JPH08100328A - Production of carbon fiber by vapor phase growth - Google Patents

Production of carbon fiber by vapor phase growth

Info

Publication number
JPH08100328A
JPH08100328A JP6259030A JP25903094A JPH08100328A JP H08100328 A JPH08100328 A JP H08100328A JP 6259030 A JP6259030 A JP 6259030A JP 25903094 A JP25903094 A JP 25903094A JP H08100328 A JPH08100328 A JP H08100328A
Authority
JP
Japan
Prior art keywords
carbon fiber
vapor
gas
grown carbon
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6259030A
Other languages
Japanese (ja)
Other versions
JP3285284B2 (en
Inventor
Fumio Kishi
文夫 岸
Akiyoshi Ishizaki
明美 石崎
Kazuhiro Takada
一広 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP25903094A priority Critical patent/JP3285284B2/en
Publication of JPH08100328A publication Critical patent/JPH08100328A/en
Application granted granted Critical
Publication of JP3285284B2 publication Critical patent/JP3285284B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To obtain the subject carbon fiber without necessitating a high- temperature process and particular safety measures by thermally decomposing a hydrocarbon gas with a substrate having catalyst particles dispersed on a heat-resistant substrate. CONSTITUTION: A substrate holding catalyst particles such as fine particles of metallic Pd dispersed on a heat-resistant substrate is exposed to a hydrocarbon gas (preferably C2 H4 ) diluted with an inert gas and heat-treated to effect the thermal decomposition of the hydrocarbon gas and the vapor-phase growth of carbon fiber. An electronic element, etc., holding the vapor-phase grown carbon fiber as quantum fine line can be produced by forming a proper pattern of the catalyst particles by screen printing, etc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、気相成長炭素繊維の製
造方法、特に生産技術上、より容易な工程を用い、かつ
大量生産可能な気相成長炭素繊維の製造方法を提供する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention provides a method for producing a vapor-grown carbon fiber, particularly a method for producing a vapor-grown carbon fiber which can be mass-produced by using an easier process in terms of production technology. is there.

【0002】[0002]

【従来の技術】従来、炭素原子60個から構成され、サ
ッカーボール状の構造をもつC60の大量合成法が報告
(Kratschmer,et.al.:Nature
347(1990)354)されて以来、炭素のクラ
スターであるフラーレンの一族や、これを一方向に引き
伸ばした構造を持つカーボンナノチューブの様々な性質
に興味がもたれ、数多くの研究が行われている。
2. Description of the Related Art Heretofore, there has been reported a large-scale synthesis method of C60, which is composed of 60 carbon atoms and has a soccer ball-like structure (Kratschmer, et.
Since 347 (1990) 354), a lot of researches have been conducted with interest in various properties of a family of fullerenes, which are clusters of carbon, and carbon nanotubes having a structure in which they are stretched in one direction.

【0003】とりわけ、アルカリ金属原子をドープした
C60の結晶が高い臨界温度をもつ超伝導性を示すこと
は注目を集めた。このほかにも、これら炭素クラスター
は新規な電子素子や、固体潤滑材などとしての応用が期
待されており、様々な観点からの応用を目指して、旺盛
な研究が進められている。
In particular, it has been noted that C60 crystals doped with alkali metal atoms exhibit superconductivity with a high critical temperature. In addition to these, these carbon clusters are expected to be applied as novel electronic devices and solid lubricants, and vigorous research is being conducted with the aim of application from various viewpoints.

【0004】気相成長炭素繊維は、カーボンナノチュー
ブよりやや大きなクラスターであるが、炭化水素樹脂繊
維を高温で炭化した炭素繊維と比較して、良好な結晶性
をもち、特徴ある用途が期待されている。
Vapor grown carbon fibers are clusters slightly larger than carbon nanotubes, but have better crystallinity than carbon fibers obtained by carbonizing hydrocarbon resin fibers at high temperatures, and are expected to have distinctive uses. There is.

【0005】現在、この気相成長炭素繊維を製造する代
表的な方法はベンゼンの熱分解による気相成長法であ
る。この方法は、酸化鉄などの鉄化合物を基板とし、9
50〜1000℃程度で、高純度の水素をキャリアガス
としたベンゼンの蒸気に接触させる。まず、基板の一部
が還元されFe微粒子を形成する。この微粒子表面の触
媒能により、表面に炭素が析出しはじめる。この炭素が
Fe微粒子の後方に繊維状に成長し、微粒子を持ち上げ
ながら成長を続ける。
At present, a typical method for producing the vapor grown carbon fiber is a vapor growth method by thermal decomposition of benzene. This method uses an iron compound such as iron oxide as a substrate, and
At about 50 to 1000 ° C., high-purity hydrogen is brought into contact with benzene vapor using carrier gas. First, a part of the substrate is reduced to form Fe fine particles. Due to the catalytic ability of the surface of the fine particles, carbon begins to precipitate on the surface. This carbon grows in a fibrous shape behind the Fe particles and continues to grow while lifting the particles.

【0006】この方法では、Fe微粒子の存在が不可欠
であり、また金属Fe微粒子を基板に噴霧したものを用
いる方法も行われている。(稲垣道夫:「炭素材料工
学」72頁、日刊工業新聞社発行 1985年)
In this method, the presence of Fe fine particles is indispensable, and a method in which metal Fe fine particles are sprayed on a substrate is also used. (Michio Inagaki: "Carbon Material Engineering" p. 72, published by Nikkan Kogyo Shimbun, 1985)

【0007】[0007]

【発明が解決しようとする課題】上記の方法は、工業的
に利用可能ではあるが、いくつかの問題点がある。第1
に、工程中に、1000℃程度の高温のプロセスが必要
であり、装置が大掛かりになり、電力の消費が大きいな
どコスト上昇を招く恐れがある。第2に、高純度の水素
を用いるため、爆発事故防止の対策が必要となる。とり
わけ上記の高温のプロセスに用いることから、特に厳重
な対策が求められ、これもコスト上昇の要因となる恐れ
がある。
Although the above method is industrially applicable, there are some problems. First
In addition, during the process, a high temperature process of about 1000 ° C. is required, the size of the device becomes large, and power consumption is large, which may lead to cost increase. Secondly, since high-purity hydrogen is used, it is necessary to take measures to prevent an explosion accident. In particular, since it is used in the above-mentioned high temperature process, particularly strict measures are required, which may cause a cost increase.

【0008】また、基板にFeの微粒子を噴霧したもの
を用いる方法は、収量も多くすることが可能で、工業的
には好ましいが、金属Feの微粒子は反応性が高く、大
気中で扱うことは出来ない。また、粉塵爆発の危険も無
視できず、やはり対策が必要である。
Further, the method of using a substrate in which fine particles of Fe are sprayed can increase the yield and is industrially preferable, but fine particles of metallic Fe are highly reactive and should be handled in the atmosphere. I can't. Also, the danger of dust explosion cannot be ignored, and countermeasures are still needed.

【0009】一方、気相成長法には、COを熱分解する
方法もあるが、COは爆発性のほかに、極めて強い毒性
があり、許容濃度は50ppmと非常に厳しいものであ
って、安全対策がコスト上昇要因になることは明白であ
る。
On the other hand, although there is also a method of thermally decomposing CO in the vapor phase growth method, CO is not only explosive but also has extremely strong toxicity, and its permissible concentration is 50 ppm, which is very strict and therefore safe. It is clear that the measures will increase the cost.

【0010】したがった、工業的生産に適し、低温のプ
ロセスで、安全対策が容易で、大気中で扱えるプロセス
によって構成された気相成長炭素繊維の製造方法が求め
られている。
Therefore, there is a demand for a method for producing a vapor-grown carbon fiber which is suitable for industrial production, has a low temperature process, is easy to take safety measures, and can be handled in the atmosphere.

【0011】本発明は、これらの問題点を解決する新規
の製造方法を検討した結果到達したものであり、炭化水
素ガスの熱分解によって炭素を気相成長することによ
り、工業的生産に適用可能で、高温のプロセスや、特別
な安全対策など困難なプロセスを必要としない気相成長
炭素繊維の製造方法を提供することを目的とするもので
ある。
The present invention has been achieved as a result of studying a new production method for solving these problems, and is applicable to industrial production by vapor-depositing carbon by thermal decomposition of hydrocarbon gas. It is an object of the present invention to provide a method for producing a vapor grown carbon fiber which does not require a high temperature process or a difficult process such as a special safety measure.

【0012】[0012]

【課題を解決するための手段】即ち、本発明は、耐熱性
の基体上に触媒微粒子を分散してなる基板を不活性ガス
で希釈した炭化水素ガスに曝露して熱処理し、炭化水素
ガスの熱分解を行う工程を有することを特徴とする気相
成長炭素繊維の製造方法である。
That is, according to the present invention, a substrate formed by dispersing catalyst fine particles on a heat-resistant substrate is exposed to a hydrocarbon gas diluted with an inert gas and heat-treated to obtain a hydrocarbon gas. A method for producing a vapor-grown carbon fiber, comprising a step of performing thermal decomposition.

【0013】以下、本発明を詳細に説明する。本発明
は、炭化水素ガスの熱分解によって気相成長炭素繊維を
得る方法である。炭化水素ガスは可燃性であるが、不活
性ガスで希釈することにより安全に取り扱うことが出
来、特別な防爆設備を必要としない。また、毒性は、ガ
ス種により異なるが、普通深刻な危険性はなく、希釈さ
れた状態では、酸欠防止のため十分な換気を行うことで
十分である。
Hereinafter, the present invention will be described in detail. The present invention is a method for obtaining vapor-grown carbon fibers by thermal decomposition of hydrocarbon gas. Although hydrocarbon gas is flammable, it can be safely handled by diluting it with an inert gas and does not require special explosion-proof equipment. In addition, toxicity varies depending on the type of gas, but there is usually no serious danger, and sufficient ventilation in the diluted state is sufficient to prevent oxygen deficiency.

【0014】基板としては、耐熱性の基体上に触媒微粒
子を分散してなる基板を用いる。触媒微粒子としては、
金属Pd微粒子を分散配置したものが好ましい。Pd表
面は、炭化水素の分解反応に顕著な触媒能を有し、低温
での反応が可能である。また、後述するように、微粒子
の形成工程は非常に容易に実現できる。
As the substrate, a substrate obtained by dispersing catalyst fine particles on a heat resistant substrate is used. As catalyst fine particles,
It is preferable that the metal Pd fine particles are dispersed and arranged. The Pd surface has a remarkable catalytic ability for the decomposition reaction of hydrocarbons and can be reacted at a low temperature. Further, as will be described later, the step of forming fine particles can be realized very easily.

【0015】また、基板上に金属Pd微粒子を形成する
方法は、絶縁性基体に有機Pd錯体溶液を塗布する工程
と、該有機Pd錯体溶液を塗布した基体を大気中または
酸化雰囲気中で熱処理しPdOとする工程と、該PdO
を不活性ガスで希釈した還元性ガス中で熱処理して金属
Pdとする工程を有する方法により行なうことができ
る。
Further, the method of forming fine metal Pd particles on a substrate is performed by applying an organic Pd complex solution to an insulating substrate, and heat treating the substrate coated with the organic Pd complex solution in air or in an oxidizing atmosphere. PdO process and the PdO
Can be carried out by a method having a step of heat-treating in a reducing gas diluted with an inert gas to form metal Pd.

【0016】絶縁性基体に塗布する有機Pd錯体溶液と
しては、例えば酢酸Pdのアミン錯体を酢酸ブチルに溶
かした溶液が挙げられる。
Examples of the organic Pd complex solution applied to the insulating substrate include a solution in which an amine complex of Pd acetate is dissolved in butyl acetate.

【0017】前記PdOを不活性ガスで希釈した還元性
ガスで熱処理する工程において、該還元性ガスとして
は、H2 ガス、COガス、C24ガス等が挙げられる
が、その中でH2 ガスが好ましい。還元性ガスの濃度
は、該ガス種の爆発範囲下限未満、H2ガスの場合4v
ol%未満、特に1〜3vol%が好ましい。
In the step of heat-treating the PdO with a reducing gas diluted with an inert gas, examples of the reducing gas include H 2 gas, CO gas, C 2 H 4 gas, and the like. 2 gases are preferred. The concentration of the reducing gas is less than the lower limit of the explosive range of the gas species, 4 v in the case of H 2 gas
It is preferably less than ol%, particularly preferably 1 to 3 vol%.

【0018】また、PdOを不活性ガスで希釈した還元
性ガスで熱処理して金属Pdとする工程において、該還
元性ガスとして炭化水素ガスを用いることができる。こ
の炭化水素ガスは気相成長炭素繊維の製造方法に用いる
ものと同一の炭化水素ガスを用いると、PdOの金属P
dへの還元反応と炭素繊維の気相成長を同時に行うこと
ができるので好ましい。
Further, in the step of heat-treating PdO with a reducing gas diluted with an inert gas to form metal Pd, a hydrocarbon gas can be used as the reducing gas. If the same hydrocarbon gas as that used in the method for producing the vapor-grown carbon fiber is used as the hydrocarbon gas, the PdO metal P
It is preferable because the reduction reaction to d and the vapor growth of the carbon fiber can be performed at the same time.

【0019】また本発明において、不活性ガスで希釈し
た炭化水素ガスを用いる還元及び熱分解の工程におい
て、炭化水素ガスとしては、例えばC24 、C36
26、CH4等が挙げられ、特にC24 が好まし
い。また、不活性ガスで希釈した炭化水素ガスの濃度
は、該ガス種の爆発範囲下限未満、C24ガスの場合通
常は2.7vol%未満であり、好ましくは0.1〜2
vol%が望ましい。2.7vol%を越えると、防爆
のための処置が必要で好ましくない。
In the present invention, in the steps of reduction and thermal decomposition using a hydrocarbon gas diluted with an inert gas, the hydrocarbon gas may be, for example, C 2 H 4 , C 3 H 6 ,
Examples thereof include C 2 H 6 and CH 4 , and C 2 H 4 is particularly preferable. The concentration of the hydrocarbon gas diluted with an inert gas is less than the lower limit of the explosion range of the gas species, and is usually less than 2.7 vol% in the case of C 2 H 4 gas, preferably 0.1 to 2
vol% is desirable. If it exceeds 2.7 vol%, it is not preferable because measures for explosion protection are required.

【0020】不活性ガスとしては、特に制限することな
ないが、例えば窒素ガス、ヘリウムガス、アルゴンガス
が用いられる。
The inert gas is not particularly limited, but for example, nitrogen gas, helium gas, or argon gas is used.

【0021】また、炭化水素ガスの熱分解工程の熱処理
温度は、450℃以上、好ましくは500〜900℃が
望ましい。450℃未満では、Pd微粒子表面での熱分
解が生じなくなるので好ましくない。
Further, the heat treatment temperature in the pyrolysis step of hydrocarbon gas is 450 ° C. or higher, preferably 500 to 900 ° C. If the temperature is lower than 450 ° C, thermal decomposition does not occur on the surface of the Pd fine particles, which is not preferable.

【0022】[0022]

【実施例】以下実施例に基づき本発明を説明する。The present invention will be described based on the following examples.

【0023】実施例1 表面酸化膜を形成したシリコン基板を有機溶剤で洗浄し
た後、有機Pd錯体溶液をスピンナーコートした。有機
Pd錯体溶液は、奥野製薬(株)製:ccp4230を
酢酸ブチルで5倍に希釈したものを用いた。スピンナー
コートの条件は、800rpm、30秒である。
Example 1 A silicon substrate having a surface oxide film formed thereon was washed with an organic solvent and then spin-coated with an organic Pd complex solution. The organic Pd complex solution used was a product of Okuno Seiyaku Co., Ltd .: ccp4230 diluted 5 times with butyl acetate. The spinner coat conditions are 800 rpm and 30 seconds.

【0024】これを大気中で、300℃で12分間熱処
理した。同じ条件で作製した試料をX線回折で調べたと
ころ、酸化Pd(PdO)になっており、他の相は存在
しなかった。
This was heat-treated in air at 300 ° C. for 12 minutes. When the sample produced under the same conditions was examined by X-ray diffraction, it was found to be oxidized Pd (PdO), and no other phase was present.

【0025】続いて、N2 (98vol%)+H2 (2
vol%)の混合ガス気流中で、185℃、10分間の
熱処理を行った。これを、走査電子顕微鏡で観察したと
ころ、シリコン基板上にφ5nm程度の微粒子が分散し
ていることが確かめられた。同じ条件で作製した試料の
X線回折によると、金属Pdに変化しており、他の相は
見られなかった。
Then, N 2 (98 vol%) + H 2 (2
(vol%) in a mixed gas flow, heat treatment was performed at 185 ° C. for 10 minutes. Observation with a scanning electron microscope confirmed that fine particles of about φ5 nm were dispersed on the silicon substrate. According to the X-ray diffraction of the sample produced under the same conditions, it was changed to metallic Pd, and no other phase was observed.

【0026】続いて、Ar(99vol%)+C24
(1vol%)の混合ガスと、N2を1:9で混合した
(したがって、C24 :0.1vol%)気流中で、
700℃、10分間の熱処理を行った。
Subsequently, Ar (99 vol%) + C 2 H 4
(1 vol%) mixed gas and N 2 were mixed at 1: 9 (hence, C 2 H 4 : 0.1 vol%) in an air stream,
Heat treatment was performed at 700 ° C. for 10 minutes.

【0027】これを走査電子顕微鏡で観察したところ、
図1の走査電子顕微鏡写真(倍率×100,000)に
示すように、φ10nm程度の繊維状のものが形成され
ていることがわかった。ラマン分光分析、およびX線光
電子分光分析(XPS)の結果から、これが炭素である
ことが確認された。
When this was observed with a scanning electron microscope,
As shown in the scanning electron micrograph (magnification × 100,000) of FIG. 1, it was found that a fibrous substance having a diameter of about 10 nm was formed. From the results of Raman spectroscopy and X-ray photoelectron spectroscopy (XPS), it was confirmed that this was carbon.

【0028】目視では、基板上に黒色の粉体が堆積して
いるように見え、刷毛で軽く擦ると容易に剥離する。剥
離した粉体を集め、透過電子顕微鏡で観察したところ、
図2の透過電子顕微鏡写真(倍率×2,000,00
0)に示す様に、気相成長炭素繊維に特徴的な外周部の
格子像が見られた。また、中心部には格子像が見えない
ことから内部は中空になっていると思われる。
Visually, it seems that black powder is deposited on the substrate, and it is easily peeled off when lightly rubbed with a brush. When the separated powders were collected and observed with a transmission electron microscope,
Transmission electron micrograph of Fig. 2 (magnification x 2,000,00
As shown in 0), a lattice image of the outer peripheral portion characteristic of the vapor grown carbon fiber was observed. In addition, since the lattice image is not visible in the center, it seems that the inside is hollow.

【0029】実施例2 実施例1と同様に、表面酸化膜を有するシリコン基板に
有機Pd錯体溶液をスピンナーコートし、300℃の熱
処理によりPdOを形成した後、25℃で60分間N2
(98vol%)+H2 (2vol%)混合ガス気流に
曝露した。これを走査電子顕微鏡で観察したところ、形
がやや不規則であるが、実施例1と同様に微粒子が形成
されていることがわかった。X線回折により、金属Pd
になっていることも確認された。
Example 2 As in Example 1, a silicon substrate having a surface oxide film was spinner-coated with an organic Pd complex solution and heat treated at 300 ° C. to form PdO, and then N 2 at 25 ° C. for 60 minutes.
It was exposed to a mixed gas flow of (98 vol%) + H 2 ( 2 vol%). When this was observed with a scanning electron microscope, it was found that fine particles were formed as in Example 1, although the shape was somewhat irregular. Metal Pd by X-ray diffraction
It was also confirmed that it became.

【0030】これを実施例1と同様に、C24 :0.
1vol%気流中で700℃、10分間の熱処理を行っ
た。これを走査電子顕微鏡により観察したところ、実施
例1と同様にφ10nm程度の気相成長炭素繊維が形成
されていた。
In the same manner as in Example 1, C 2 H 4 : 0.
Heat treatment was performed at 700 ° C. for 10 minutes in a 1 vol% air flow. Observation with a scanning electron microscope revealed that vapor-grown carbon fibers with a diameter of about 10 nm were formed as in Example 1.

【0031】実施例3 実施例1と同様に、表面酸化膜を形成したシリコン基板
上に、Pd微粒子の分散膜を形成し、これをC24
0.1vol%気流中で450℃、10分間の熱処理を
行った。これを走査電子顕微鏡で観察したところ、φ7
nm程度のチューブが形成されていた。ラマン分光分析
によりこれが炭素であることが確認された。
Example 3 In the same manner as in Example 1, a dispersion film of Pd fine particles was formed on a silicon substrate having a surface oxide film formed thereon, and C 2 H 4 :
Heat treatment was performed at 450 ° C. for 10 minutes in a 0.1 vol% air flow. Observation of this with a scanning electron microscope revealed that
A tube of about nm was formed. Raman spectroscopy confirmed that this was carbon.

【0032】実施例4 実施例1と同様に、表面酸化膜を形成したシリコン基板
上に、PdO膜を形成した後、N2 −H2 気流中で還元
する工程を省いて、C24 :0.1vol%気流中で
700℃、10分間の熱処理を行った。これをラマン分
光分析、走査電子顕微鏡観察により調べたところ、実施
例1と同様の結果が得られた。
Example 4 In the same manner as in Example 1, after the PdO film was formed on the silicon substrate on which the surface oxide film was formed, the step of reducing in a N 2 —H 2 stream was omitted and C 2 H 4 was used. : Heat treatment was performed at 700 ° C. for 10 minutes in a 0.1 vol% air flow. When this was examined by Raman spectroscopic analysis and scanning electron microscope observation, the same results as in Example 1 were obtained.

【0033】比較例1 実施例1と同様に、表面酸化膜を形成したシリコン基板
上に、Pd微粒子の分散膜を形成し、これをC24
0.1vol%気流中で、400℃、10分間の熱処理
を行った。これをラマン分光分析により調べたところ、
炭素の信号は、通常大気中に放置した際に生ずる汚染に
よるもの程度の大きさで、熱分解による炭素は形成され
ていないことがわかった。
[0033] Similarly to Comparative Example 1 Example 1, on a silicon substrate to form a surface oxide film, to form a dispersion film of Pd fine particles, which C 2 H 4:
Heat treatment was performed at 400 ° C. for 10 minutes in a 0.1 vol% air flow. When this was examined by Raman spectroscopy,
It was found that the signal of carbon is as large as that due to the pollution that normally occurs when it is left in the atmosphere, and that carbon by thermal decomposition is not formed.

【0034】比較例2 石英基板を中性洗剤と有機溶剤により洗浄し、真空蒸着
法により、厚さ300nmのPd薄膜を成膜した。これ
をC24 :0.1vol%気流中で、700℃、10
分間の熱処理を行った。ラマン分光分析の結果、炭素が
堆積していることがわかった。しかし走査電子顕微鏡観
察により、気相成長炭素繊維は形成されておらず、網目
状に切れ目の入った炭素の膜が形成されていることが判
明した。
Comparative Example 2 A quartz substrate was washed with a neutral detergent and an organic solvent, and a Pd thin film having a thickness of 300 nm was formed by a vacuum evaporation method. This was heated at 700 ° C. for 10 hours in a C 2 H 4 : 0.1 vol% air flow.
Heat treatment was performed for 1 minute. As a result of Raman spectroscopic analysis, it was found that carbon was deposited. However, it was found by scanning electron microscope observation that vapor-grown carbon fibers were not formed and a mesh-like carbon film was formed.

【0035】実施例4については、本発明者らはここで
用いたのと同じ雰囲気中で、PdOを熱処理することに
より、180℃以上で還元され金属Pdとなることを確
かめた。熱分解が起こるのは比較例1に示した様に40
0℃より高温であるから、熱分解がはじまる前にPd微
粒子が形成され実施例1と同様の結果が得られたものと
思われる。
Regarding Example 4, the present inventors have confirmed that heat treatment of PdO in the same atmosphere as used here reduces PdO at 180 ° C. or higher to form metal Pd. Thermal decomposition occurs at 40% as shown in Comparative Example 1.
Since the temperature was higher than 0 ° C., it is considered that Pd fine particles were formed before thermal decomposition started and the same results as in Example 1 were obtained.

【0036】上記実施例においては、Pd微粒子形成方
法として、有機錯体溶液塗布、酸化、還元という工程を
用いたが、これに限定されるものではなく、ガス中蒸着
法その他により微粒子形成を行った場合でも同様の効果
が得られる。
In the above examples, the steps of applying an organic complex solution, oxidation and reduction were used as the Pd fine particle forming method, but the method is not limited to this, and the fine particles are formed by a vapor deposition method in a gas or the like. Even in this case, the same effect can be obtained.

【0037】基板は、シリコンに限定されることなく、
耐熱性で、炭化水素の熱分解の触媒能が無いか、小さい
物質、たとえば石英基板など、ならば使用可能である。
2 およびC24 の濃度は実施例に限定されるもので
はなく、爆発限界以下の濃度であれば、特別な防爆設備
を必要としない。ちなみにH2 の爆発範囲下限は4vo
l%、C24 は2.7vol%である。
The substrate is not limited to silicon,
Any substance that is heat resistant and has no catalytic ability for the thermal decomposition of hydrocarbons or a small substance such as a quartz substrate can be used.
The concentrations of H 2 and C 2 H 4 are not limited to the examples, and if the concentration is below the explosion limit, no special explosion-proof equipment is required. By the way, the lower limit of the H 2 explosion range is 4 vo
1% and C 2 H 4 are 2.7 vol%.

【0038】熱分解工程における炭化水素ガスは、実施
例に限定されるものではない。Pd金属表面における分
解反応は、メタン、エタン、プロピレンなど多くのガス
種で同様に起こることが知られており、当然本発明に適
用可能である。また、エタノール、アセトンなど通常の
状態では液体である炭化水素も、熱処理を減圧状態で行
うなどして使用することが可能である。
The hydrocarbon gas in the pyrolysis step is not limited to the examples. It is known that the decomposition reaction on the Pd metal surface similarly occurs in many gas species such as methane, ethane and propylene, and is naturally applicable to the present invention. In addition, hydrocarbons that are normally liquid such as ethanol and acetone can also be used after heat treatment under reduced pressure.

【0039】また、本発明を用い、有機Pd錯体溶液を
スクリーン印刷などの手法で適当なパターンに形成すれ
ば、基板上の所望の位置にのみ気相成長炭素繊維を形成
することが可能となる。これにより、気相成長炭素繊維
を量子細線として用いる電子素子など新規な素子の製造
が可能になる。
By using the present invention and forming an organic Pd complex solution in an appropriate pattern by a method such as screen printing, it is possible to form vapor grown carbon fibers only at desired positions on the substrate. . This enables the production of new devices such as electronic devices using vapor grown carbon fibers as quantum wires.

【0040】[0040]

【発明の効果】以上説明した様に、本発明により、工業
的生産に適用可能で、高温のプロセスや、特別な安全対
策など困難なプロセスを必要としない気相成長炭素繊維
の製造方法を実現することが可能となった。
As described above, according to the present invention, a method for producing a vapor-grown carbon fiber, which is applicable to industrial production and does not require a high temperature process or a difficult process such as a special safety measure, is realized. It became possible to do.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1により、シリコン基板上に形成された
気相成長炭素繊維の形状を示す走査電子顕微鏡写真(倍
率×100,000)である。
FIG. 1 is a scanning electron micrograph (magnification × 100,000) showing the shape of a vapor-grown carbon fiber formed on a silicon substrate according to Example 1.

【図2】実施例1により形成された気相成長炭素繊維の
形状を示す透過電子顕微鏡写真(倍率×2,000,0
00)である。
FIG. 2 is a transmission electron micrograph (magnification × 2,000,0) showing the shape of the vapor-grown carbon fiber formed in Example 1.
00).

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 耐熱性の基体上に触媒微粒子を分散して
なる基板を不活性ガスで希釈した炭化水素ガスに曝露し
て熱処理し、炭化水素ガスの熱分解を行う工程を有する
ことを特徴とする気相成長炭素繊維の製造方法。
1. A step of subjecting a substrate, which is obtained by dispersing catalyst fine particles on a heat-resistant substrate, to a hydrocarbon gas diluted with an inert gas for heat treatment to thermally decompose the hydrocarbon gas. And a method for producing a vapor-grown carbon fiber.
【請求項2】 前記触媒微粒子が金属Pdである請求項
1記載の気相成長炭素繊維の製造方法。
2. The method for producing a vapor-grown carbon fiber according to claim 1, wherein the catalyst fine particles are metal Pd.
【請求項3】 前記気相成長炭素繊維の製造方法におい
て、上記金属Pd微粒子の形成方法が、絶縁性基体に有
機Pd錯体溶液を塗布する工程と、該有機Pd錯体溶液
を塗布した基体を大気中または酸化雰囲気中で熱処理し
PdOとする工程と、該PdOを不活性ガスで希釈した
還元性ガス中で熱処理して金属Pdとする工程を有する
請求項2記載の気相成長炭素繊維の製造方法。
3. The method for producing vapor-grown carbon fiber according to claim 1, wherein the method of forming the metal Pd fine particles comprises applying an organic Pd complex solution to an insulating substrate and exposing the substrate coated with the organic Pd complex solution to the atmosphere. The production of vapor-grown carbon fiber according to claim 2, which comprises a step of heat-treating to PdO in an atmosphere or an oxidizing atmosphere, and a step of heat-treating to a metal Pd in a reducing gas diluted with an inert gas. Method.
【請求項4】 前記PdOを不活性ガスで希釈した還元
性ガスで熱処理する工程において、該還元性ガスがH2
ガスである請求項3記載の気相成長炭素繊維の製造方
法。
4. The step of heat treating the PdO with a reducing gas diluted with an inert gas, wherein the reducing gas is H 2
The method for producing a vapor-grown carbon fiber according to claim 3, which is gas.
【請求項5】 前記PdOを不活性ガスで希釈したH2
ガスで熱処理する工程において、H2 の濃度が4vol
%未満である請求項4記載の気相成長炭素繊維の製造方
法。
5. H 2 obtained by diluting the PdO with an inert gas.
In the process of heat treatment with gas, the concentration of H 2 is 4 vol.
The method for producing a vapor grown carbon fiber according to claim 4, wherein the amount is less than%.
【請求項6】 前記請求項3記載の不活性ガスで希釈し
た還元性ガスで熱処理する工程において、該還元性ガス
が請求項1記載の炭化水素ガスと同一である請求項1乃
至3のいずれかの項に記載の気相成長炭素繊維の製造方
法。
6. The process according to claim 1, wherein the reducing gas is the same as the hydrocarbon gas according to claim 1, in the heat treatment with the reducing gas diluted with the inert gas according to claim 3. The method for producing a vapor-grown carbon fiber according to the section.
【請求項7】 前記請求項1または6に記載の不活性ガ
スで希釈した炭化水素ガスを用いる還元及び熱分解の工
程において、該炭化水素ガスがC24 である請求項1
または6記載の気相成長炭素繊維の製造方法。
7. The step of reducing and pyrolyzing a hydrocarbon gas diluted with an inert gas according to claim 1 or 6, wherein the hydrocarbon gas is C 2 H 4.
Or the method for producing a vapor-grown carbon fiber according to item 6.
【請求項8】 前記不活性ガスで希釈したC24 の濃
度が2.7vol%未満である請求項7記載の気相成長
炭素繊維の製造方法。
8. The method for producing a vapor grown carbon fiber according to claim 7, wherein the concentration of C 2 H 4 diluted with the inert gas is less than 2.7 vol%.
【請求項9】 前記炭化水素ガスの熱分解工程の熱処理
温度が450℃以上である請求項1記載の気相成長炭素
繊維の製造方法。
9. The method for producing a vapor grown carbon fiber according to claim 1, wherein the heat treatment temperature in the pyrolysis step of the hydrocarbon gas is 450 ° C. or higher.
JP25903094A 1994-09-29 1994-09-29 Method for producing vapor grown carbon fiber Expired - Fee Related JP3285284B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25903094A JP3285284B2 (en) 1994-09-29 1994-09-29 Method for producing vapor grown carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25903094A JP3285284B2 (en) 1994-09-29 1994-09-29 Method for producing vapor grown carbon fiber

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002016463A Division JP3652313B2 (en) 2002-01-25 2002-01-25 Method for producing vapor grown carbon fiber

Publications (2)

Publication Number Publication Date
JPH08100328A true JPH08100328A (en) 1996-04-16
JP3285284B2 JP3285284B2 (en) 2002-05-27

Family

ID=17328369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25903094A Expired - Fee Related JP3285284B2 (en) 1994-09-29 1994-09-29 Method for producing vapor grown carbon fiber

Country Status (1)

Country Link
JP (1) JP3285284B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003510236A (en) * 1999-09-23 2003-03-18 コモンウエルス サイエンティフィック アンド インダストリアル リサーチ オーガナイゼーション Patterned carbon nanotubes
WO2003068676A1 (en) * 2002-02-13 2003-08-21 Toudai Tlo, Ltd. Process for producing single-walled carbon nanotube, single-walled carbon nanotube, and composition containing single-walled carbon nanotube
US6843696B2 (en) 2001-09-10 2005-01-18 Canon Kabushiki Kaisha Method of producing fiber, and methods of producing electron-emitting device, electron source, and image display device each using the fiber
US7582507B2 (en) 2002-08-02 2009-09-01 Nec Corporation Catalyst support substrate, method for growing carbon nanotubes using the same, and the transistor using carbon nanotubes
US8784562B2 (en) 2009-04-09 2014-07-22 Toyota Jidosha Kabushiki Kaisha Carbon nanotube production process and carbon nanotube production apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003510236A (en) * 1999-09-23 2003-03-18 コモンウエルス サイエンティフィック アンド インダストリアル リサーチ オーガナイゼーション Patterned carbon nanotubes
US6843696B2 (en) 2001-09-10 2005-01-18 Canon Kabushiki Kaisha Method of producing fiber, and methods of producing electron-emitting device, electron source, and image display device each using the fiber
US7131886B2 (en) 2001-09-10 2006-11-07 Canon Kabushiki Kaisha Method of producing fiber, and methods of producing electron-emitting device, electron source, and image display device each using the fiber
WO2003068676A1 (en) * 2002-02-13 2003-08-21 Toudai Tlo, Ltd. Process for producing single-walled carbon nanotube, single-walled carbon nanotube, and composition containing single-walled carbon nanotube
US8128900B2 (en) 2002-02-13 2012-03-06 Toudai Tlo, Ltd. Process for producing single-walled carbon nanotube, single-walled carbon nanotube, and composition containing single-walled carbon nanotube
US8758716B2 (en) 2002-02-13 2014-06-24 Toudai Tlo, Ltd. Composition containing single-walled nanotubes
US7582507B2 (en) 2002-08-02 2009-09-01 Nec Corporation Catalyst support substrate, method for growing carbon nanotubes using the same, and the transistor using carbon nanotubes
US8784562B2 (en) 2009-04-09 2014-07-22 Toyota Jidosha Kabushiki Kaisha Carbon nanotube production process and carbon nanotube production apparatus

Also Published As

Publication number Publication date
JP3285284B2 (en) 2002-05-27

Similar Documents

Publication Publication Date Title
US6752977B2 (en) Process for purifying single-wall carbon nanotubes and compositions thereof
US7090819B2 (en) Gas-phase process for purifying single-wall carbon nanotubes and compositions thereof
US8628747B2 (en) Carbon nanotube structures formed on large free floating substrates
US6592938B1 (en) Method for coating particles
US6890506B1 (en) Method of forming carbon fibers
US20060083674A1 (en) Method for forming catalyst metal particles for production of single-walled carbon nanotube
EP2305601B1 (en) Nanotube-nanohorn composite and process for production thereof
Nasibulin et al. Carbon nanotube synthesis from alcohols by a novel aerosol method
JP2007268319A (en) Catalyst for synthesizing carbon nano-tube and its manufacturing method, catalyst dispersion and manufacturing method for carbon nanotube
KR20050121426A (en) Method for preparing catalyst for manufacturing carbon nano tubes
EP1948562A1 (en) Carbon nanotubes functionalized with fullerenes
JP4706852B2 (en) Method for producing carbon nanotube
US20140286852A1 (en) Synthesis of length-selected carbon nanotubes
US20030059364A1 (en) Method for poduction of nanostructures
CN109650379A (en) A kind of single-walled carbon nanotube graded oxidation purification process
JPH08100328A (en) Production of carbon fiber by vapor phase growth
KR20060002476A (en) Method for preparing catalyst base for manufacturing carbon nano tubes, and method for manufacturing carbon nano tubes employing the same
Jou et al. Preparation of carbon nanotubes from vacuum pyrolysis of polycarbosilane
Muhl et al. Transparent conductive carbon nanotube films
JP3652313B2 (en) Method for producing vapor grown carbon fiber
Szabó et al. Simplification of the CCVD method used in the growth of carbon nanotube forests on titanium substrate
Schäffel et al. Tailoring the diameter, density and number of walls of carbon nanotubes through predefined catalyst particles
Bertoni et al. Growth of multi-wall and single-wall carbon nanotubes with in situ high vacuum catalyst deposition
Jeon et al. Synthesis of gallium-catalyzed silicon nanowires by hydrogen radical-assisted deposition method
Warner Solution-phase synthesis of germanium nanoclusters using sulfur

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080308

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090308

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100308

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100308

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110308

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120308

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130308

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140308

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees