逆相成分の電圧信号を前記正相成分の
電圧信号に加算する手段と、加算された電圧信号に基づ
いて前記制御出力を作成する手段を設け、交流系統故障
時等の逆相電圧による過電流を抑制することを特徴とす
る電力系統用自励式変換器の制御装置。
8. A self-extinguishing element such as GTO,
In a control device for controlling a self-excited converter for a power system that converts alternating current to direct current or direct current to alternating current by a control output based on a voltage command value and a voltage signal of mainly a positive-phase component of an AC voltage at an AC / DC interconnection point, Means for detecting a current flowing from the self-excited converter to the AC system, means for detecting a negative-phase component included in the detected current, means for converting a current value of the detected negative-phase component into a voltage signal, A means for adding the voltage signal of the negative phase component to the voltage signal of the positive phase component, and a means for generating the control output based on the added voltage signal; A control device for a self-excited converter for a power system, characterized in that the control is performed.
【請求項9】 請求項8において、 検出された交流電流をdqの2軸に変換する手段、変換
されたdq2軸の電流信号の各々の逆相成分を検出する
手段、検出された逆相電流信号を電圧信号に変換する手
段、変換された電圧信号をd軸及びq軸各々の制御信号
に加算する手段を設けたことを特徴とする電力系統用自
励式変換器の制御装置。
9. The means according to claim 8, wherein said means for converting the detected AC current into two axes of dq, means for detecting each of the negative-phase components of the converted dq-two-axis current signal, and the detected negative-phase current A control device for a power system self-excited converter, comprising: means for converting a signal into a voltage signal; and means for adding the converted voltage signal to each of the control signals for the d-axis and the q-axis.
【請求項10】 請求項8または9において、 前記逆相成分を検出する手段は、基本波の2倍周波数を
中心周波数に持つバンドパスフィルタから構成される電
力系統用自励式変換器の制御装置。
10. The control device for a power system self-excited converter according to claim 8, wherein the means for detecting the negative-phase component includes a band-pass filter having a center frequency twice the fundamental wave. .
JP9196987A 1997-07-23 1997-07-23 Controller of power system self-excited converter Pending JPH1141812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9196987A JPH1141812A (en) 1997-07-23 1997-07-23 Controller of power system self-excited converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9196987A JPH1141812A (en) 1997-07-23 1997-07-23 Controller of power system self-excited converter

Publications (1)

Publication Number Publication Date
JPH1141812A true JPH1141812A (en) 1999-02-12

Family

ID=16366954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9196987A Pending JPH1141812A (en) 1997-07-23 1997-07-23 Controller of power system self-excited converter

Country Status (1)

Country Link
JP (1) JPH1141812A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002027765A (en) * 2000-06-02 2002-01-25 Abb Ab Method for controlling voltage at substation facility and control system
JP2002034159A (en) * 2000-07-14 2002-01-31 Hitachi Ltd Method and device for controlling self-excited dc transmission system
US6407536B1 (en) 2001-05-23 2002-06-18 Mitsubishi Denki Kabushiki Kaisha Power conversion equipment and control device for the power conversion equipment
US7345379B2 (en) 2003-12-25 2008-03-18 Mitsubishi Denki Kabushiki Kaisha Power converter with voltage and current fault setting
JP2009225569A (en) * 2008-03-17 2009-10-01 Nissin Electric Co Ltd Power supply for arc discharge
KR101019683B1 (en) * 2008-12-05 2011-03-07 한국전력공사 Voltage-sourced HVDC system with modulation function
JP2011055571A (en) * 2009-08-31 2011-03-17 Hitachi Ltd Semiconductor power conversion device
JP2012159425A (en) * 2011-02-01 2012-08-23 Three M Innovative Properties Co Socket for ic device
JP2013083566A (en) * 2011-10-11 2013-05-09 Daihen Corp Unbalance rate detection device and unbalance rate detection method
JP2013085338A (en) * 2011-10-07 2013-05-09 Daihen Corp Phase adjusting device, system counter component generating device, system interconnection inverter system, and phase adjusting method
JP2013101016A (en) * 2011-11-08 2013-05-23 Daihen Corp Unbalance rate detection device and unbalance rate detection method
JP2013106368A (en) * 2011-11-10 2013-05-30 Toshiba Mitsubishi-Electric Industrial System Corp Power conversion device
CN104767217B (en) * 2014-09-25 2017-01-25 国家电网公司 Method for acquiring the reliability of direct-current power transmission system based on parameter matrix
WO2019106903A1 (en) * 2017-11-30 2019-06-06 株式会社 東芝 Voltage compensation device
JP2021027710A (en) * 2019-08-06 2021-02-22 株式会社日立製作所 Design method of current control system of self-excited power converter, control device of self-excited power converter, and self-excited power converter
JPWO2022153483A1 (en) * 2021-01-15 2022-07-21

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002027765A (en) * 2000-06-02 2002-01-25 Abb Ab Method for controlling voltage at substation facility and control system
JP4627385B2 (en) * 2000-06-02 2011-02-09 エービービー エービー Method and control system for voltage control in substation equipment
JP2002034159A (en) * 2000-07-14 2002-01-31 Hitachi Ltd Method and device for controlling self-excited dc transmission system
US6407536B1 (en) 2001-05-23 2002-06-18 Mitsubishi Denki Kabushiki Kaisha Power conversion equipment and control device for the power conversion equipment
JP2002354674A (en) * 2001-05-23 2002-12-06 Mitsubishi Electric Corp Control device for electric-power converter, and electric-power converter
JP4560993B2 (en) * 2001-05-23 2010-10-13 三菱電機株式会社 Power converter control device and power converter
US7345379B2 (en) 2003-12-25 2008-03-18 Mitsubishi Denki Kabushiki Kaisha Power converter with voltage and current fault setting
JP2009225569A (en) * 2008-03-17 2009-10-01 Nissin Electric Co Ltd Power supply for arc discharge
KR101019683B1 (en) * 2008-12-05 2011-03-07 한국전력공사 Voltage-sourced HVDC system with modulation function
JP2011055571A (en) * 2009-08-31 2011-03-17 Hitachi Ltd Semiconductor power conversion device
JP2012159425A (en) * 2011-02-01 2012-08-23 Three M Innovative Properties Co Socket for ic device
JP2013085338A (en) * 2011-10-07 2013-05-09 Daihen Corp Phase adjusting device, system counter component generating device, system interconnection inverter system, and phase adjusting method
JP2013083566A (en) * 2011-10-11 2013-05-09 Daihen Corp Unbalance rate detection device and unbalance rate detection method
JP2013101016A (en) * 2011-11-08 2013-05-23 Daihen Corp Unbalance rate detection device and unbalance rate detection method
JP2013106368A (en) * 2011-11-10 2013-05-30 Toshiba Mitsubishi-Electric Industrial System Corp Power conversion device
CN104767217B (en) * 2014-09-25 2017-01-25 国家电网公司 Method for acquiring the reliability of direct-current power transmission system based on parameter matrix
WO2019106903A1 (en) * 2017-11-30 2019-06-06 株式会社 東芝 Voltage compensation device
JPWO2019106903A1 (en) * 2017-11-30 2021-01-07 株式会社東芝 Voltage compensator
US11211876B2 (en) 2017-11-30 2021-12-28 Kabushiki Kaisha Toshiba Voltage compensation device
JP2021027710A (en) * 2019-08-06 2021-02-22 株式会社日立製作所 Design method of current control system of self-excited power converter, control device of self-excited power converter, and self-excited power converter
JPWO2022153483A1 (en) * 2021-01-15 2022-07-21
WO2022153483A1 (en) * 2021-01-15 2022-07-21 三菱電機株式会社 Power conversion device

Similar Documents

Publication Publication Date Title
JP3265398B2 (en) DC power transmission device control device
JP2679411B2 (en) Parallel operation control device for AC output converter
JPH1141812A (en) Controller of power system self-excited converter
KR100934311B1 (en) Inverter device
KR0139771B1 (en) Parallel running control apparatus for pwm inverter
JP2575500B2 (en) Three-phase converter
JP4560993B2 (en) Power converter control device and power converter
JP2005033895A (en) Power converter
JPH09233701A (en) Controller of active filter
JP2002238163A (en) Power converter
WO2023238386A1 (en) Power conversion device and control device
JP4373040B2 (en) Control device for self-excited converter for DC power transmission
JP3312178B2 (en) Control device for self-excited inverter
JPH07107744A (en) Power converter
JP2926931B2 (en) Harmonic suppression device
JPH06335252A (en) Method and equipment for controlling self-excited power converter
JP2000102168A (en) Active filter control method
EP3836331B1 (en) Power conversion device
JP3321248B2 (en) Fault current suppression device
JP7249471B1 (en) power converter
JP3322983B2 (en) Fault current suppression device
EP4318917A1 (en) Power conversion device and control device
JPH08111937A (en) General purpose compensating apparatus
JP3198212B2 (en) Hybrid phase control device and its control device
JPH11122931A (en) Method for controlling converter

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term