JPH0810599B2 - Method for manufacturing carbon electrode for fuel cell - Google Patents

Method for manufacturing carbon electrode for fuel cell

Info

Publication number
JPH0810599B2
JPH0810599B2 JP61197360A JP19736086A JPH0810599B2 JP H0810599 B2 JPH0810599 B2 JP H0810599B2 JP 61197360 A JP61197360 A JP 61197360A JP 19736086 A JP19736086 A JP 19736086A JP H0810599 B2 JPH0810599 B2 JP H0810599B2
Authority
JP
Japan
Prior art keywords
carbon
carbon electrode
fuel cell
molded body
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61197360A
Other languages
Japanese (ja)
Other versions
JPS6353855A (en
Inventor
陽一 尾形
征彦 中島
隆一 寺崎
新世 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP61197360A priority Critical patent/JPH0810599B2/en
Publication of JPS6353855A publication Critical patent/JPS6353855A/en
Publication of JPH0810599B2 publication Critical patent/JPH0810599B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、燃料電池に用いられる炭素電極の製造方法
に関する。
TECHNICAL FIELD The present invention relates to a method for producing a carbon electrode used in a fuel cell.

〔従来の技術とその問題点〕[Conventional technology and its problems]

従来の燃料電池に用いられている炭素電極はグラフア
イトあるいは炭素の粉末や繊維をバインダーと混練し、
この混合物を加熱成形した後燃成炭化したものが主であ
つた(例えば、時開昭61−83611、61−86411号公報)。
The carbon electrode used in conventional fuel cells is a mixture of graphite powder or carbon powder or fiber with a binder,
This mixture was mainly heat-molded and then combusted and carbonized (for example, Tokkai Sho 61-83611, 61-86411).

しかしながら、このような混合物焼結体からなる炭素
電極は細孔径にばらつきがあるため電気変換効率が悪
く、また、耐食性も十分ではなかつた。さらに、焼成炭
化の際に成形体の大きな収縮が起こるため、電極の寸法
精度も十分ではなかつた。本発明は上記のような欠点の
ない燃料電池用炭素電極の製造方法を提供することを目
的とする。
However, the carbon electrode made of such a mixture sintered body has poor pore size, so that the electric conversion efficiency is poor and the corrosion resistance is not sufficient. Furthermore, the dimensional accuracy of the electrodes was not sufficient because the molded body largely contracted during firing and carbonization. An object of the present invention is to provide a method for manufacturing a carbon electrode for a fuel cell, which does not have the above-mentioned drawbacks.

〔問題点を解決するための手段〕[Means for solving problems]

発明者らは検討を重ねた結果、炭素成形体の表面およ
び気孔の表面にガラス状の炭素を被覆したものが上記の
ような欠点のない優れた燃料電池用炭素電極となりうる
ことを見出した。すなわち、本発明は、炭素成形体の表
面および気孔の表面に有機高分子の熱分解生成物からな
る被覆を設けた燃料電池用炭素電極の製造方法である。
As a result of repeated studies by the inventors, the inventors have found that the surface of the carbon molded body and the surface of the pores coated with glassy carbon can be an excellent carbon electrode for a fuel cell without the above-mentioned drawbacks. That is, the present invention is a method for producing a carbon electrode for a fuel cell in which the surface of the carbon molded body and the surface of the pores are provided with a coating made of a thermal decomposition product of an organic polymer.

以下、本発明を詳しく説明する。本発明において炭素
成形体とは多孔質炭素材料を必要とする電極の形状に合
わせて成形加工したものである。多孔質炭素材料は常温
での引張り強さが50kg/cm2以上のものであり、開気孔率
は5〜70%のものが好ましく、より好ましくは30〜60%
である。
Hereinafter, the present invention will be described in detail. In the present invention, the carbon molded product is a product that is molded and processed according to the shape of the electrode that requires the porous carbon material. The tensile strength of the porous carbon material at room temperature is 50 kg / cm 2 or more, and the open porosity is preferably 5 to 70%, more preferably 30 to 60%.
Is.

有機高分子は特に限定はないが、炭素含有量が30重量
%以上のものが好ましく、特にポリ塩化ビニル、ポリビ
ニルアルコール、ポリ酢酸ビニルおよびアルキルフエノ
ール樹脂は炭素収率の点で好ましい。
The organic polymer is not particularly limited, but one having a carbon content of 30% by weight or more is preferable, and polyvinyl chloride, polyvinyl alcohol, polyvinyl acetate and an alkylphenol resin are particularly preferable in terms of carbon yield.

熱分解は真空中または不活性雰囲気中で温度200〜500
℃で行なうが、炭素含有量が50〜98重量%の範囲、好ま
しくは90〜95重量%になるように熱分解の温度、時間を
定める。得られたピツチ状の炭素前駆体(以下、これを
PCと略する)を溶媒に溶解して溶液とし、これを前記炭
素成形体表面に塗布する。
Pyrolysis in vacuum or in an inert atmosphere at a temperature of 200-500
The temperature and time for the thermal decomposition are determined so that the carbon content is in the range of 50 to 98% by weight, preferably 90 to 95% by weight. The obtained pitch-like carbon precursor (hereinafter referred to as
(Abbreviated as PC) is dissolved in a solvent to form a solution, which is applied to the surface of the carbon molded body.

前記溶媒はトリクレン、クロロセン等の脂肪族塩素系
のもの、あるいはベンゼン、トルエン等の芳香族系のも
のが溶解性の点で好ましい。溶解濃度は100〜1000g/
が適当である。とくに、炭素電極の強度を高めたい場合
には、前記溶液にPCを800℃程度で不活性雰囲気中で炭
化したものを平均粒径が0.1〜50μmになるように粉砕
した炭素粉末が添加してもよい。
The solvent is preferably an aliphatic chlorine-based solvent such as trichlene or chlorocene or an aromatic chlorine-based solvent such as benzene or toluene in terms of solubility. Dissolved concentration is 100-1000g /
Is appropriate. In particular, when it is desired to increase the strength of the carbon electrode, carbon powder that is obtained by carbonizing PC in an inert atmosphere at about 800 ° C. and crushed to an average particle size of 0.1 to 50 μm is added to the solution. Good.

このようにPCの被膜を設けた炭素成形体を不活性ガス
または真空中で加熱することによつてPCを炭化する。炭
化する際の昇温速度は300〜550℃を特に注意して1℃/m
in程度にするが、それ以外の領域は15℃/min程度でよ
い。最終焼成温度は、600℃以上であればよいが、炭素
電極の使用温度より約100℃以上高くすことが好まし
い。最終焼成温度で1〜10時間維持することによつて炭
素電極が完成する。
PC is carbonized by heating the carbon molded body thus coated with PC in an inert gas or vacuum. Pay particular attention to the temperature rising rate during carbonization of 300 to 550 ℃, 1 ℃ / m
Although it is set to about in, about 15 ° C./min is sufficient for other regions. The final firing temperature may be 600 ° C. or higher, but it is preferably higher than the use temperature of the carbon electrode by about 100 ° C. or higher. The carbon electrode is completed by maintaining the final firing temperature for 1 to 10 hours.

なお、前記炭化処理を行なう前に、空気中で100〜350
℃の温度で10時間程度加熱すると、PCが適度に酸化され
て架橋化が起つて緻密になるため、炭化処理中の炭素分
の揮散損失がなくなり、また、完成した炭素電極にクラ
ツクが入るおそれも少なくなる。
In addition, before performing the carbonization treatment, 100 to 350 in air.
When heated at a temperature of ℃ for about 10 hours, PC is appropriately oxidized and cross-linking occurs to make it dense, so there is no volatilization loss of carbon content during carbonization treatment, and there is a risk that cracking will occur in the completed carbon electrode. Also less.

以下、実施例により本発明を具体的に説明する。 Hereinafter, the present invention will be specifically described with reference to examples.

〔実施例〕〔Example〕

実施例1〜3 炭素成形体は、気孔率55%、45%および35%の3種類
の炭素材を長さ30mm、幅15mm、厚さ4.0mmに切出したも
のを用いた。
Examples 1 to 3 As the carbon molded body, those obtained by cutting out three kinds of carbon materials having porosities of 55%, 45% and 35% into a length of 30 mm, a width of 15 mm and a thickness of 4.0 mm were used.

有機高分子は塩化ビニル樹脂(電気化学工業(株)商
品明SS−110)を用いた。前記塩化ビニル樹脂をアルゴ
ンガス中、390℃の温度で90分加熱焼成することによりP
Cを得た。
As the organic polymer, vinyl chloride resin (Denki Kagaku Kogyo KK product Ming SS-110) was used. By heating and baking the vinyl chloride resin in argon gas at a temperature of 390 ° C. for 90 minutes, P
Got C.

つぎに、PCのトリクレンに500g/の濃度で溶解し、
この溶液中に上記炭素成形体を浸漬し、超音波含浸する
ことによりPCを塗布した。これらPCを塗布された成形体
を焼成炉に入れ、空気雰囲気中250℃で10時間の不融化
処理を行なつたのち、アルゴンガスで置換し、300℃ま
では5℃/min、300〜550℃は1℃/min、550〜1000℃は1
0℃/minで昇温し、1000℃で2時間保持して炭化させ、
炭素電極の試験片を得た。
Next, dissolve it in trichlene of PC at a concentration of 500 g /
The carbon molded body was dipped in this solution and impregnated with ultrasonic waves to apply PC. The molded body coated with these PCs is placed in a firing furnace, subjected to infusibilization treatment at 250 ° C for 10 hours in an air atmosphere, and then replaced with argon gas, 5 ° C / min up to 300 ° C, 300 to 550 ℃ is 1 ℃ / min, 550 ~ 1000 ℃ is 1
Increase the temperature at 0 ° C / min, hold at 1000 ° C for 2 hours to carbonize,
A carbon electrode test piece was obtained.

得られた試験片の平均細孔径、細孔径の標準偏差、電
気抵抗および焼成前後の厚み変化を下記の方法で測定し
た。また、下記の方法で耐薬品性試験を行なつた。
The average pore diameter, the standard deviation of the pore diameter, the electric resistance, and the thickness change before and after firing of the obtained test piece were measured by the following methods. In addition, a chemical resistance test was conducted by the following method.

平均細孔径、細孔径の標準偏差の測定…Carlo Erba製
水銀ポロシメーターを測定した。
Measurement of average pore diameter and standard deviation of pore diameter ... A mercury porosimeter manufactured by Carlo Erba was measured.

電気抵抗測定…JIS R7202に準じて四探針法で測定し
た。
Electrical resistance measurement: Measured by the four-point probe method according to JIS R7202.

焼成前後の厚み変化の測定…焼成前の焼成後に炭素電
極の厚さをノギスを用いて0.05mmの精度で測定し、焼成
前の厚さ/焼成後の厚さの比を厚み比とした。
Measurement of thickness change before and after firing ... After firing before firing, the thickness of the carbon electrode was measured with a caliper with an accuracy of 0.05 mm, and the ratio of thickness before firing / thickness after firing was taken as the thickness ratio.

耐薬品性試験…表に示した薬品中に240時間浸し、試
料の重量変化を測定した。
Chemical resistance test: The sample was immersed in the chemicals shown in the table for 240 hours, and the weight change of the sample was measured.

上記測定結果は表1および表2に示すとおりである。
これらの値は炭素電極として優れた特性のものである。
The measurement results are shown in Tables 1 and 2.
These values have excellent characteristics as a carbon electrode.

比較例 フエノール・ホルムアルデヒド樹脂50部(重量単位、
以下同じ)、黒鉛粉末20部、セルロース20部およびフエ
ノール樹脂液50部とを混練し、ロール圧延機を用いて厚
さ7mmの板を成形した。次いで、この圧延板を120℃で10
時間の加熱により硬化させたのち、アルゴン雰囲気中55
0℃まで5℃/hrで、さらに1000℃まで2℃/minの昇温速
度で加熱し、1000℃で2時間保持して厚さ約4mmの多孔
質炭素板を得た。得られた炭素板より試験片を作成し
た。
Comparative Example 50 parts phenol / formaldehyde resin (weight unit,
The same shall apply hereinafter), 20 parts of graphite powder, 20 parts of cellulose and 50 parts of a phenol resin solution were kneaded, and a plate having a thickness of 7 mm was formed using a roll rolling machine. Then, this rolled plate was heated at 120 ° C for 10
After curing by heating for an hour, 55 in an argon atmosphere
It was heated to 0 ° C. at 5 ° C./hr, and further heated to 1000 ° C. at a heating rate of 2 ° C./min, and kept at 1000 ° C. for 2 hours to obtain a porous carbon plate having a thickness of about 4 mm. A test piece was prepared from the obtained carbon plate.

実施例1〜3と同じ方法で平均細孔径、細孔径の標準
偏差、電気抵抗および焼成前後の厚み変化を測定した。
The average pore diameter, the standard deviation of the pore diameter, the electrical resistance, and the change in thickness before and after firing were measured by the same methods as in Examples 1 to 3.

これらの結果は表1に示すとおり、実施例1〜3に比
べて、細孔径の標準偏差が大きく、電気抵抗が大きく、
そして焼成前後の厚み比が大きかつた。また表2に示す
とおり、耐薬品性試験の結果、実施例1〜3に比べて重
量の変動が大きかつた。
As shown in Table 1, these results show that the standard deviation of the pore size is large and the electric resistance is large as compared with Examples 1 to 3,
The thickness ratio before and after firing was large. Further, as shown in Table 2, as a result of the chemical resistance test, the variation in weight was large as compared with Examples 1 to 3.

〔発明の効果〕 本発明の製造方法によれば、均一の細孔径を有し、電
気抵抗が小さく、また、寸法精度が高く、さらに耐食性
が優れた燃料電池用炭素電極を製造することができ産業
上極めて有用である。
[Effects of the Invention] According to the production method of the present invention, it is possible to produce a carbon electrode for a fuel cell having a uniform pore size, a low electric resistance, a high dimensional accuracy, and further excellent corrosion resistance. It is extremely useful in industry.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭55−21419(JP,A) 特開 昭49−104143(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-55-21419 (JP, A) JP-A-49-104143 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】有機高分子を熱分解してピッチ状の炭素前
駆体とし、これを溶媒に溶かして溶液としたものを多孔
質炭素成形体に含浸し、その後前記成形体を加熱して前
記炭素前駆体を炭化する燃料電池用炭素電極の製造方
法。
1. An organic polymer is thermally decomposed to form a pitch-like carbon precursor, which is dissolved in a solvent to form a solution, which is impregnated into a porous carbon molded body, and then the molded body is heated to obtain the above-mentioned material. A method for producing a carbon electrode for a fuel cell, which comprises carbonizing a carbon precursor.
JP61197360A 1986-08-25 1986-08-25 Method for manufacturing carbon electrode for fuel cell Expired - Lifetime JPH0810599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61197360A JPH0810599B2 (en) 1986-08-25 1986-08-25 Method for manufacturing carbon electrode for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61197360A JPH0810599B2 (en) 1986-08-25 1986-08-25 Method for manufacturing carbon electrode for fuel cell

Publications (2)

Publication Number Publication Date
JPS6353855A JPS6353855A (en) 1988-03-08
JPH0810599B2 true JPH0810599B2 (en) 1996-01-31

Family

ID=16373192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61197360A Expired - Lifetime JPH0810599B2 (en) 1986-08-25 1986-08-25 Method for manufacturing carbon electrode for fuel cell

Country Status (1)

Country Link
JP (1) JPH0810599B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120094825A1 (en) * 2009-06-26 2012-04-19 Sumitomo Chemical Company, Limited Method for producing electrode catalyst

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49104143A (en) * 1973-01-22 1974-10-02
JPS5521419A (en) * 1978-07-29 1980-02-15 Koa Sekiyu Kk Pitch composition for impregnation

Also Published As

Publication number Publication date
JPS6353855A (en) 1988-03-08

Similar Documents

Publication Publication Date Title
US3856574A (en) Electrode and method of manufacture
US4506028A (en) Process for preparing a fuel cell electrode substrate comprising carbon fibers
JP4979276B2 (en) Method for producing mesoporous carbon containing heteroatoms
GB2095656A (en) Shaped articles of porous carbon
US4582632A (en) Non-permeable carbonaceous formed bodies and method for producing same
CA1047717A (en) Method for the production of porous carbon sheet
JP2005524766A (en) Method for producing porous titanium material article
JP3142587B2 (en) Carbonaceous composition, carbon material for fuel cell and method for producing the same
KR20090055299A (en) Carbonaceous material and method of preparing same
JPH0810599B2 (en) Method for manufacturing carbon electrode for fuel cell
JPS644962B2 (en)
JPS63222080A (en) Manufacture of carbon fiber porous body
JPH11147707A (en) Activated carbon honeycomb structure and its production
US3212937A (en) Method of preparing a fuel cell electrode
US5026402A (en) Method of making a final cell electrode assembly substrate
JPH0718013B2 (en) Method for producing glassy carbon coating
KR20190111394A (en) Mesoporous carbon materials and method for preparing the same
JPS62292611A (en) Production of glassy carbon film
EP0328135A2 (en) Corrosion Resistant Fuel Cell Substrates
JPH0517260A (en) Production of carbonaceous porous body
JP2593108B2 (en) Carbon jig for glass molding
US4728535A (en) Method of manufacturing thin carbon products
JPS6090805A (en) Manufacture of impermeable molded carbon body
JP3233922B2 (en) Method for producing honeycomb-shaped activated carbon
JPH0859360A (en) Production of porous carbon material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term