JPH08100172A - Electroluminescent element - Google Patents

Electroluminescent element

Info

Publication number
JPH08100172A
JPH08100172A JP6236622A JP23662294A JPH08100172A JP H08100172 A JPH08100172 A JP H08100172A JP 6236622 A JP6236622 A JP 6236622A JP 23662294 A JP23662294 A JP 23662294A JP H08100172 A JPH08100172 A JP H08100172A
Authority
JP
Japan
Prior art keywords
compound
light emitting
transport layer
hole transport
stability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6236622A
Other languages
Japanese (ja)
Other versions
JP3274939B2 (en
Inventor
Mutsumi Suzuki
木 睦 美 鈴
Masao Fukuyama
山 正 雄 福
Mutsuaki Murakami
上 睦 明 村
Hiromitsu Tomiyama
山 裕 光 富
Ikuko Ihara
原 郁 子 伊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hodogaya Chemical Co Ltd
Panasonic Holdings Corp
Original Assignee
Hodogaya Chemical Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hodogaya Chemical Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Hodogaya Chemical Co Ltd
Priority to JP23662294A priority Critical patent/JP3274939B2/en
Priority to EP19940117206 priority patent/EP0650955B1/en
Priority to DE1994612567 priority patent/DE69412567T2/en
Priority to US08/332,726 priority patent/US5639914A/en
Publication of JPH08100172A publication Critical patent/JPH08100172A/en
Priority to US08/738,326 priority patent/US5707747A/en
Application granted granted Critical
Publication of JP3274939B2 publication Critical patent/JP3274939B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Abstract

PURPOSE: To provide an electroluminescent element containing a specific amine compound, having excellent light-emission stability, storage stability, thermal stability, film-forming property and electrical and chemical stability and useful for electroluminescent display device, etc. CONSTITUTION: The objective element is produced by using a compound of the formula [R1 , R2 and R3 are each H, a lower alkyl, a lower alkoxy or a (substituted)aryl; R4 is H, a lower alkyl, a lower alkoxy or Cl; A1 is diphenyl (thio)ether-4,4'-diyl, diphenyl sulfoxid-4,4'-diyl, diphenyl keton-4,4'-diyl or N,N' diphenylurea-4,4'-diyl] [e.g. 4,4'-bis (4'-diphenylamino-4-biphenylylanilino)-1,1'- diphenyl ether]. The compound of the formula can be produced by condensing an N,N'-diacetyl compound of the corresponding diamino compound with 4'- halogenated biphenyl acetanilide compound, hydrolyzing the product and condensing the hydrolyzate with the corresponding aryl halide.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、各種の表示装置として
広範囲に利用される発光素子であって、低い印加電圧、
高輝度、かつ安定性にも優れた有機電界発光素子(有機
EL素子)に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light emitting device widely used as various display devices, which has a low applied voltage,
The present invention relates to an organic electroluminescence device (organic EL device) having high brightness and excellent stability.

【0002】[0002]

【従来の技術】電界発光素子は自己発光のために液晶素
子にくらべて明るく、鮮明な表示が可能であるため古く
から多くの研究者によって研究されてきた。現在実用レ
ベルに達した電界発光素子としては無機材料のZnSを
用いた素子がある。しかし、この様な無機の電界発光素
子は発光のための印加電圧として200V以上が必要で
広く使用されるには至っていない。
2. Description of the Related Art Since an electroluminescent device is self-luminous, it is brighter than a liquid crystal device and can display clearly. Therefore, many researchers have been studying it for a long time. As an electroluminescent element that has reached a practical level, there is an element using ZnS which is an inorganic material. However, such an inorganic electroluminescent device requires an applied voltage of 200 V or more for emitting light and has not been widely used.

【0003】これに対して有機材料を用いた電界発光素
子である有機EL素子は、従来実用的なレベルからはほ
ど遠いものであったが、1987年にコダック社のC.
W.Tangらによって開発された積層構造素子により
その特性が飛躍的に進歩した。彼らは蒸着膜の構造が安
定で電子を輸送することの出来る蛍光体と、正孔を輸送
することの出来る有機物を積層し、両方のキャリヤーを
蛍光体中に注入して発光させることに成功した。これに
よって有機EL素子の発光効率が向上し、10V以下の
電圧で1000cd/m2 以上の発光が得られる様にな
った。その後多くの研究者によってその特性向上のため
の研究が行われ、現在では10000cd/m2 以上の
発光特性が得られている。
On the other hand, an organic EL element, which is an electroluminescent element using an organic material, is far from a practical level in the past, but in 1987, a C.I.
W. The laminated structure element developed by Tang et al. Has dramatically improved its characteristics. They succeeded in stacking a phosphor that has a stable vapor-deposited film structure that can transport electrons and an organic material that can transport holes, and inject both carriers into the phosphor to emit light. . As a result, the luminous efficiency of the organic EL device was improved, and light emission of 1000 cd / m 2 or more was obtained at a voltage of 10 V or less. Since then, many researchers have conducted researches for improving the characteristics, and at present, emission characteristics of 10,000 cd / m 2 or more have been obtained.

【0004】この様な有機EL素子の基本的な発光特性
はすでに十分実用範囲にあり、現在その実用化を妨げて
いる最も大きな原因は、(1)その駆動時の発光特性の
安定性の不足、(2)保存安定性の不足にある。ここで
言う駆動時の劣化とは素子に電流を印加して駆動した時
に発光輝度が低下したり、ダークスポットと呼ばれる発
光しない領域が発生したり、素子の短絡により破壊が起
こる現象を言い、保存時の安定性とは作製した素子を保
存しているだけでも発光特性が低下する現象をいう。
The basic emission characteristics of such an organic EL element are already in a practical range, and the main reason for impeding their practical use is (1) lack of stability of emission characteristics during driving. (2) There is a lack of storage stability. Degradation at the time of driving here refers to the phenomenon that the emission brightness decreases when a current is applied to the element to drive it, a non-luminous area called a dark spot occurs, or the element is short-circuited and destroyed. The term stability refers to a phenomenon in which the light emitting characteristics are deteriorated even when the manufactured element is stored.

【0005】本発明者らはこの様な有機EL素子の発光
の安定性、保存安定性に関する問題点を解決するためそ
の劣化の機構を検討した。その結果、特性劣化の大きな
原因の一つがその正孔輸送層にあることが分かった。即
ち、正孔輸送層として一般に利用される(化5:略称T
PD)、(化6:略称TPAC)の様な正孔輸送材料
は、(1)湿度、温度、電流により結晶化して薄膜形状
が一様でなくなる、(2)正孔輸送層が通電により変質
する、(3)基板、発光層との付着性が悪くなるなどの
変化を起こし、それによって発光特性が著しく劣化する
ことが分かった。
The present inventors have examined the mechanism of deterioration in order to solve the problems concerning the light emission stability and storage stability of such an organic EL device. As a result, it was found that one of the major causes of the characteristic deterioration was the hole transport layer. That is, it is generally used as a hole transport layer (Chemical formula 5: abbreviated to T
A hole transporting material such as PD) or (Chemical formula 6: Abbreviation TPAC) is (1) crystallized by humidity, temperature and current to make the shape of the thin film non-uniform, and (2) the hole transporting layer is degenerated by energization. However, it was found that (3) the adhesiveness to the substrate and the light emitting layer deteriorates, which causes the light emitting characteristics to significantly deteriorate.

【0006】[0006]

【化5】 Embedded image

【0007】[0007]

【化6】 [Chemical 6]

【0008】[0008]

【発明が解決しようとする課題】本発明の課題はこの様
な知見に基づき、発光安定性、保存安定性に優れた有機
EL素子を実現出来る新しい正孔輸送材料を提供するこ
とにある。この様な正孔輸送材料の具備しなければなら
ない条件としては、(1)優れた正孔輸送能力を持つこ
と、(2)熱的に安定で、ガラス状態が安定であるこ
と、(3)薄膜を形成出来ること、(4)電気的、化学
的に安定であること、等を挙げることが出来る。
An object of the present invention is to provide a new hole transporting material which can realize an organic EL device excellent in light emission stability and storage stability based on such knowledge. The conditions that such a hole transport material must have are (1) excellent hole transport capability, (2) thermal stability and stable glass state, (3) It is possible to form a thin film, (4) be electrically and chemically stable, and the like.

【0009】[0009]

【課題を解決するための手段】この目的を達成するため
に、本発明者らはITO電極、正孔輸送層、発光層およ
びマグネシュウム/銀電極からなる有機EL素子を試作
し、新たに合成した数多くの正孔輸送材料の評価をおこ
なった。発光層としてはおもに電子輸送層を兼ねるアル
ミキノリン3量体を用いた。上記正孔輸送層の材料とし
て、(化7)、(化8)で記述されるアミン化合物を使
用した。
In order to achieve this object, the present inventors prototyped an organic EL element consisting of an ITO electrode, a hole transport layer, a light emitting layer and a magnesium / silver electrode, and newly synthesized it. Many hole transport materials have been evaluated. As the light emitting layer, an aluminum quinoline trimer mainly serving also as an electron transport layer was used. As the material of the hole transport layer, the amine compounds described in (Chemical formula 7) and (Chemical formula 8) were used.

【0010】[0010]

【化7】 [Chemical 7]

【0011】[0011]

【化8】 ただし、(化7)におけるR1 、R2 、R3 は同一でも
異なっていてもよく、水素 原子、低級アルキル基、低
級アルコキシ基、置換または無置換のアリール基を表
し、R4 は水素原子、低級アルキル基、低級アルコキシ
基、または塩素原子を表す。また、A1 は以下の構造を
有する置換基を表す。
Embedded image However, R 1 , R 2 and R 3 in (Chemical Formula 7) may be the same or different and represent a hydrogen atom, a lower alkyl group, a lower alkoxy group or a substituted or unsubstituted aryl group, and R 4 is a hydrogen atom. , A lower alkyl group, a lower alkoxy group, or a chlorine atom. A 1 represents a substituent having the following structure.

【0012】[0012]

【化9】 また、(化8)におけるR5 、R6 は同一でも異なって
いてもよく、水素原子、低級アルキル基、低級アルコキ
シ基、置換または無置換のアリール基を表し、R 7 は水
素原子、低級アルキル基、低級アルコキシ基、または塩
素原子を表す。また、A2 は以下の構造を有する置換基
を表す。
[Chemical 9]Also, R inFive, R6Are the same or different
Optionally, hydrogen atom, lower alkyl group, lower alkoxy group
Si group, substituted or unsubstituted aryl group, R 7Is water
Elementary atom, lower alkyl group, lower alkoxy group, or salt
Represents an elementary atom. Also, A2Is a substituent having the following structure
Represents

【0013】[0013]

【化10】 [Chemical 10]

【0014】[0014]

【作用】本発明は、上記のような正孔輸送材料を使用し
た結果、それらが優れた正孔輸送能力を有しているばか
りでなく良好な薄膜を形成し、さらに熱的にも安定であ
ることが分かった。さらに、基板および発光層との付着
性が向上することがわかった。この結果、優れた発光安
定性、保存安定性を有する有機EL素子が実現できるこ
とが明らかになり、表示素子として広範囲に利用するこ
とができた。
As a result of using the above hole transporting material, the present invention not only has excellent hole transporting ability, but also forms a good thin film, and is thermally stable. I knew it was. Further, it was found that the adhesion to the substrate and the light emitting layer was improved. As a result, it became clear that an organic EL device having excellent light emission stability and storage stability could be realized, and it could be widely used as a display device.

【0015】[0015]

【実施例】【Example】

(実施例1)以下、本発明の実施例について、合成につ
いての第1の実施例と素子についての第2の実施例とに
分けて説明する。本発明の(化1)で示されるアミン化
合物は、新規な化合物であり、これらは相当するトリフ
ェニルベンジジン化合物とジハロゲン化物との縮合反
応、あるいは、相当するジアミノ化合物のN,N’−ジ
アセチル体と相当する4’−ハロゲン化ビフェニルアセ
トアニリド化合物との縮合反応による生成物を加水分解
した後、相当するハロゲン化アリールと縮合反応するこ
とにより合成することができる。これらの縮合反応はウ
ルマン反応として知られる方法である。
(Embodiment 1) The embodiment of the present invention will be described below by dividing it into a first embodiment for synthesis and a second embodiment for devices. The amine compound represented by (Chemical formula 1) of the present invention is a novel compound, which is a condensation reaction between a corresponding triphenylbenzidine compound and a dihalide, or an N, N′-diacetyl derivative of a corresponding diamino compound. Can be synthesized by hydrolyzing the product obtained by the condensation reaction with the corresponding 4'-halogenated biphenylacetanilide compound and then subjecting the product to the condensation reaction with the corresponding aryl halide. These condensation reactions are methods known as the Ullmann reaction.

【0016】また、本発明の(化2)で示されるアミン
化合物は新規な化合物であり、これらは、相当するハロ
ゲン化ビフェニリルジフェニルアミン化合物と相当する
ジアミン化合物とを縮合させることにより合成すること
ができる。あるいはまた相当するハロゲン化ビフェニリ
ルジフェニルアミン化合物とアミド化合物との縮合反応
による生成物を加水分解して得られるトリアミン化合物
を相当するジハロゲン化物と縮合させることによって
も、合成することができる。これらの縮合反応はウルマ
ン反応として知られる方法である。
Further, the amine compound represented by the chemical formula (2) of the present invention is a novel compound, and these compounds can be synthesized by condensing the corresponding halogenated biphenylyldiphenylamine compound and the corresponding diamine compound. it can. Alternatively, it can also be synthesized by condensing a triamine compound obtained by hydrolyzing a product obtained by the condensation reaction of a corresponding halogenated biphenylyldiphenylamine compound and an amide compound with a corresponding dihalide. These condensation reactions are methods known as the Ullmann reaction.

【0017】これらの化合物の同定は、元素分析、赤外
吸収スペクトル測定により行い、さらに溶媒による再結
晶法、真空昇華法により精製し、純度を99.8%以上
とした。純度の確認は薄層クロマトグラフィースキャナ
ー、熱重量測定、示差熱分析、融点測定により行った。
融点、分解点は正孔輸送層の熱安定性の目安となり、ガ
ラス転移点はガラス状態の安定性の目安となる。
Identification of these compounds was carried out by elemental analysis and infrared absorption spectrum measurement, and further refined by a solvent recrystallization method and a vacuum sublimation method to obtain a purity of 99.8% or more. The purity was confirmed by a thin layer chromatography scanner, thermogravimetric measurement, differential thermal analysis, and melting point measurement.
The melting point and the decomposition point serve as a measure of the thermal stability of the hole transport layer, and the glass transition point serves as a measure of the stability of the glass state.

【0018】(合成実施例)アセトアニリド20.0g
(0.15モル)と4,4’−ジヨードビフェニル6
5.0g(0.16モル)、無水炭酸カリウム22.1
g(0.16モル)、銅粉2.16g(0.034モ
ル)、ニトロベンゼン35mlを混合し、190〜20
5℃で10時間反応させた。反応生成物をトルエン20
0mlで抽出し、不溶分をろ別除去後、濃縮乾固した。
これをカラムクロマトにより精製して(担体;シリカゲ
ル、溶離液;トルエン/酢酸エチル=6/1)、N−
(4’−ヨード−4−ビフェニリル)アセトアニリド4
0.2g(収率64.8%)を得た。融点は、135.
0〜136.0℃であった。
(Synthesis Example) 20.0 g of acetanilide
(0.15 mol) and 4,4'-diiodobiphenyl 6
5.0 g (0.16 mol), anhydrous potassium carbonate 22.1
g (0.16 mol), copper powder 2.16 g (0.034 mol), and nitrobenzene 35 ml were mixed to obtain 190 to 20.
The reaction was carried out at 5 ° C for 10 hours. The reaction product is toluene 20
The mixture was extracted with 0 ml, the insoluble matter was filtered off, and the mixture was concentrated to dryness.
This was purified by column chromatography (carrier; silica gel, eluent: toluene / ethyl acetate = 6/1), N-
(4'-Iodo-4-biphenylyl) acetanilide 4
0.2 g (yield 64.8%) was obtained. The melting point is 135.
It was 0-136.0 degreeC.

【0019】次に4、4’−ジアミノ−1,1’−ジフ
ェニルエーテル12.0g(0.06モル)を氷酢酸1
00mlに溶解し、40℃で無水酢酸13.5g(0.
13モル)を滴下した。滴下後45℃で2時間反応し、
反応液を氷水700ml中へ注加して、析出した結晶を
ろ過、水洗、乾燥した。この結晶をメタノール160m
lで再結晶し、4,4’−ジアセトアミド−1,1’−
ジフェニルエーテル13.4g(収率;78.3%)を
得た。融点は231.0〜231.5℃であった。
Next, 12.0 g (0.06 mol) of 4,4'-diamino-1,1'-diphenyl ether was added to 1 part of glacial acetic acid.
It was dissolved in 00 ml and acetic anhydride 13.5 g (0.
(13 mol) was added dropwise. After dropping, react at 45 ° C for 2 hours,
The reaction solution was poured into 700 ml of ice water, and the precipitated crystals were filtered, washed with water and dried. 160m of this crystal in methanol
Recrystallized with 1,4'-diacetamide-1,1'-
13.4 g of diphenyl ether (yield; 78.3%) was obtained. The melting point was 231.0-231.5 ° C.

【0020】続いて4,4’−ジアセトアミド−1,
1’−ジフェニルエーテル7.11g(0.025モ
ル)、N−(4’−ヨード−4−ビフェニリル)アセト
アニリド22.7g(0.055モル)、無水炭酸カリ
ウム7.60g(0.055モル)及び銅粉0.70g
(0.011モル)、ニトロベンゼン10mlを混合
し、185〜195℃で8時間反応させた。反応生成物
をトルエン500mlで抽出し、不溶分をろ別除去後、
濃縮してオイル状物とした。オイル状物はイソアミルア
ルコール60mlに溶解し、水1ml、85%水酸化カ
リウム1.8g(0.027モル)を加え、130℃で
加水分解した。水蒸気蒸留でイソアミルアルコールを留
去後、トルエン250mlで抽出し、水洗、乾燥して濃
縮した。濃縮物はカラムクロマトにより精製して(担
体;シリカゲル、溶離液;トルエン/酢酸エチル=1/
1)、4,4’−ビス(4’−アニリノ−4−ビフェニ
リルアミノ)−1,1’−ジフェニルエーテル8.93
g(収率52.0%)を得た。融点は285.5〜28
6.5℃であった。
Subsequently, 4,4'-diacetamide-1,
7.11 g (0.025 mol) of 1'-diphenyl ether, 22.7 g (0.055 mol) of N- (4'-iodo-4-biphenylyl) acetanilide, 7.60 g (0.055 mol) of anhydrous potassium carbonate and Copper powder 0.70g
(0.011 mol) and 10 ml of nitrobenzene were mixed and reacted at 185 to 195 ° C. for 8 hours. The reaction product was extracted with 500 ml of toluene, and the insoluble matter was removed by filtration.
Concentrated to an oil. The oily substance was dissolved in 60 ml of isoamyl alcohol, 1 ml of water and 1.8 g (0.027 mol) of 85% potassium hydroxide were added, and the mixture was hydrolyzed at 130 ° C. After distilling off isoamyl alcohol by steam distillation, it was extracted with 250 ml of toluene, washed with water, dried and concentrated. The concentrate was purified by column chromatography (carrier; silica gel, eluent; toluene / ethyl acetate = 1 /
1), 4,4'-bis (4'-anilino-4-biphenylylamino) -1,1'-diphenyl ether 8.93
g (yield 52.0%) was obtained. Melting point 285.5-28
It was 6.5 ° C.

【0021】さらに、4,4’−ビス(4’−アニリノ
−4−ビフェニリルアミノ)−1,1’−ジフェニルエ
ーテル6.87g(0.01モル)、ヨードベンゼン2
4.5g(0.12モル)、無水炭酸カリウム6.08
g(0.044モル)、銅粉0.51g(0.008モ
ル)を混合し、195〜210℃で16.5時間反応さ
せた。反応生成物をトルエン100mlで抽出し、不溶
分をろ別除去、濃縮後、n−ヘキサン350mlを加え
て、粗結晶を取り出した。粗結晶は、カラムクロマトに
より精製して(担体;シリカゲル、溶離液;トルエン/
n−ヘキサン=3/4)、4,4’−ビス(4’−ジフ
ェニルアミノ−4−ビフェニリルアニリノ)−1,1’
−ジフェニルエーテル4.06g(収率;41.0%)
を得た。融点は175.0〜176.5℃であった。
Further, 6.87 g (0.01 mol) of 4,4'-bis (4'-anilino-4-biphenylylamino) -1,1'-diphenyl ether and iodobenzene 2 were obtained.
4.5 g (0.12 mol), anhydrous potassium carbonate 6.08
g (0.044 mol) and copper powder 0.51 g (0.008 mol) were mixed and reacted at 195 to 210 ° C. for 16.5 hours. The reaction product was extracted with 100 ml of toluene, the insoluble matter was removed by filtration, the mixture was concentrated, and 350 ml of n-hexane was added to take out crude crystals. The crude crystals were purified by column chromatography (carrier: silica gel, eluent: toluene /
n-hexane = 3/4), 4,4′-bis (4′-diphenylamino-4-biphenylylanilino) -1,1 ′
-Diphenyl ether 4.06 g (yield; 41.0%)
I got The melting point was 175.0 to 176.5 ° C.

【0022】(実施例2)次に、これらを実際に有機E
L素子として評価し、その素子の発光特性、発光特性の
安定性、保存安定性を検討した。有機EL素子は、図1
に示すように、ガラス基板1上に透明電極2としてIT
O電極をあらかじめ形成したものの上に、正孔輸送層
3、電子輸送層兼発光層4、Mg/Ag電極5の順に蒸
着して作製した。まず、充分に洗浄したガラス基板(I
TO電極は成膜済み)、正孔輸送材、電子輸送性発光材
として精製したアルミキノリン3量体を蒸着装置にセッ
トした。10-6torrまで排気した後、0.1nm/
秒の速度で正孔輸送層を蒸着した。膜厚は50nmとし
た。アルミキノリン3量体の蒸着は同じく0.1nm/
秒の速度で行い、その膜厚は50nmとした。Mg/A
g電極は0.4nm/秒の速度で行いその厚さを100
nmとした。これらの蒸着はいずれも真空を破らずに連
続して行った。また膜厚は水晶振動子によってモニター
した。素子作製後、直ちに乾燥窒素中で電極の取り出し
を行い、引続き特性測定を行った。
(Example 2) Next, these are actually used as organic E
The device was evaluated as an L device, and the light emitting property, the stability of the light emitting property, and the storage stability of the device were examined. Fig. 1 shows the organic EL device.
As shown in FIG.
A hole transport layer 3, an electron transport layer / light emitting layer 4, and a Mg / Ag electrode 5 were vapor-deposited in this order on a pre-formed O electrode. First, a glass substrate (I
The TO electrode was formed into a film), and the purified aluminum quinoline trimer as a hole transport material and an electron transport light emitting material was set in the vapor deposition apparatus. After exhausting to 10 -6 torr, 0.1 nm /
The hole transport layer was deposited at a rate of seconds. The film thickness was 50 nm. The vapor deposition of aluminum quinoline trimer is also 0.1 nm /
The film thickness was set to 50 nm at a speed of 2 seconds. Mg / A
The g electrode is performed at a speed of 0.4 nm / sec and its thickness is 100 nm.
nm. All of these vapor depositions were continuously performed without breaking the vacuum. The film thickness was monitored by a crystal oscillator. Immediately after the device was manufactured, the electrode was taken out in dry nitrogen and the characteristics were continuously measured.

【0023】得られた素子の発光特性は100mA/c
2 の電流を印加した場合の発光輝度で定義した。ま
た、発光の安定性は200cd/m2 の発光が得られる
電流を連続で印加し、その時の発光輝度の変化を測定し
た。発光の寿命を輝度が半分の100cd/m2 になる
までの時間と定義した。保存安定性は室温、乾燥空気中
に一定時間素子を放置後、20mA/cm2 の電流を印
加し、輝度が初期発光特性の半分になるまでの時間で定
義した。
The emission characteristics of the obtained device is 100 mA / c
It was defined by the emission brightness when a current of m 2 was applied. The stability of light emission was measured by continuously applying a current capable of obtaining a light emission of 200 cd / m 2 and measuring the change in the light emission luminance at that time. The life of light emission was defined as the time required for the luminance to reach half, 100 cd / m 2 . The storage stability was defined as the time until the luminance became half of the initial emission characteristics after applying a current of 20 mA / cm 2 after leaving the device in room temperature and dry air for a certain period of time.

【0024】本発明の正孔輸送材料の評価のために発光
層としてアルミキノリン3量体を用いたが、むろん本発
明では発光層の材料として各種の希土類錯体、オキサジ
アゾール誘導体、ポリパラフェニレンビニレンなどの各
種の材料を用いることが出来る。また、発光層にキナク
リドンやクマリンなどのドーパントを添加することによ
りさらに高性能の有機EL素子を作製することが出来
る。さらに電子輸送層、発光層、正孔輸送層の3層から
なる有機EL素子とすることもできる。また、本発明の
正孔輸送材料と適当な電子輸送材料とを組み合わせるこ
とにより、正孔輸送層を発光層として用いることもでき
る。
Although aluminum quinoline trimer was used as the light emitting layer for the evaluation of the hole transport material of the present invention, it is needless to say that various rare earth complexes, oxadiazole derivatives and polyparaphenylene are used as the material of the light emitting layer in the present invention. Various materials such as vinylene can be used. Further, by adding a dopant such as quinacridone or coumarin to the light emitting layer, a higher performance organic EL device can be manufactured. Further, an organic EL device having three layers of an electron transport layer, a light emitting layer and a hole transport layer can be used. Further, the hole transport layer can be used as a light emitting layer by combining the hole transport material of the present invention with a suitable electron transport material.

【0025】この様な検討の結果、正孔輸送材料が13
0℃以上の融点、300℃以上の分解点を有する場合に
は優れた発光の安定性、保存安定性が得られることが分
かった。
As a result of such a study, the hole transport material is 13
It was found that excellent emission stability and storage stability can be obtained when the compound has a melting point of 0 ° C. or higher and a decomposition point of 300 ° C. or higher.

【0026】この発明になる正孔輸送材料は単独で用い
ることも出来るが、2種類以上を積層したり、共蒸着法
などで蒸着して混合状態で用いることができる。また、
本発明の正孔輸送材を従来の正孔輸送材であるTPAC
やTPDとの共蒸着によって使用することができる。2
種類以上を同時蒸着して用いるとしばしばその結晶化を
おこし難くする効果がある。
The hole transporting material according to the present invention can be used alone, but two or more kinds can be laminated or can be used in a mixed state by vapor deposition by a co-evaporation method or the like. Also,
The hole transporting material of the present invention is a conventional hole transporting material TPAC.
It can be used by co-evaporation with or TPD. Two
The simultaneous vapor deposition of more than one type often has the effect of making crystallization difficult.

【0027】(素子実施例1)充分に洗浄したガラス基
板(ITO電極は成膜済み)、正孔輸送剤としてアミン
化合物(1)(R1 =H、R2 =H、R3 =H、R4
H、A1 =(A))、電子輸送性発光材として精製した
アルミキノリン3量体を蒸着装置にセットした。0.1
nm/秒の速度で化合物(1)を50nmの厚さで蒸着
した。なお膜厚は水晶振動子によってモニターした。ア
ルミキノリンの蒸着は同じく0.1nm/秒の速度で行
い、その膜厚は50nmとした。Mg/Ag電極は0.
4nm/秒の速度で行い、その厚さを100nmとし
た。これらの蒸着はいずれも真空を破らずに連続して行
った。素子作製後、直ちに乾燥窒素中で電極の取り出し
を行い、引続き特性測定を行った。発光特性は3100
cd/m2 、発光の寿命は580Hr、保存安定性は2
100Hrであった。
(Element Example 1) A sufficiently washed glass substrate (ITO electrode has been formed), an amine compound (1) as a hole transfer material (R 1 = H, R 2 = H, R 3 = H, R 4 =
H, A 1 = (A)), and the purified aluminum quinoline trimer as an electron-transporting luminescent material was set in a vapor deposition apparatus. 0.1
Compound (1) was deposited at a thickness of 50 nm at a rate of nm / sec. The film thickness was monitored by a crystal oscillator. The vapor deposition of aluminum quinoline was performed at the same rate of 0.1 nm / sec, and the film thickness was 50 nm. The Mg / Ag electrode has a resistance of 0.
The thickness was set to 100 nm at a speed of 4 nm / sec. All of these vapor depositions were continuously performed without breaking the vacuum. Immediately after the device was manufactured, the electrode was taken out in dry nitrogen and the characteristics were continuously measured. Emission characteristic is 3100
cd / m 2 , luminescence lifetime is 580 hr, storage stability is 2
It was 100 Hr.

【0028】比較のために正孔輸送材として(化3:略
称TPD)、(化4:略称TPAC)を用いて同じ条件
で有機EL素子を作製しその特性を調べた。TPDでの
発光特性、発光の寿命特性、保存安定性はそれぞれ、2
200cd/m2 、220Hr、460Hrであった。
一方、TPACでの発光特性、発光の寿命特性、保存安
定性はそれぞれ、2500cd/m2 、280Hr、5
60Hrであった。このことから本発明になるアミン化
合物(1)を用いた有機EL素子は発光寿命、保存安定
性に優れていることが分かった。
For comparison, an organic EL device was prepared under the same conditions using (Chemical 3: Abbreviation TPD) and (Chemical 4: Abbreviation TPAC) as hole transport materials, and its characteristics were investigated. The emission characteristics of TPD, emission lifetime characteristics, and storage stability are each 2
It was 200 cd / m 2 , 220 Hr, and 460 Hr.
On the other hand, the emission characteristics, emission lifetime characteristics, and storage stability of TPAC are 2500 cd / m 2 , 280 Hr, and 5 respectively.
It was 60 Hr. From this, it was found that the organic EL device using the amine compound (1) of the present invention has excellent emission life and storage stability.

【0029】(素子実施例2)素子実施例1と同様の方
法でそれぞれ、アミン化合物(2)(R1 =H、R2
p- CH3 、R3 =p- CH3 、R4 =H、A1
(A))、(3)(R1 =p- t- C4 9 、R2 =p
- t- C4 9 、R3 =H、R4 =H、A1
(A))、(4)(R1 =H、R2 =p- CH3 、R3
=p- OCH3 、R4 =H、A1 =(B))、(5)
(R1 =p- CH3 、R2 =H、R3 =p- n- C4
9 、R4 =H、A1 =(B))、(6)(R1 =H、R
2 =H、R3 =H、R4=H、A1 =(C))、(7)
(R1 =p- t- C4 9 、R2 =p- t- C49
3 =p- t- C4 9 、R4 =H、A1 =(C))、
(8)(R1 =H、R2 =p- t- C4 9 、R3 =p
- t- C4 9 、A1 =(D))、(9)(R1 =p-
6 5 、R2 =p- CH3 、R3 =p- CH3 、R4
=H、A1=(E))、(10)(R1 =H、R2 =p-
OCH3 、R3 =H、R4 =C1、A1 =(E))を
正孔輸送材として使用した有機EL素子を作製し、その
特性を評価した。その結果を図2に示す。
Element Example 2 One similar to Element Example 1
The amine compound (2) (R1= H, R2=
p- CH3, R3= P- CH3, RFour= H, A1=
(A)), (3) (R1= P-t- CFourH9, R2= P
-t-CFourH9, R3= H, RFour= H, A1=
(A)), (4) (R1= H, R2= P- CH3, R3
= P-OCH3, RFour= H, A1= (B)), (5)
(R1= P- CH3, R2= H, R3= P-n-CFourH
9, RFour= H, A1= (B)), (6) (R1= H, R
2= H, R3= H, RFour= H, A1= (C)), (7)
(R1= P-t- CFourH9, R2= P-t- CFourH9,
R3= P-t- CFourH9, RFour= H, A1= (C)),
(8) (R1= H, R2= P-t- CFourH9, R3= P
-t-CFourH9, A1= (D)), (9) (R1= P-
C6HFive, R2= P- CH3, R3= P- CH3, RFour
= H, A1= (E)), (10) (R1= H, R2= P-
 OCH3, R3= H, RFour= C1, A1= (E))
An organic EL device used as a hole transport material was prepared, and
The characteristics were evaluated. The result is shown in FIG.

【0030】このことから本発明になるアミン化合物
(2)〜(10)を用いた有機EL素子は発光寿命、保
存安定性に優れていることが分かった。
From the above, it was found that the organic EL devices using the amine compounds (2) to (10) of the present invention are excellent in light emission life and storage stability.

【0031】(素子実施例3)素子実施例1と同様の方
法でそれぞれ、アミン化合物(11)(R5 =H、R 6
=H、R7 =H、A2 =(F))、(12)(R5
H、R6 =H、R7 =p- OCH3 、A2 =(F))、
(13)(R5 =p- t- C4 9 、R6 =p-t- C
4 9 、R7 =H、A2 =(F))、(14)(R5
H、R6 =H、R 7 =H、A2 =(G))、(15)
(R5 =p- CH3 、R6 =p- CH3 、R 7 =H、A
2 =(G))、(16)(R5 =H、R6 =p- C6
5 、R7 =H、A2 =(G))、(17)(R5 =p-
CH3 、R6 =p- C6 5 、R7 =H、A2
(H))、(18)(R5 =m- CH3 、R6 =H、R
7 =Cl、A 2 =(H))、(19)(R5 =p- CH
3 、R6 =m- CH3 、R7 =H、A 2 =(I))、
(20)(R5 =m- t- C4 9 、R6 =m- OCH
3 、R7=H、A2 =(I))を正孔輸送材として使用
した有機EL素子を作製し、その特性を評価した。その
結果を図3に示す。
Element Example 3 One similar to Element Example 1
The amine compound (11) (RFive= H, R 6
= H, R7= H, A2= (F)), (12) (RFive=
H, R6= H, R7= P-OCH3, A2= (F)),
(13) (RFive= P-t- CFourH9, R6= P-t- C
FourH9, R7= H, A2= (F)), (14) (RFive=
H, R6= H, R 7= H, A2= (G)), (15)
(RFive= P- CH3, R6= P- CH3, R 7= H, A
2= (G)), (16) (RFive= H, R6= P-C6H
Five, R7= H, A2= (G)), (17) (RFive= P-
CH3, R6= P-C6HFive, R7= H, A2=
(H)), (18) (RFive= M- CH3, R6= H, R
7= Cl, A 2= (H)), (19) (RFive= P- CH
3, R6= M- CH3, R7= H, A 2= (I)),
(20) (RFive= M-t-CFourH9, R6= M-OCH
3, R7= H, A2= (I)) is used as a hole transport material
The produced organic EL device was produced and its characteristics were evaluated. That
The results are shown in Fig. 3.

【0032】このことから本発明になるアミン化合物
(11)〜(20)を用いた有機EL素子は発光寿命、
保存安定性に優れていることが分かった。
From the above, the organic EL device using the amine compounds (11) to (20) according to the present invention has a light emission life,
It was found that the storage stability was excellent.

【0033】(素子実施例4)素子実施例1と同様の方
法で、アミン化合物(1)と(14)を共蒸着し、正孔
輸送層として使用した有機EL素子を作製し、その特性
を評価した。発光特性は2430cd/m2 、発光の寿
命は1110Hr、保存安定性は4800Hrであっ
た。その結果から本発明になるアミン化合物(1)と
(14)の共蒸着によって形成された正孔輸送層を用い
た有機EL素子は発光寿命、保存安定性に優れているこ
とが分かった。
(Element Example 4) In the same manner as in Element Example 1, the amine compounds (1) and (14) were co-deposited to prepare an organic EL element used as a hole transport layer, and its characteristics were evaluated. evaluated. The light emission property was 2430 cd / m 2 , the light emission life was 1110 hr, and the storage stability was 4800 hr. From the results, it was found that the organic EL device using the hole transport layer formed by co-evaporation of the amine compounds (1) and (14) according to the present invention is excellent in light emission life and storage stability.

【0034】[0034]

【発明の効果】以上の様に本発明は、新規なアミン化合
物を用いたことを特徴とする電界発光素子であり、本発
明の材料を用いることにより、従来の有機EL素子の最
も大きな問題点であった発光安定性、保存安定性を格段
に改良したEL素子を実現することができる。
INDUSTRIAL APPLICABILITY As described above, the present invention is an electroluminescent device characterized by using a novel amine compound, and by using the material of the present invention, the biggest problem of the conventional organic EL device. It is possible to realize an EL device with significantly improved light emission stability and storage stability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における電界発光素子の構成
を示す部分断面拡大斜視図
FIG. 1 is a partially enlarged cross-sectional perspective view showing a configuration of an electroluminescent device according to an embodiment of the present invention.

【図2】本発明の一実施例における正孔輸送層としてア
ミン化合物を用いた電界発光素子の特性を示す一覧図
FIG. 2 is a list view showing characteristics of an electroluminescent device using an amine compound as a hole transport layer in an example of the present invention.

【図3】本発明の一実施例における正孔輸送層としてア
ミン化合物を用いた電界発光素子の特性を示す一覧図
FIG. 3 is a list chart showing characteristics of an electroluminescent device using an amine compound as a hole transport layer in an example of the present invention.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2 透明電極 3 正孔輸送層 4 電子輸送層兼発光層 5 Mg/Ag電極 1 Glass Substrate 2 Transparent Electrode 3 Hole Transport Layer 4 Electron Transport Layer and Light Emitting Layer 5 Mg / Ag Electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 村 上 睦 明 神奈川県川崎市多摩区東三田3丁目10番1 号 松下技研株式会社内 (72)発明者 富 山 裕 光 茨城県つくば市御幸が丘5番地 保土谷化 学工業株式会社筑波研究所内 (72)発明者 伊 原 郁 子 茨城県つくば市御幸が丘5番地 保土谷化 学工業株式会社筑波研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Mutsumi Murakami 3-10-1 Higashisanda, Tama-ku, Kawasaki City, Kanagawa Matsushita Giken Co., Ltd. (72) Yumitsu Toyama Miyuki Tsukuba, Ibaraki Prefecture 5 hills Hodogaya Chemical Industry Co., Ltd. Tsukuba Research Institute (72) Inventor Ikuko Ihara 5 Miyukigaoka, Tsukuba City, Ibaraki Hodogaya Chemical Industry Co., Ltd. Tsukuba Research Institute

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 下記一般式で記述されるアミン化合物を
用いたことを特徴とする電界発光素子。 【化1】 ただし、R1 、R2 、R3 は同一でも異なっていてもよ
く、水素原子、低級アルキル基、低級アルコキシ基、置
換または無置換のアリール基を表し、R4 は水素原子、
低級アルキル基、低級アルコキシ基、または塩素原子を
表す。また、A1は以下の構造を有する置換基を表す。 【化2】
1. An electroluminescent device comprising an amine compound represented by the following general formula. Embedded image However, R 1 , R 2 and R 3 may be the same or different and each represents a hydrogen atom, a lower alkyl group, a lower alkoxy group or a substituted or unsubstituted aryl group, R 4 is a hydrogen atom,
It represents a lower alkyl group, a lower alkoxy group, or a chlorine atom. A 1 represents a substituent having the following structure. Embedded image
【請求項2】 下記一般式で記述されるアミン化合物を
用いたことを特徴とする電界発光素子。 【化3】 ただし、R5 、R6 は同一でも異なっていてもよく、水
素原子、低級アルキル基、低級アルコキシ基、置換また
は無置換のアリール基を表し、R7 は水素原子、低級ア
ルキル基、低級アルコキシ基、または塩素原子を表す。
また、A2 は以下の構造を有する置換基を表す。 【化4】
2. An electroluminescent device comprising an amine compound represented by the following general formula. Embedded image However, R 5 and R 6 may be the same or different and each represents a hydrogen atom, a lower alkyl group, a lower alkoxy group or a substituted or unsubstituted aryl group, and R 7 is a hydrogen atom, a lower alkyl group or a lower alkoxy group. , Or represents a chlorine atom.
A 2 represents a substituent having the following structure. [Chemical 4]
【請求項3】 電極、正孔輸送層、発光層、電子輸送層
および電極を有することを特徴とする請求項1または2
記載の電界発光素子。
3. An electrode, a hole transporting layer, a light emitting layer, an electron transporting layer and an electrode.
The electroluminescent element described.
【請求項4】 電極、正孔輸送層、発光層、電子輸送層
および電極を有し、上記正孔輸送層として、請求項1ま
たは2記載のアミン化合物のうちから選定された少なく
とも2種類を含む材料を用いたことを特徴とする電界発
光素子。
4. An electrode, a hole transport layer, a light emitting layer, an electron transport layer and an electrode, wherein at least two kinds selected from the amine compounds according to claim 1 or 2 are used as the hole transport layer. An electroluminescent device characterized by using a material containing.
【請求項5】 電子輸送層が発光層を兼ねていることを
特徴とする請求項3または4記載の電界発光素子。
5. The electroluminescent device according to claim 3, wherein the electron transport layer also serves as a light emitting layer.
【請求項6】 正孔輸送層が発光層を兼ねていることを
特徴とする請求項3または4記載の電界発光素子。
6. The electroluminescent device according to claim 3, wherein the hole transport layer also serves as a light emitting layer.
JP23662294A 1993-11-01 1994-09-30 EL device Expired - Lifetime JP3274939B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP23662294A JP3274939B2 (en) 1994-09-30 1994-09-30 EL device
EP19940117206 EP0650955B1 (en) 1993-11-01 1994-10-31 Amine compound and electro-luminescence device comprising same
DE1994612567 DE69412567T2 (en) 1993-11-01 1994-10-31 Amine compound and electroluminescent device containing it
US08/332,726 US5639914A (en) 1993-11-01 1994-11-01 Tetraaryl benzidines
US08/738,326 US5707747A (en) 1993-11-01 1996-10-25 Amine compound and electro-luminescence device comprising same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23662294A JP3274939B2 (en) 1994-09-30 1994-09-30 EL device

Publications (2)

Publication Number Publication Date
JPH08100172A true JPH08100172A (en) 1996-04-16
JP3274939B2 JP3274939B2 (en) 2002-04-15

Family

ID=17003368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23662294A Expired - Lifetime JP3274939B2 (en) 1993-11-01 1994-09-30 EL device

Country Status (1)

Country Link
JP (1) JP3274939B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6376694B1 (en) 1998-07-09 2002-04-23 Chisso Corporation Silole derivatives and organic electroluminescent element containing the same
US6376106B1 (en) 1997-12-16 2002-04-23 Chisso Corporation Diaminonaphthalene derivative and organic electroluminescent device using the same
WO2002085822A1 (en) 2001-04-19 2002-10-31 Tdk Corporation Compound for organic el element and organic el element
JP2003229282A (en) * 2003-01-09 2003-08-15 Idemitsu Kosan Co Ltd Organic active el light emitting device
US6617053B2 (en) 2000-08-04 2003-09-09 Chisso Corporation Organic electroluminescent device containing dithiafulvene derivative
US6696182B2 (en) 2000-09-07 2004-02-24 Chisso Corporation Organic electroluminescent device comprising dipyridylthiophene derivative
US6806643B2 (en) 2001-05-10 2004-10-19 Samsung Sdi Co., Ltd. Light-emitting body, light emitting device and light-emitting display
US6902832B2 (en) 2000-07-07 2005-06-07 Chisso Corporation Charge-transporting material containing diazapentacene derivative, luminescent material, and organic electroluminescent element employing these
WO2005075451A1 (en) * 2004-02-09 2005-08-18 Nippon Steel Chemical Co., Ltd. Aminodibenzodioxin derivative and organic electroluminescent device using same
EP1731585A2 (en) 1998-12-25 2006-12-13 Konica Corporation Electroluminescent material and electroluminescent element
JP2007526634A (en) * 2004-02-20 2007-09-13 メルク パテント ゲーエムベーハー Organic electronic devices
US7592475B2 (en) 2002-06-29 2009-09-22 Dongwoo Fine-Chem Co., Ltd. Branched alpha-cyanostilbene fluorophores
US7623101B2 (en) 2001-02-27 2009-11-24 Samsung Mobile Display Co., Ltd. Light emitting device and light emitting system
JPWO2013161437A1 (en) * 2012-04-25 2015-12-24 国立大学法人九州大学 Luminescent material and organic light emitting device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6376106B1 (en) 1997-12-16 2002-04-23 Chisso Corporation Diaminonaphthalene derivative and organic electroluminescent device using the same
US6376694B1 (en) 1998-07-09 2002-04-23 Chisso Corporation Silole derivatives and organic electroluminescent element containing the same
EP1731585A2 (en) 1998-12-25 2006-12-13 Konica Corporation Electroluminescent material and electroluminescent element
US6902832B2 (en) 2000-07-07 2005-06-07 Chisso Corporation Charge-transporting material containing diazapentacene derivative, luminescent material, and organic electroluminescent element employing these
US6617053B2 (en) 2000-08-04 2003-09-09 Chisso Corporation Organic electroluminescent device containing dithiafulvene derivative
US6696182B2 (en) 2000-09-07 2004-02-24 Chisso Corporation Organic electroluminescent device comprising dipyridylthiophene derivative
US7623101B2 (en) 2001-02-27 2009-11-24 Samsung Mobile Display Co., Ltd. Light emitting device and light emitting system
WO2002085822A1 (en) 2001-04-19 2002-10-31 Tdk Corporation Compound for organic el element and organic el element
US6806643B2 (en) 2001-05-10 2004-10-19 Samsung Sdi Co., Ltd. Light-emitting body, light emitting device and light-emitting display
US7423382B2 (en) 2001-05-10 2008-09-09 Samsung Sdi Co., Ltd. Light-emitting body, light emitting device and light-emitting display
US7592475B2 (en) 2002-06-29 2009-09-22 Dongwoo Fine-Chem Co., Ltd. Branched alpha-cyanostilbene fluorophores
JP2003229282A (en) * 2003-01-09 2003-08-15 Idemitsu Kosan Co Ltd Organic active el light emitting device
WO2005075451A1 (en) * 2004-02-09 2005-08-18 Nippon Steel Chemical Co., Ltd. Aminodibenzodioxin derivative and organic electroluminescent device using same
JP2007526634A (en) * 2004-02-20 2007-09-13 メルク パテント ゲーエムベーハー Organic electronic devices
JPWO2013161437A1 (en) * 2012-04-25 2015-12-24 国立大学法人九州大学 Luminescent material and organic light emitting device

Also Published As

Publication number Publication date
JP3274939B2 (en) 2002-04-15

Similar Documents

Publication Publication Date Title
JP3194657B2 (en) EL device
JP4407102B2 (en) Anthracene compound, method for producing the same, and organic electroluminescent device
JP3220950B2 (en) Benzidine compound
JP2003040873A (en) New quinoxaline derivative and organic electroluminescent element utilizing the same
KR101153587B1 (en) Arylamine compound and organic electroluminescent device
KR100478520B1 (en) Blue light-emitting compound and display device adopting light-emitting compound as color-developing substance
JPH11162650A (en) Electroluminescent device
JP3274939B2 (en) EL device
JP2005019219A (en) Organic el light emitting element
JP3594642B2 (en) Diaminodiphenyl compound and organic electroluminescent device using the compound
JP3525034B2 (en) Organic electroluminescence device
JPH11323323A (en) Luminescent material
JPWO2003050201A1 (en) Organic electroluminescence element material
JP3529735B2 (en) Electroluminescent device
JPH07331238A (en) Electroluminescent element
JP2000178548A (en) Luminescent material
JP2004292766A (en) Organic electroluminescent element material
JP2001106678A (en) New heterocyclic ring-containing arylamine compound and organic electroluminescent element using the same
JP3745296B2 (en) Electroluminescent device
JP3880967B2 (en) Compound for electroluminescent device
JP3726316B2 (en) Electroluminescent device
JP5891055B2 (en) Arylamine compound and organic electroluminescence device
JP4491264B2 (en) Arylamine compounds
JPH083122A (en) Hexaamine compound
JP4308560B2 (en) Organometallic complex, its ligand, and organic EL device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080201

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090201

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100201

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100201

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140201

Year of fee payment: 12

EXPY Cancellation because of completion of term