JP2003040873A - New quinoxaline derivative and organic electroluminescent element utilizing the same - Google Patents

New quinoxaline derivative and organic electroluminescent element utilizing the same

Info

Publication number
JP2003040873A
JP2003040873A JP2001223867A JP2001223867A JP2003040873A JP 2003040873 A JP2003040873 A JP 2003040873A JP 2001223867 A JP2001223867 A JP 2001223867A JP 2001223867 A JP2001223867 A JP 2001223867A JP 2003040873 A JP2003040873 A JP 2003040873A
Authority
JP
Japan
Prior art keywords
group
carbon atoms
organic
quinoxaline derivative
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001223867A
Other languages
Japanese (ja)
Inventor
Hiroshi Yamamoto
弘志 山本
Toshihiro Iwakuma
俊裕 岩隈
Masahide Matsuura
正英 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2001223867A priority Critical patent/JP2003040873A/en
Publication of JP2003040873A publication Critical patent/JP2003040873A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a new quinoxaline derivative by which brightness of organic electroluminescent elements and efficiency of luminescence thereof can be heightened and long life of these elements can be attained by improvement of deposition of electrodes and to provide an organic electroluminescent element utilizing the derivative. SOLUTION: This new quinoxaline derivative has a specific structure. This organic electroluminescent element has an organic luminescent layer or an organic luminescent layer composed of a plurality of layers containing an organic luminescent layer between a pair of electrodes and contains the new quinoxaline derivative in which at least one layer of the organic compound layer has the specific structure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は新規なキノキサリン
誘導及びそれを利用する有機エレクトロルミネッセンス
素子に関し、特に高輝度化、高発光効率化及び電極の付
着改善による長期安定化を達成できる新規なキノキサリ
ン誘導及びそれを利用する有機エレクトロルミネッセン
ス素子に関するものである。
TECHNICAL FIELD The present invention relates to a novel quinoxaline derivative and an organic electroluminescence device using the same, and in particular, a novel quinoxaline derivative capable of achieving high brightness, high luminous efficiency and long-term stabilization by improving electrode adhesion. And an organic electroluminescence device using the same.

【0002】[0002]

【従来の技術】従来、有機エレクトロルミネッセンス素
子(以下、有機EL素子)に電子注入層を設けて発光効
率を高める試みがなされてきた。しかし、エキサイプレ
ックスの形成が見られたり、高輝度の発光は得られるも
のの発光寿命が短いという欠点があった。また、長時間
の通電により金属電極と有機層の剥離が発生したり、有
機層と電極が結晶化し白濁化して発光輝度が低下するた
め、このような現象を防ぐ必要があった。これを解決す
るてめの試みとして、米国特許第5077142号明細
書に、有機EL素子の構成成分としてピラジン化合物,
キノリン化合物,キノキサリン化合物、例えば、2,
3,5,6−テトラフェニルピラジン、2,3,4−ト
リフェニルキノリン及び2,3−ジフェニルキノキサリ
ンを用いることが記載されている。しかしながら、これ
らの化合物は融点が低いため、有機EL素子のアモルフ
ァス薄膜層として使用しても結晶化がすぐに起こり、ほ
とんど発光しなくなるという問題があった。また、通電
により金属電極と有機層の剥離が発生し、有機EL素子
の寿命が短くなるという問題があった。
2. Description of the Related Art Heretofore, attempts have been made to increase the luminous efficiency by providing an electron injection layer in an organic electroluminescence device (hereinafter, organic EL device). However, there are drawbacks such as formation of exciplex and high-luminance emission, but short emission life. Further, it is necessary to prevent such a phenomenon because peeling between the metal electrode and the organic layer occurs due to energization for a long time, or the organic layer and the electrode are crystallized and become opaque to reduce emission luminance. As an attempt to solve this, US Pat. No. 5,077,142 discloses a pyrazine compound as a constituent component of an organic EL device,
Quinoline compounds, quinoxaline compounds, for example 2,
The use of 3,5,6-tetraphenylpyrazine, 2,3,4-triphenylquinoline and 2,3-diphenylquinoxaline is described. However, since these compounds have low melting points, there is a problem that even when they are used as an amorphous thin film layer of an organic EL element, crystallization occurs immediately and almost no light is emitted. In addition, there is a problem that the metal electrode and the organic layer are peeled off by energization, and the life of the organic EL element is shortened.

【0003】[0003]

【発明が解決しようとする課題】本発明は、前記の課題
を解決するためになされたもので、有機EL素子の高輝
度化、高発光効率化及び電極の付着改善による長寿命化
が可能な新規なキノキサリン誘導体及びそれを利用した
有機EL素子を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and it is possible to increase the brightness of an organic EL element, increase the luminous efficiency, and prolong the service life by improving the adhesion of electrodes. It is an object of the present invention to provide a novel quinoxaline derivative and an organic EL device using the same.

【0004】[0004]

【課題を解決するための手段】本発明者らは、前記目的
を達成するために鋭意研究を重ねた結果、特定の構造を
有する新規なキノキサリン誘導体を、有機化合物層の少
なくとも一層、特に、電子注入層に用いることにより、
高輝度化、高発光効率化及び電極の付着改善による長期
安定化が達成された有機EL素子が得られることを見出
した。本発明は、かかる知見に基づいて完成したもので
ある。
Means for Solving the Problems As a result of intensive studies for achieving the above-mentioned object, the present inventors have found that a novel quinoxaline derivative having a specific structure is added to at least one layer of an organic compound layer, especially an electronic compound layer. By using it for the injection layer,
It has been found that an organic EL device can be obtained in which high brightness, high light emission efficiency, and long-term stabilization by improving electrode adhesion are achieved. The present invention has been completed based on such findings.

【0005】すなわち、本発明は、下記一般式(I)で
示される新規なキノキサリン誘導体を提供するものであ
る。
That is, the present invention provides a novel quinoxaline derivative represented by the following general formula (I).

【化2】 (式中、R1〜R6 は、それぞれ独立に、水素原子、ハ
ロゲン原子、炭素数1〜6のアルキル基、炭素数1〜6
のアルコキシ基、炭素数6〜20のアリールオキシ基、
炭素数1〜6のアルキルチオ基、炭素数6〜40のアリ
ールチオ基、炭素数1〜6のアルキルスルホニル基、炭
素数1〜6のアルキルスルフィニル基、炭素数6〜40
のアリールスルホニル基、炭素数6〜40のアリールス
ルフィニル基、シアノ基、置換もしくは無置換の炭素数
6〜40のアリール基、又は置換もしくは無置換の炭素
数6〜40のヘテロアリール基を表す。R1〜R4 は、
隣同士で互いに結合して環を形成していてもよく、置換
されていてもよい。Ar1及びAr2は、それぞれ独立
に、水素原子、ハロゲン原子、炭素数1〜6のアルキル
基、炭素数1〜6のアルコキシ基、炭素数6〜40のア
リールオキシ基、炭素数1〜6のアルキルチオ基、炭素
数6〜40のアリールチオ基、炭素数1〜6のアルキル
スルホニル基、炭素数1〜6のアルキルスルフィニル
基、炭素数6〜40のアリールスルホニル基、炭素数6
〜40のアリールスルフィニル基、シアノ基を有してい
てもよい炭素数6〜40のアリール基、又は置換もしく
は無置換の炭素数6〜40のヘテロアリール基を表す。
k及びlは、それぞれ独立に、0〜2の整数を表し、m
及びnは、それぞれ独立に、0〜5の整数を表す。ただ
し、R2及びR3 が同時に水素原子、フェニル基又はア
ルキル基置換フェニル基であり、かつm=n=0である
場合を除く。)
[Chemical 2] (In the formula, R 1 to R 6 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, or 1 to 6 carbon atoms.
An alkoxy group, an aryloxy group having 6 to 20 carbon atoms,
Alkylthio group having 1 to 6 carbon atoms, arylthio group having 6 to 40 carbon atoms, alkylsulfonyl group having 1 to 6 carbon atoms, alkylsulfinyl group having 1 to 6 carbon atoms, and 6 to 40 carbon atoms
Represents an arylsulfonyl group, an arylsulfinyl group having 6 to 40 carbon atoms, a cyano group, a substituted or unsubstituted aryl group having 6 to 40 carbon atoms, or a substituted or unsubstituted heteroaryl group having 6 to 40 carbon atoms. R 1 to R 4 are
They may be bonded to each other adjacent to each other to form a ring or may be substituted. Ar 1 and Ar 2 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an aryloxy group having 6 to 40 carbon atoms, and 1 to 6 carbon atoms. Alkylthio group, C6-40 arylthio group, C1-6 alkylsulfonyl group, C1-6 alkylsulfinyl group, C6-40 arylsulfonyl group, C6
Represents an arylsulfinyl group having 40 to 40 carbon atoms, an aryl group having 6 to 40 carbon atoms which may have a cyano group, or a substituted or unsubstituted heteroaryl group having 6 to 40 carbon atoms.
k and l each independently represent an integer of 0 to 2, and m
And n represent the integer of 0-5 each independently. However, the case where R 2 and R 3 are simultaneously a hydrogen atom, a phenyl group or an alkyl group-substituted phenyl group and m = n = 0 is excluded. )

【0006】また、本発明は、一対の電極間に有機発光
層又は有機発光層を含む複数層からなる有機化合物層を
有する有機EL素子であって、該有機化合物層の少なく
とも一層が前記一般式(I)で表されるキノキサリン誘
導体を含有する有機EL素子を提供するものである。
Further, the present invention is an organic EL element having an organic light emitting layer or a plurality of organic compound layers including the organic light emitting layer between a pair of electrodes, wherein at least one of the organic compound layers has the above-mentioned general formula. The present invention provides an organic EL device containing the quinoxaline derivative represented by (I).

【0007】[0007]

【発明の実施の形態】本発明の前記一般式(I)で表さ
れる新規キノキサリン誘導体において、R1 〜R6 は、
それぞれ独立に、水素原子、ハロゲン原子、炭素数1〜
6のアルキル基、炭素数1〜6のアルコキシ基、炭素数
6〜20のアリールオキシ基、炭素数1〜6のアルキル
チオ基、炭素数6〜40のアリールチオ基、炭素数1〜
6のアルキルスルホニル基、炭素数1〜6のアルキルス
ルフィニル基、炭素数6〜40のアリールスルホニル
基、炭素数6〜40のアリールスルフィニル基、シアノ
基、置換もしくは無置換の炭素数6〜40のアリール
基、又は置換もしくは無置換の炭素数6〜40のヘテロ
アリール基を表す。前記一般式(I)において、R1
4 は、隣同士で互いに結合して環を形成していてもよ
く、置換されていてもよい。
BEST MODE FOR CARRYING OUT THE INVENTION In the novel quinoxaline derivative represented by the above general formula (I) of the present invention, R 1 to R 6 are
Each independently, hydrogen atom, halogen atom, carbon number 1 ~
6 alkyl group, C1-6 alkoxy group, C6-20 aryloxy group, C1-6 alkylthio group, C6-40 arylthio group, C1-6
6 alkylsulfonyl group, C 1-6 alkylsulfinyl group, C 6-40 arylsulfonyl group, C 6-40 arylsulfinyl group, cyano group, substituted or unsubstituted C 6-40 It represents an aryl group or a substituted or unsubstituted heteroaryl group having 6 to 40 carbon atoms. In the general formula (I), R 1 to
R 4 may be bonded to each other adjacent to each other to form a ring or may be substituted.

【0008】ハロゲン原子としては、フッ素、塩素、臭
素、ヨウ素が挙げられる。炭素数1〜6のアルキル基と
しては、例えば、メチル基,エチル基,プロピル基,ブ
チル基,ペンチル基,ヘキシル基などが挙げられ、炭素
数が3以上のものは直鎖状、環状又は分岐を有するもの
でもよい。炭素数1〜6のアルコキシ基としては、例え
ば、メトキシ基,エトキシ基,プロポキシ基,ブトキシ
基,ペンチルオキシ基,ヘキシルオキシ基などが挙げら
れ、炭素数が3以上のものは直鎖状、環状又は分岐を有
するものでもよい。炭素数6〜40のアリールオキシ基
としては、例えば、フェノキシ基,ビフェニルオキシ基
などが挙げられる。炭素数1〜6のアルキルチオ基とし
ては、例えば、メチルチオ基,エチルチオ基,プロピル
チオ基,ブチルチオ基,ペンチルチオ基,ヘキシルチオ
基などが挙げられ、炭素数が3以上のものは直鎖状、環
状又は分岐を有するものでもよい。
Examples of the halogen atom include fluorine, chlorine, bromine and iodine. Examples of the alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group and a hexyl group, and those having 3 or more carbon atoms are linear, cyclic or branched. May be included. Examples of the alkoxy group having 1 to 6 carbon atoms include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentyloxy group, and a hexyloxy group, and those having 3 or more carbon atoms are linear or cyclic. Alternatively, it may have a branch. Examples of the aryloxy group having 6 to 40 carbon atoms include phenoxy group and biphenyloxy group. Examples of the alkylthio group having 1 to 6 carbon atoms include a methylthio group, an ethylthio group, a propylthio group, a butylthio group, a pentylthio group, and a hexylthio group. Those having 3 or more carbon atoms are linear, cyclic or branched. May be included.

【0009】炭素数6〜40のアリールチオ基として
は、例えば、フェニルチオ基,ビフェニルチオ基などが
挙げられる。炭素数1〜6のアルキルスルホニル基とし
ては、例えば、メチルスルホニル基,エチルスルホニル
基,プロピルスルホニル基,ブチルスルホニル基,ペン
チルスルホニル基,ヘキシルスルホニル基などが挙げら
れ、炭素数が3以上のものは直鎖状、環状又は分岐を有
するものでもよい。炭素数1〜6のアルキルスルフィニ
ル基としては、例えば、メチルスルフィニル基,エチル
スルフィニル基,プロピルスルフィニル基,ブチルスル
フィニル基,ペンチルスルフィニル基,ヘキシルスルフ
ィニル基などが挙げられ、炭素数が3以上のものは直鎖
状、環状又は分岐を有するものでもよい。炭素数6〜4
0のアリールスルホニル基としては、フェニルスルホニ
ル基,ビフェニルスルホニル基などが挙げられる。炭素
数6〜40のアリールスルフィニル基としては、フェニ
ルスルフィニル基,ビフェニルスルフィニル基などが挙
げられる。
Examples of the arylthio group having 6 to 40 carbon atoms include phenylthio group and biphenylthio group. Examples of the alkylsulfonyl group having 1 to 6 carbon atoms include a methylsulfonyl group, an ethylsulfonyl group, a propylsulfonyl group, a butylsulfonyl group, a pentylsulfonyl group, and a hexylsulfonyl group. It may be linear, cyclic or branched. Examples of the alkylsulfinyl group having 1 to 6 carbon atoms include a methylsulfinyl group, an ethylsulfinyl group, a propylsulfinyl group, a butylsulfinyl group, a pentylsulfinyl group, and a hexylsulfinyl group. It may be linear, cyclic or branched. 6 to 4 carbon atoms
Examples of the arylsulfonyl group of 0 include a phenylsulfonyl group and a biphenylsulfonyl group. Examples of the arylsulfinyl group having 6 to 40 carbon atoms include a phenylsulfinyl group and a biphenylsulfinyl group.

【0010】置換もしくは無置換の炭素数6〜40のア
リール基としては、例えば、フェニル基,ビフェニル
基、ナフチル基、フルオランテニル基、ピレニル基など
が挙げられ、置換基としては、R1 〜R6 として例示し
たものと同じものを挙げることができ、メトキシ基,エ
トキシ基,プロポキシ基,イソプロポキシ基,n−ブト
キシ基,イソブトキシ基,t−ブトキシ基,sec−ブ
トキシ基などの炭素数1〜6のアルコキシ基、フッ素,
塩素,臭素,ヨウ素などのハロゲン原子、ニトロ基,シ
アノ基,水酸基,カルボキシル基,メチルチオ基,エチ
ルチオ基,プロピルチオ基,ブチルチオ基,ペンチルチ
オ基,ヘキシルチオ基などの炭素数1〜6のアルキルチ
オ基、メチルスルフィニル基,エチルスルフィニル基,
プロピルスルフィニル基,ブチルスルフィニル基,ペン
チルスルフィニル基,ヘキシルスルフィニル基などの炭
素数1〜6のアルキルスルフィニル基、メチルスルホニ
ル基,エチルスルホニル基,プロピルスルホニル基,ブ
チルスルホニル基,ペンチルスルホニル基,ヘキシルス
ルホニル基などの炭素数1〜6のアルキルスルホニル基
などが挙げられる。
Examples of the substituted or unsubstituted aryl group having 6 to 40 carbon atoms include a phenyl group, a biphenyl group, a naphthyl group, a fluoranthenyl group and a pyrenyl group, and the substituents are R 1 to The same as those exemplified as R 6 can be mentioned, and the number of carbon atoms such as methoxy group, ethoxy group, propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, t-butoxy group, sec-butoxy group is 1 An alkoxy group of ~ 6, fluorine,
Halogen atom such as chlorine, bromine, iodine, nitro group, cyano group, hydroxyl group, carboxyl group, methylthio group, ethylthio group, propylthio group, butylthio group, pentylthio group, alkylthio group having 1 to 6 carbon atoms such as hexylthio group, methyl Sulfinyl group, ethylsulfinyl group,
C1-C6 alkylsulfinyl groups such as propylsulfinyl group, butylsulfinyl group, pentylsulfinyl group, hexylsulfinyl group, methylsulfonyl group, ethylsulfonyl group, propylsulfonyl group, butylsulfonyl group, pentylsulfonyl group, hexylsulfonyl group And an alkylsulfonyl group having 1 to 6 carbon atoms.

【0011】置換もしくは無置換の炭素数6〜40のヘ
テロアリール基としては、例えば、、酸素原子を含むフ
リル基、硫黄原子を含むチエニル基、又は上記アリール
基の一部の炭素原子を窒素に置き換えたもの、ピリジル
基、キノリル基などが挙げられる。また、R1〜R
6 は、アミノ基を有してはならない。これは、電子輸送
性を阻害するからである。
The substituted or unsubstituted heteroaryl group having 6 to 40 carbon atoms is, for example, a furyl group containing an oxygen atom, a thienyl group containing a sulfur atom, or a part of the carbon atoms of the above aryl group is replaced with nitrogen. Substituted groups, pyridyl groups, quinolyl groups and the like can be mentioned. Also, R 1 to R
6 must have no amino groups. This is because the electron transport property is hindered.

【0012】本発明の前記一般式(I)で表される新規
キノキサリン誘導体において、Ar1及びAr2は、それ
ぞれ独立に、水素原子、ハロゲン原子、炭素数1〜6の
アルキル基、炭素数1〜6のアルコキシ基、炭素数6〜
40のアリールオキシ基、炭素数1〜6のアルキルチオ
基、炭素数6〜40のアリールチオ基、炭素数1〜6の
アルキルスルホニル基、炭素数1〜6のアルキルスルフ
ィニル基、炭素数6〜40のアリールスルホニル基、炭
素数6〜40のアリールスルフィニル基、シアノ基を有
していてもよい炭素数6〜40のアリール基、又は置換
もしくは無置換の炭素数6〜40のヘテロアリール基を
表す。
In the novel quinoxaline derivative represented by the general formula (I) of the present invention, Ar 1 and Ar 2 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, or 1 carbon atom. ~ 6 alkoxy group, carbon number 6 ~
40 aryloxy group, C1-6 alkylthio group, C6-40 arylthio group, C1-6 alkylsulfonyl group, C1-6 alkylsulfinyl group, C6-40 It represents an arylsulfonyl group, an arylsulfinyl group having 6 to 40 carbon atoms, an aryl group having 6 to 40 carbon atoms which may have a cyano group, or a substituted or unsubstituted heteroaryl group having 6 to 40 carbon atoms.

【0013】ハロゲン原子としては、フッ素、塩素、臭
素、ヨウ素が挙げられる。炭素数1〜6のアルキル基と
しては、例えば、メチル基,エチル基,プロピル基,ブ
チル基,ペンチル基,ヘキシル基などが挙げられ、炭素
数が3以上のものは直鎖状、環状又は分岐を有するもの
でもよい。炭素数1〜6のアルコキシ基としては、例え
ば、メトキシ基,エトキシ基,プロポキシ基,ブトキシ
基,ペンチルオキシ基,ヘキシルオキシ基などが挙げら
れ、炭素数が3以上のものは直鎖状、環状又は分岐を有
するものでもよい。炭素数6〜40のアリールオキシ基
としては、例えば、フェノキシ基,ビフェニルオキシ基
などが挙げられる。
Examples of the halogen atom include fluorine, chlorine, bromine and iodine. Examples of the alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group and a hexyl group, and those having 3 or more carbon atoms are linear, cyclic or branched. May be included. Examples of the alkoxy group having 1 to 6 carbon atoms include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentyloxy group, and a hexyloxy group, and those having 3 or more carbon atoms are linear or cyclic. Alternatively, it may have a branch. Examples of the aryloxy group having 6 to 40 carbon atoms include phenoxy group and biphenyloxy group.

【0014】炭素数1〜6のアルキルチオ基としては、
例えば、メチルチオ基,エチルチオ基,プロピルチオ
基,ブチルチオ基,ペンチルチオ基,ヘキシルチオ基な
どが挙げられ、炭素数が3以上のものは直鎖状、環状又
は分岐を有するものでもよい。炭素数6〜40のアリー
ルチオ基としては、例えば、フェニルチオ基,ビフェニ
ルチオ基などが挙げられる。炭素数1〜6のアルキルス
ルホニル基としては、例えば、メチルスルホニル基,エ
チルスルホニル基,プロピルスルホニル基,ブチルスル
ホニル基,ペンチルスルホニル基,ヘキシルスルホニル
基などが挙げられ、炭素数が3以上のものは直鎖状、環
状又は分岐を有するものでもよい。炭素数1〜6のアル
キルスルフィニル基としては、例えば、メチルスルフィ
ニル基,エチルスルフィニル基,プロピルスルフィニル
基,ブチルスルフィニル基,ペンチルスルフィニル基,
ヘキシルスルフィニル基などが挙げられ、炭素数が3以
上のものは直鎖状、環状又は分岐を有するものでもよ
い。
As the alkylthio group having 1 to 6 carbon atoms,
Examples thereof include a methylthio group, an ethylthio group, a propylthio group, a butylthio group, a pentylthio group, and a hexylthio group, and those having 3 or more carbon atoms may be linear, cyclic or branched. Examples of the arylthio group having 6 to 40 carbon atoms include phenylthio group and biphenylthio group. Examples of the alkylsulfonyl group having 1 to 6 carbon atoms include a methylsulfonyl group, an ethylsulfonyl group, a propylsulfonyl group, a butylsulfonyl group, a pentylsulfonyl group, and a hexylsulfonyl group. It may be linear, cyclic or branched. Examples of the alkylsulfinyl group having 1 to 6 carbon atoms include methylsulfinyl group, ethylsulfinyl group, propylsulfinyl group, butylsulfinyl group, pentylsulfinyl group,
Examples thereof include a hexylsulfinyl group, and those having 3 or more carbon atoms may be linear, cyclic or branched.

【0015】炭素数1〜6のアルキルスルホニル基とし
ては、例えば、メチルスルホニル基,エチルスルホニル
基,プロピルスルホニル基,ブチルスルホニル基,ペン
チルスルホニル基,ヘキシルスルホニル基などが挙げら
れ、炭素数が3以上のものは直鎖状、環状又は分岐を有
するものでもよい。炭素数1〜6のアルキルスルフィニ
ル基としては、例えば、メチルスルフィニル基,エチル
スルフィニル基,プロピルスルフィニル基,ブチルスル
フィニル基,ペンチルスルフィニル基,ヘキシルスルフ
ィニル基などが挙げられ、炭素数が3以上のものは直鎖
状、環状又は分岐を有するものでもよい。炭素数6〜4
0のアリールスルホニル基としては、フェニルスルホニ
ル基,ビフェニルスルホニル基などが挙げられる。炭素
数6〜40のアリールスルフィニル基としては、フェニ
ルスルフィニル基,ビフェニルスルフィニル基などが挙
げられる。
Examples of the alkylsulfonyl group having 1 to 6 carbon atoms include a methylsulfonyl group, an ethylsulfonyl group, a propylsulfonyl group, a butylsulfonyl group, a pentylsulfonyl group, a hexylsulfonyl group, etc., and a carbon number of 3 or more. Those may be linear, cyclic or branched. Examples of the alkylsulfinyl group having 1 to 6 carbon atoms include a methylsulfinyl group, an ethylsulfinyl group, a propylsulfinyl group, a butylsulfinyl group, a pentylsulfinyl group, and a hexylsulfinyl group. It may be linear, cyclic or branched. 6 to 4 carbon atoms
Examples of the arylsulfonyl group of 0 include a phenylsulfonyl group and a biphenylsulfonyl group. Examples of the arylsulfinyl group having 6 to 40 carbon atoms include a phenylsulfinyl group and a biphenylsulfinyl group.

【0016】シアノ基を有していてもよい炭素数6〜4
0のアリール基としては、例えば、フェニル基,ビフェ
ニル基、ナフチル基、フルオランテニル基、ピレニル基
などが挙げられ、置換基としては、R1 〜R6 として例
示したものと同じものを挙げることができ、メトキシ
基,エトキシ基,プロポキシ基,イソプロポキシ基,n
−ブトキシ基,イソブトキシ基,t−ブトキシ基,se
c−ブトキシ基などの炭素数1〜6のアルコキシ基、フ
ッ素,塩素,臭素,ヨウ素などのハロゲン原子、ニトロ
基,シアノ基,水酸基,カルボキシル基,メチルチオ
基,エチルチオ基,プロピルチオ基,ブチルチオ基,ペ
ンチルチオ基,ヘキシルチオ基などの炭素数1〜6のア
ルキルチオ基、メチルスルフィニル基,エチルスルフィ
ニル基,プロピルスルフィニル基,ブチルスルフィニル
基,ペンチルスルフィニル基,ヘキシルスルフィニル基
などの炭素数1〜6のアルキルスルフィニル基、メチル
スルホニル基,エチルスルホニル基,プロピルスルホニ
ル基,ブチルスルホニル基,ペンチルスルホニル基,ヘ
キシルスルホニル基などの炭素数1〜6のアルキルスル
ホニル基などが挙げられる。
6 to 4 carbon atoms which may have a cyano group
Examples of the aryl group of 0 include a phenyl group, a biphenyl group, a naphthyl group, a fluoranthenyl group, a pyrenyl group, and the like, and examples of the substituent include the same groups as those exemplified as R 1 to R 6. Methoxy group, ethoxy group, propoxy group, isopropoxy group, n
-Butoxy group, isobutoxy group, t-butoxy group, se
an alkoxy group having 1 to 6 carbon atoms such as c-butoxy group, a halogen atom such as fluorine, chlorine, bromine, iodine, nitro group, cyano group, hydroxyl group, carboxyl group, methylthio group, ethylthio group, propylthio group, butylthio group, C1-6 alkylthio groups such as pentylthio group, hexylthio group, methylsulfinyl group, ethylsulfinyl group, propylsulfinyl group, butylsulfinyl group, pentylsulfinyl group, hexylsulfinyl group, etc. alkylsulfinyl group And alkylsulfonyl groups having 1 to 6 carbon atoms such as a methylsulfonyl group, an ethylsulfonyl group, a propylsulfonyl group, a butylsulfonyl group, a pentylsulfonyl group, and a hexylsulfonyl group.

【0017】置換もしくは無置換の炭素数6〜40のヘ
テロアリール基としては、例えば、、酸素原子を含むフ
リル基、硫黄原子を含むチエニル基、又は上記アリール
基の一部の炭素原子を窒素に置き換えたもの、ピリジル
基、キノリル基などが挙げられる。前記一般式(I)に
おいて、k及びlは、それぞれ独立に、0〜2の整数を
表し、m及びnは、それぞれ独立に、0〜5の整数を表
す。また、前記一般式(I)において、R2及びR3
同時に水素原子、フェニル基又はアルキル基置換フェニ
ル基であり、かつm=n=0である場合を除く。
The substituted or unsubstituted heteroaryl group having 6 to 40 carbon atoms is, for example, a furyl group containing an oxygen atom, a thienyl group containing a sulfur atom, or a part of the carbon atoms of the above aryl group is replaced with nitrogen. Substituted groups, pyridyl groups, quinolyl groups and the like can be mentioned. In the general formula (I), k and l each independently represent an integer of 0 to 2, and m and n each independently represent an integer of 0 to 5. Further, in the general formula (I), the case where R 2 and R 3 are simultaneously a hydrogen atom, a phenyl group or an alkyl group-substituted phenyl group and m = n = 0 is excluded.

【0018】本発明の有機EL素子は、有機発光層又は
有機発光層を含む複数層からなる有機化合物層の少なく
とも一層が、上記一般式(I)で表されるキノキサリン
誘導体を含有するものであって、その素子構成として
は、陽極/正孔注入層/発光層/電子注入層/陰極、陽
極/発光層/電子注入層/陰極、陽極/正孔注入層/発
光層/陰極、陽極/発光層/陰極型などが挙げられる。
本発明の有機EL素子は、本発明のキノキサリン誘導体
を、主として発光帯域に含有させると好ましく、有機発
光層に含有させるとさらに好ましい。また、電子注入層
が前記キノキサリン誘導体からなると特に好ましい。本
発明の有機EL素子の素子構成においては、正孔注入層
や電子注入層は必要ではないが、これらの層を有する素
子は発光性能が向上する利点がある。また、一対の電極
間に上記正孔注入層,発光層,電子注入層を混合させた
形で挟持させてもよい。さらに、各成分を安定に存在さ
せるため、高分子化合物などのバインダーを用いて混合
層を作製してもよい。
In the organic EL device of the present invention, at least one of the organic light emitting layer or the organic compound layer composed of a plurality of layers including the organic light emitting layer contains the quinoxaline derivative represented by the above general formula (I). The device structure is as follows: anode / hole injection layer / emission layer / electron injection layer / cathode, anode / emission layer / electron injection layer / cathode, anode / hole injection layer / emission layer / cathode, anode / emission Layer / cathode type and the like can be mentioned.
The organic EL device of the present invention preferably contains the quinoxaline derivative of the present invention mainly in the emission band, and more preferably in the organic light emitting layer. Further, it is particularly preferable that the electron injection layer is made of the quinoxaline derivative. In the device constitution of the organic EL device of the present invention, the hole injection layer and the electron injection layer are not necessary, but the device having these layers has an advantage that the light emitting performance is improved. The hole injection layer, the light emitting layer, and the electron injection layer may be sandwiched between a pair of electrodes. Furthermore, in order to make each component exist stably, a mixed layer may be prepared using a binder such as a polymer compound.

【0019】ここで、本発明の有機EL素子として、陽
極/正孔注入層/発光層/電子注入層/陰極型を例にし
て説明する。本発明の素子は、基板に支持されているこ
とが好ましい。この基板については、特に制限はなく、
従来の有機EL素子に慣用されているものであればよ
く、例えば、ガラス,透明プラスチック,石英などから
なるものを用いることができる。この有機EL素子の正
極としては、仕事関数の大きい(4eV以上)金属,合
金,電気伝導性化合物及びこれらの混合物を電極物質と
するものが好ましく用いられる。このような電極物質の
具体例としては、Auなどの金属,CuI,ITO,S
nO2 ,ZnOなどの導電性透明材料が挙げられる。該
正極は、これらの電極物質を蒸着やスパッタリングなど
の方法により、薄膜を形成させることにより作製するこ
とができる。この電極より発光を取り出す場合には、透
過率を10%より大きくすることが望ましく、また、電
極としてのシート抵抗は数百Ω/□以下が好ましい。さ
らに膜厚は材料にもよるが、通常10nm〜1μm、好
ましくは10〜200nmである。
Here, the organic EL device of the present invention will be described by taking an anode / hole injection layer / light emitting layer / electron injection layer / cathode type as an example. The device of the present invention is preferably supported on a substrate. There is no particular limitation on this substrate,
Any conventional organic EL device may be used, and for example, one made of glass, transparent plastic, quartz or the like can be used. As the positive electrode of this organic EL element, a material having an electrode substance of a metal, an alloy, an electrically conductive compound having a large work function (4 eV or more) and a mixture thereof is preferably used. Specific examples of such an electrode material include metals such as Au, CuI, ITO, and S.
Conductive transparent materials such as nO 2 and ZnO are mentioned. The positive electrode can be produced by forming a thin film of these electrode substances by a method such as vapor deposition or sputtering. When the emitted light is taken out from this electrode, it is desirable that the transmittance is higher than 10%, and the sheet resistance as an electrode is preferably several hundred Ω / □ or less. Further, the film thickness depends on the material, but is usually 10 nm to 1 μm, preferably 10 to 200 nm.

【0020】一方、陰極としては、仕事関数の小さい
(4eV以下)金属,合金,電気伝導性化合物及びこれ
らの混合物を電極物質とするものが用いられる。このよ
うな電極物質の具体例としては、ナトリウム,ナトリウ
ム−カリウム合金,マグネシウム,マグネシウム−銀合
金,リチウム,マグネシウム/銅混合物,マグネシウム
−インジウム合金,Al/Al2 3 ,インジウム,ア
ルミニウム−リチウム合金などが挙げられる。陰極は、
これらの電極物質を蒸着やスパッタリングなどの方法に
より、薄膜を形成させることにより、作製することがで
きる。また、電極としてのシート抵抗は数百Ω/□以下
が好ましく、膜厚は通常10〜500nm、好ましくは
50〜200nmである。なお、発光を透過させるた
め、有機EL素子の陽極又は陰極のいずれか一方が、透
明又は半透明であれば発光効率が向上し好都合である。
On the other hand, as the cathode, those having an electrode substance of a metal, an alloy, an electrically conductive compound having a small work function (4 eV or less) and a mixture thereof are used. Specific examples of such an electrode material include sodium, sodium-potassium alloy, magnesium, magnesium-silver alloy, lithium, magnesium / copper mixture, magnesium-indium alloy, Al / Al 2 O 3 , indium, aluminum-lithium alloy. And so on. The cathode is
These electrode materials can be produced by forming a thin film by a method such as vapor deposition or sputtering. The sheet resistance as an electrode is preferably several hundreds Ω / □ or less, and the film thickness is usually 10 to 500 nm, preferably 50 to 200 nm. In order to transmit the emitted light, it is convenient that either the anode or the cathode of the organic EL element is transparent or semi-transparent and the luminous efficiency is improved.

【0021】本発明の素子における発光層の発光材料と
しては、本発明の一般式(I)で表されるキノキサリン
誘導体が好ましい。発行材料が本発明のキノキサリン誘
導体である場合には、発光層の発光材料について、特に
制限されることはなく、従来公知の化合物の中から任意
のものを選択して用いることができる。この発光材料と
しては、例えば、多環縮合芳香族化合物、ベンゾオキサ
ゾール系,ベンゾチアゾール系,ベンゾイミダゾール系
などの蛍光増白剤、金属キレート化オキサノイド化合
物、ジスチリルベンゼン系化合物など薄膜形成性の良い
化合物を用いることができる。上記多環縮合芳香族化合
物としては、例えば、アントラセン,ナフタレン,フェ
ナントレン,ピレン,クリセン,ペリレン骨格を含む縮
合環発光物質や、約8個の縮合環を含む他の縮合環発光
物質などを挙げることができる。具体的には、1,1,
4,4−テトラフェニル−1,3−ブタジエン又は4,
4’−(2,2−ジフェニルビニル)ビフェニルなどを
用いることができる。発光層は、これらの発光材料一種
又は二種以上からなる一層で構成されてもよく、前記発
光層とは別種の化合物からなる発光層を積層したもので
あってもよい。
As the light emitting material of the light emitting layer in the device of the present invention, the quinoxaline derivative represented by the general formula (I) of the present invention is preferable. When the issuing material is the quinoxaline derivative of the present invention, the light emitting material of the light emitting layer is not particularly limited, and any conventionally known compound can be selected and used. As the light emitting material, for example, a polycyclic fused aromatic compound, a fluorescent whitening agent such as a benzoxazole-based, benzothiazole-based, or benzimidazole-based compound, a metal chelated oxanoide compound, a distyrylbenzene-based compound, or the like, which has a good thin film forming property. Compounds can be used. Examples of the above-mentioned polycyclic fused aromatic compound include a condensed ring luminescent substance containing anthracene, naphthalene, phenanthrene, pyrene, chrysene, and perylene skeleton, and another fused ring luminescent substance containing about 8 condensed rings. You can Specifically, 1, 1,
4,4-tetraphenyl-1,3-butadiene or 4,
4 ′-(2,2-diphenylvinyl) biphenyl or the like can be used. The light emitting layer may be composed of a single layer made of one or more of these light emitting materials, or may be a laminate of light emitting layers made of a compound different from the light emitting layer.

【0022】本発明の有機EL素子の正孔注入層は、正
孔伝達化合物からなるものであって、陽極より注入され
た正孔を発光層に伝達する機能を有し、この正孔注入層
を陽極と発光層の間に介在させることにより、より低い
電界で多くの正孔が発光層に注入され、さらに、発光層
に陰極又は電子注入層より注入された電子は、発光層と
正孔注入層の界面に存在する電子の障壁により、発光層
内の界面に累積され発光効率が向上するなど発光性能の
優れた素子となる。このような正孔注入層に用いられる
正孔伝達化合物は、電界を与えられた2個の電極間に配
置されて陽極から正孔が注入された場合、正孔を適切に
発光層へ伝達しうるものであり、例えば104〜106
V/cmの電界印加時に少なくとも10-6cm2 /V・
秒の正孔移動度を有するものが好適である。この正孔伝
達化合物は、前記の好ましい性質を有するものであれば
特に制限はなく、従来、光導伝材料において、正孔の電
荷注入輸送材料として慣用されているものや有機EL素
子の正孔注入層に使用される公知のものの中から任意の
ものを選択して用いることができる。
The hole injection layer of the organic EL device of the present invention is made of a hole transfer compound and has a function of transferring holes injected from the anode to the light emitting layer. By interposing between the anode and the light emitting layer, many holes are injected into the light emitting layer at a lower electric field, and further, the electrons injected from the cathode or the electron injection layer into the light emitting layer are Due to the electron barrier existing at the interface of the injection layer, the element is excellent in light emission performance, such as being accumulated at the interface in the light emitting layer and improving the light emission efficiency. The hole transporting compound used in the hole injecting layer is disposed between two electrodes to which an electric field is applied, and when the hole is injected from the anode, the hole is appropriately transferred to the light emitting layer. It is possible that, for example, 104 to 106
At least 10 -6 cm 2 / V · when an electric field of V / cm is applied
Those having a hole mobility of seconds are suitable. The hole transfer compound is not particularly limited as long as it has the above-mentioned preferable properties, and is conventionally used as a charge injection / transport material for holes in an optical transmission material or a hole injection for an organic EL element. Any known material can be selected from the known materials used for the layer.

【0023】前記正孔伝達化合物としては、例えば、銅
フタロシアニンや、N,N,N’,N’−テトラフェニ
ル−4,4’−ジアミノフェニル、N,N’−ジフェニ
ル−N,N’−ジ(3−メチルフェニル)−4,4’−
ジアミノビフェニル(TPDA)、2,2−ビス(4−
ジ−p−トリルアミノフェニル)プロパン、1,1−ビ
ス(4−ジ−p−トリルアミノフェニル)シクロヘキサ
ン及びN,N,N’,N’−テトラ−p−トリル−4,
4’−ジアミノビフェニルなどが挙げられ、Si,Si
C,CdSなどの無機物半導体の結晶,非晶材料も用い
ることができる。正孔注入層は、これらの正孔注入材料
一種又は二種以上からなる一層で構成されてもよく、前
記正孔注入層とは別種の化合物からなる正孔注入層を積
層したものであってもよい。
Examples of the hole transfer compound include copper phthalocyanine, N, N, N ', N'-tetraphenyl-4,4'-diaminophenyl, N, N'-diphenyl-N, N'-. Di (3-methylphenyl) -4,4'-
Diaminobiphenyl (TPDA), 2,2-bis (4-
Di-p-tolylaminophenyl) propane, 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane and N, N, N ′, N′-tetra-p-tolyl-4,
4'-diaminobiphenyl and the like, Si, Si
Crystalline or amorphous materials of inorganic semiconductors such as C and CdS can also be used. The hole injection layer may be composed of a single layer composed of one kind or two or more kinds of these hole injection materials, and is formed by laminating a hole injection layer composed of a compound different from the hole injection layer. Good.

【0024】本発明の有機EL素子の電子注入層は、電
子注入材料からなるものであって、陰極より注入された
電子を発光層に伝達する機能を有している。本発明にお
いては、電子注入材料として、本発明の一般式(I)で
表されるキノキサリン誘導体を用いていることが好まし
い。本発明の有機EL素子は、電子を輸送する領域また
は陰極と有機層の界面領域に、還元性ドーパントを含有
していてもよい。また、本発明の有機EL素子は、前記
一般式(I)で表されるキノキサリン誘導体に加え還元
性ドーパントを含有すると好ましい。ここで、還元性ド
ーパントとは、電子輸送性化合物を還元ができる物質で
あり、一定の還元性を有するものであれば、様々なもの
が用いられ、例えば、アルカリ金属、アルカリ土類金
属、希土類金属、アルカリ金属の酸化物、アルカリ金属
のハロゲン化物、アルカリ土類金属の酸化物、アルカリ
土類金属のハロゲン化物、希土類金属の酸化物又は希土
類金属のハロゲン化物、アルカリ金属の有機錯体、アル
カリ土類金属の有機錯体、希土類金属の有機錯体からな
る群から選択される少なくとも一つの物質であると好ま
しい。
The electron injection layer of the organic EL device of the present invention is made of an electron injection material and has a function of transmitting electrons injected from the cathode to the light emitting layer. In the present invention, it is preferable to use the quinoxaline derivative represented by the general formula (I) of the present invention as the electron injection material. The organic EL device of the present invention may contain a reducing dopant in the region for transporting electrons or in the interface region between the cathode and the organic layer. The organic EL device of the present invention preferably contains a reducing dopant in addition to the quinoxaline derivative represented by the general formula (I). Here, the reducing dopant is a substance that can reduce an electron transporting compound, and various substances can be used as long as they have a certain reducibility, and examples thereof include an alkali metal, an alkaline earth metal, and a rare earth. Metals, oxides of alkali metals, halides of alkali metals, oxides of alkaline earth metals, halides of alkaline earth metals, oxides of rare earth metals or halides of rare earth metals, organic complexes of alkali metals, alkaline earths At least one substance selected from the group consisting of organic complexes of group metals and organic complexes of rare earth metals is preferable.

【0025】さらに具体的な好ましい還元性ドーパント
としては、例えば、Na(仕事関数:2.36eV)、
K(仕事関数:2.28eV)、Rb(仕事関数:2.
16eV)及びCs(仕事関数:1.95eV)からな
る群から選択される少なくとも一つのアルカリ金属、又
はCa(仕事関数:2.9eV)、Sr(仕事関数:
2.0〜2.5eV)及びBa(仕事関数:2.52e
V)からなる群から選択される少なくとも一つのアルカ
リ土類金属が挙げられ、仕事関数が2.9eV以下のも
のが特に好ましい。これらのうち、より好ましい還元性
ドーパントは、K、Rb及びCsからなる群から選択さ
れる少なくとも一つのアルカリ金属であり、さらに好ま
しくは、Rb又はCsであり、最も好ましのはCsであ
る。
Further specific and preferable reducing dopants are, for example, Na (work function: 2.36 eV),
K (work function: 2.28 eV), Rb (work function: 2.
16 eV) and at least one alkali metal selected from the group consisting of Cs (work function: 1.95 eV), Ca (work function: 2.9 eV), Sr (work function:
2.0-2.5 eV) and Ba (work function: 2.52 e)
At least one alkaline earth metal selected from the group consisting of V) can be mentioned, and one having a work function of 2.9 eV or less is particularly preferable. Of these, the more preferable reducing dopant is at least one alkali metal selected from the group consisting of K, Rb and Cs, more preferably Rb or Cs, and most preferably Cs.

【0026】これらのアルカリ金属は、特に還元能力が
高く、電子注入域への比較的少量の添加により、有機E
L素子における発光輝度の向上や長寿命化が図られる。
また、仕事関数が2.9eV以下の還元性ドーパントと
して、これら2種以上のアルカリ金属の組合わせも好ま
しく、特に、Csを含んだ組み合わせ、例えば、Csと
Na、CsとK、CsとRbあるいはCsとNaとKと
の組み合わせであることが好ましい。Csを組み合わせ
て含むことにより、還元能力を効率的に発揮することが
でき、電子注入域への添加により、有機EL素子におけ
る発光輝度の向上や長寿命化が図られる。またアルカリ
金属の他にアルカリ金属カルコゲナイド、アルカリ土類
金属カルコゲナイド、アルカリ金属のハロゲン化物およ
びアルカリ土類金属のハロゲン化物からなる群から選択
される少なくとも一つの金属化合物を使用しても同様な
効果が得られ、アルカリ金属有機錯体、アルカリ土類金
属有機錯体を用いても同様な効果が得られる。
These alkali metals have a particularly high reducing ability, and by adding a relatively small amount to the electron injection region, organic E
It is possible to improve the light emission brightness and extend the life of the L element.
As a reducing dopant having a work function of 2.9 eV or less, a combination of two or more kinds of these alkali metals is also preferable, and in particular, a combination containing Cs, for example, Cs and Na, Cs and K, Cs and Rb, or It is preferably a combination of Cs, Na and K. By including Cs in combination, the reducing ability can be efficiently exhibited, and the addition to the electron injection region can improve the emission brightness and extend the life of the organic EL element. In addition to alkali metals, the same effect can be obtained by using at least one metal compound selected from the group consisting of alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides and alkaline earth metal halides. The same effect can be obtained by using an alkali metal organic complex or an alkaline earth metal organic complex.

【0027】本発明の有機EL素子は、陰極と有機層の
間に絶縁体や半導体で構成される電子注入層をさらに設
けてもよい。これにより、電流のリークを有効に防止し
て、電子注入性を向上させることができる。このような
絶縁体としては、アルカリ金属カルコゲナイド、アルカ
リ土類金属カルコゲナイド、アルカリ金属のハロゲン化
物及びアルカリ土類金属のハロゲン化物からなる群から
選択される少なくとも一つの金属化合物を使用するのが
好ましい。電子注入層がこれらのアルカリ金属カルコゲ
ナイド等で構成されていると、電子注入性をさらに向上
させることができる。アルカリ金属カルコゲナイドとし
ては、例えば、Li2O、LiO、Na2S、Na2Se
およびNaOが挙げられ、アルカリ土類金属カルコゲナ
イドとしては、例えば、CaO、BaO、SrO、Be
O、BaS及びCaSeが挙げられ、アルカリ金属のハ
ロゲン化物としては、例えば、LiF、NaF、KF、
LiCl、KCl及びNaCl等が挙げられ、アルカリ
土類金属のハロゲン化物としては、例えば、CaF2
BaF2、SrF2、MgF2及びBeF2などのフッ化物
や、フッ化物以外のハロゲン化物が挙げられる。
The organic EL device of the present invention may further include an electron injection layer made of an insulator or a semiconductor between the cathode and the organic layer. As a result, current leakage can be effectively prevented and the electron injection property can be improved. As such an insulator, it is preferable to use at least one metal compound selected from the group consisting of alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides and alkaline earth metal halides. When the electron injection layer is made of these alkali metal chalcogenides or the like, the electron injection property can be further improved. Examples of the alkali metal chalcogenide include Li 2 O, LiO, Na 2 S and Na 2 Se.
And NaO, and examples of the alkaline earth metal chalcogenide include CaO, BaO, SrO, and Be.
O, BaS and CaSe may be mentioned, and examples of the alkali metal halide include LiF, NaF, KF,
LiCl, KCl, NaCl and the like are listed, and examples of the alkaline earth metal halide include CaF 2 ,
Examples thereof include fluorides such as BaF 2 , SrF 2 , MgF 2 and BeF 2 , and halides other than fluorides.

【0028】また、電子輸送層を構成する半導体として
は、例えば、Ba、Ca、Sr、Yb、Al、Ga、I
n、Li、Na、Cd、Mg、Si、Ta、Sb及びZ
nの少なくとも一つの元素を含む酸化物、窒化物又は酸
化窒化物等の一種単独又は二種以上の組み合わせが挙げ
られる。また、電子輸送層を構成する無機化合物が、微
結晶又は非晶質の絶縁性薄膜であることが好ましい。電
子輸送層がこれらの絶縁性薄膜で構成されていれば、よ
り均質な薄膜が形成されるため、ダークスポット等の画
素欠陥を減少させることができる。なお、このような無
機化合物としては、上述したアルカリ金属カルコゲナイ
ド、アルカリ土類金属カルコゲナイド、アルカリ金属の
ハロゲン化物およびアルカリ土類金属のハロゲン化物等
が挙げられる。
As the semiconductor constituting the electron transport layer, for example, Ba, Ca, Sr, Yb, Al, Ga, I
n, Li, Na, Cd, Mg, Si, Ta, Sb and Z
Examples include oxides, nitrides, oxynitrides, and the like containing at least one element of n, or a combination of two or more thereof. Further, the inorganic compound forming the electron transport layer is preferably a microcrystalline or amorphous insulating thin film. If the electron transport layer is composed of these insulating thin films, a more uniform thin film is formed, so that pixel defects such as dark spots can be reduced. Examples of such inorganic compounds include the above-mentioned alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides and alkaline earth metal halides.

【0029】本発明の有機EL素子における電子注入層
は、該キノキサリン誘導体を、例えば、真空蒸着法,ス
ピンコート法,キャスト法,LB法などの公知の薄膜化
法により製膜して形成することができる。電子注入層と
しての膜厚は、特に制限はないが、通常は5nm〜5μ
mである。電子注入層は、一種又は二種以上の電子注入
材料からなる一層で構成されてもよく、前記電子注入層
とは別種の化合物からなる電子注入層を積層したもので
あってもよい。さらに、無機物であるp型−Si,p型
−SiCの正孔注入材料、n型α−Si,n型α−Si
Cの電子注入材料を電子注入層に用いることができ、例
えば、国際公開WO90/05998に開示されている
無機半導体などが挙げられる。
The electron injection layer in the organic EL device of the present invention is formed by forming the quinoxaline derivative by a known thinning method such as a vacuum vapor deposition method, a spin coating method, a casting method and an LB method. You can The thickness of the electron injection layer is not particularly limited, but is usually 5 nm to 5 μm.
m. The electron injection layer may be composed of one layer made of one or more kinds of electron injection materials, or may be a stack of electron injection layers made of a compound different from the electron injection layer. Furthermore, a hole injection material of p-type-Si, p-type-SiC which is an inorganic substance, n-type α-Si, n-type α-Si
The electron injection material of C can be used for the electron injection layer, and examples thereof include an inorganic semiconductor disclosed in International Publication WO90 / 05998.

【0030】次に、本発明の有機EL素子を作製する好
適な例を説明する。例として、前記の陽極/正孔注入層
/発光層/電子注入層/陰極からなる有機EL素子の作
製法について説明すると、まず適当な基板上に、所望の
電極物質、例えば陽極用物質からなる薄膜を、1μm以
下、好ましくは10〜200nmの範囲の膜厚になるよ
うに、蒸着やスパッタリングなどの方法により形成さ
せ、陽極を作製する。次に、この上に素子材料である正
孔注入層,発光層,電子注入層の材料からなる薄膜を形
成させる。
Next, a suitable example for producing the organic EL device of the present invention will be described. As an example, a method for manufacturing an organic EL device comprising the above-mentioned anode / hole injection layer / light-emitting layer / electron injection layer / cathode will be described. First, a desired electrode material, for example, an anode material, is formed on a suitable substrate. A thin film is formed by a method such as vapor deposition or sputtering so as to have a film thickness of 1 μm or less, preferably in the range of 10 to 200 nm, to prepare an anode. Next, a thin film made of the material of the hole injection layer, the light emitting layer, and the electron injection layer, which are element materials, is formed on this.

【0031】この薄膜化の方法としては、前記の如くス
ピンコート法,キャスト法,蒸着法などがあるが、均質
な膜が得られやすく、かつピンホールが生成しにくいな
どの点から、真空蒸着法が好ましい。薄膜化に、真空蒸
着法を採用する場合、その蒸着条件は使用する化合物の
種類,分子堆積膜の目的とする結晶構造,会合構造など
により異なるが、一般にボート加熱温度50〜400
℃,真空度10-6〜10 -3Pa,蒸着速度0.01〜5
0nm/秒、基板温度−50〜300℃、膜厚5nm〜
5μmの範囲で適宜選ぶことが望ましい。これらの層の
形成後、その上に陰極用物質からなる薄膜を、1μm以
下好ましくは50〜200nmの範囲の膜厚になるよう
に、例えば、蒸着やスパッタリングなどの方法により形
成させて陰極を設けることにより、所望の有機EL素子
が得られる。なお、この有機EL素子の作製において
は、作製順序を逆にして、陰極,電子注入層,発光層,
正孔注入輸送層,陽極の順に作製することも可能であ
る。
The thinning method is as described above.
Although there are pin coating method, casting method, vapor deposition method, etc., it is homogeneous
Film is easy to obtain, and pinholes are not easily generated
From what point, the vacuum deposition method is preferable. Vacuum evaporation for thin film
When the deposition method is adopted, the vapor deposition conditions depend on the compound used.
Type, target crystal structure of molecular deposited film, association structure, etc.
Generally, the boat heating temperature is 50-400
℃, vacuum 10-6-10 -3Pa, vapor deposition rate 0.01-5
0 nm / sec, substrate temperature −50 to 300 ° C., film thickness 5 nm to
It is desirable to select it appropriately within the range of 5 μm. Of these layers
After the formation, a thin film made of the substance for the cathode is formed thereon with a thickness of 1 μm or more.
It is preferable that the thickness is in the range of 50 to 200 nm.
In addition, for example, it can be formed by a method such as vapor deposition or sputtering.
Desired organic EL device by forming a cathode
Is obtained. In the production of this organic EL element
Reverses the manufacturing order, and the cathode, electron injection layer, light emitting layer,
It is also possible to fabricate the hole injecting and transporting layer and the anode in this order.
It

【0032】また、一対の電極間に正孔注入層,発光
層,電子注入層を混合させた形で挟持させた陽極/発光
層/陰極からなる素子の作製方法としては、例えば、適
当な基板の上に、陽極用物質からなる薄膜を形成し、正
孔注入材料,発光材料,電子注入材料,ポリビニルカル
バゾール,ポリカーボネート,ポリアリレート,ポリエ
ステル,ポリエーテルなどの結着剤などからなる溶液を
塗布するか、又はこの溶液から浸漬塗工法により薄膜を
形成させて発光層とし、その上に陰極用物質からなる薄
膜を形成させるものがある。ここで、作製した発光層上
に、さらに発光層や電子注入層の材料となる素子材料を
真空蒸着し、その上に陰極用物質からなる薄膜を形成さ
せてもよい。
As a method of manufacturing an element composed of an anode / a light emitting layer / a cathode in which a hole injecting layer, a light emitting layer and an electron injecting layer are sandwiched between a pair of electrodes, for example, a suitable substrate is used. A thin film made of a substance for an anode is formed on the above, and a solution made of a hole injecting material, a light emitting material, an electron injecting material, a binder such as polyvinylcarbazole, polycarbonate, polyarylate, polyester, polyether, etc. is applied. Alternatively, there is a method in which a thin film is formed from this solution by a dip coating method to form a light emitting layer, and a thin film made of a substance for a cathode is formed thereon. Here, an element material which is a material for the light emitting layer or the electron injection layer may be further vacuum-deposited on the produced light emitting layer, and a thin film made of a substance for a cathode may be formed thereon.

【0033】このようにして得られた有機EL素子に、
直流電圧を印加する場合には、陽極を+、陰極を−の極
性として電圧3〜50V程度を印加すると、発光が観測
できる。また、逆の極性で電圧を印加しても電流は流れ
ずに発光は全く生じない。さらに、交流電圧を印加する
場合には、正極が+、負極が−の状態になったときのみ
発光する。なお、印加する交流の波形は任意でよい。本
発明の一般式(I)で表されるキノキサリン誘導体の代
表例を以下に例示するが、本発明はこれらの例によって
なんら制限されるものではない。
In the organic EL device thus obtained,
When a DC voltage is applied, light emission can be observed by applying a voltage of about 3 to 50 V with the anode having a positive polarity and the cathode having a negative polarity. Moreover, even if a voltage is applied with the opposite polarity, no current flows and no light emission occurs. Furthermore, when an AC voltage is applied, light is emitted only when the positive electrode is in the + state and the negative electrode is in the − state. The waveform of the alternating current applied may be arbitrary. Representative examples of the quinoxaline derivative represented by the general formula (I) of the present invention are shown below, but the present invention is not limited to these examples.

【化3】 [Chemical 3]

【0034】[0034]

【化4】 [Chemical 4]

【0035】[0035]

【化5】 [Chemical 5]

【0036】[0036]

【化6】 [Chemical 6]

【0037】[0037]

【化7】 [Chemical 7]

【0038】[0038]

【実施例】次に、実施例を用いて本発明をさらに詳しく
説明する。 合成実施例1(化合物(1)) ・2,3−ビス(4’−ブロモフェニル)キノキサリン
の合成 4,4’−ジブロモベンジル5.0g (14mmol)
、1,2−フェニレンジアミン1.5g (14mmo
l) をアルゴンガス雰囲気下で、エタノール20ミリリ
ットル中で、3.5時間加熱還流した。反応終了後、ろ
過し、得られた結晶をエタノールで洗浄し、2,3−ビ
ス(4’−ブロモフェニル)キノキサリン5.5g (収
率93%) を得た。 ・化合物(1)の合成 2,3−ビス(4’−ブロモフェニル)キノキサリン
2.0g (4.5 mmol)、1−ナフタレンボロン酸
2.0g (12mmol) 、テトラキス(トリフェニル
ホスフィン)パラジウム0.21gをアルゴンガス雰囲
気下で、1,2−ジメトキシエタン50ミリリットルに
溶かし、2.0M炭酸ナトリウム水溶液20ミリリット
ル (40mmol) を加えて、7時間加熱還流した。反
応終了後、ろ過し、トルエン、水で洗浄し、黄白色粉末
を1.8g (収率75%) を得た。このものは、マスス
ペクトル(MS) 分析の結果、前記化合物(1)であ
り、分子量534.21に対し、M/S=534であっ
た。また、NMR測定を行ったところ、以下の結果であ
った。1 H-NMR(CDCl3,TMS),7.3-7.6(m,12H),7.7-8.0(m,12H),8.
26(m,2H)
EXAMPLES Next, the present invention will be described in more detail with reference to examples. Synthesis Example 1 (Compound (1))-Synthesis of 2,3-bis (4'-bromophenyl) quinoxaline 4,4'-dibromobenzyl 5.0 g (14 mmol)
, 1,2-phenylenediamine 1.5 g (14 mmo
l) was heated to reflux for 3.5 hours in 20 ml of ethanol under an argon gas atmosphere. After completion of the reaction, the crystals were filtered and washed with ethanol to obtain 5.5 g of 2,3-bis (4'-bromophenyl) quinoxaline (yield 93%). -Synthesis of compound (1) 2,3-bis (4'-bromophenyl) quinoxaline 2.0 g (4.5 mmol), 1-naphthaleneboronic acid 2.0 g (12 mmol), tetrakis (triphenylphosphine) palladium 0.21 g Was dissolved in 50 ml of 1,2-dimethoxyethane under an argon gas atmosphere, 20 ml (40 mmol) of 2.0 M sodium carbonate aqueous solution was added, and the mixture was heated under reflux for 7 hours. After completion of the reaction, the mixture was filtered and washed with toluene and water to obtain 1.8 g (yield 75%) of yellowish white powder. As a result of mass spectrum (MS) analysis, this was the above compound (1), and M / S = 534 with respect to a molecular weight of 534.21. Further, the results of the NMR measurement were as follows. 1 H-NMR (CDCl 3 , TMS), 7.3-7.6 (m, 12H), 7.7-8.0 (m, 12H), 8.
26 (m, 2H)

【0039】合成実施例2(化合物(8)) ・化合物(8)の合成 合成実施例1において、1−ナフタレンボロン酸の代わ
りに2−ナフタレンボロン酸を用いた以外は同様にして
化合物(8)2.1g (収率87%) を得た。このもの
は、MS分析の結果、前記化合物(8)であり、分子量
534.21に対し、M/S=534であった。また、
NMR測定を行ったところ、以下の結果であった。1 H-NMR(CDCl3,TMS),7.48(m,2H),7.6-7.9(m,22H),8.22
(m,2H)
Synthesis Example 2 (Compound (8)) Synthesis of Compound (8) Compound (8) was prepared in the same manner as in Synthesis Example 1 except that 2-naphthaleneboronic acid was used instead of 1-naphthaleneboronic acid. ) 2.1 g (yield 87%) was obtained. As a result of MS analysis, this product was the compound (8), and had a molecular weight of 534.21 and M / S = 534. Also,
When the NMR measurement was performed, the following results were obtained. 1 H-NMR (CDCl 3 , TMS), 7.48 (m, 2H), 7.6-7.9 (m, 22H), 8.22
(m, 2H)

【0040】合成実施例3(化合物(2)) ・1,2−ビス−(4−ナフタレン−1−イル−フェニ
ル)−エタン−1,2−ジオンの合成 4,4’−ジブロモベンジル2.0g (5.4mmo
l)、1−ナフタレンボロン酸2.4g (14mmo
l) 、テトラキス(トリフェニルホスフィン)パラジウ
ム0.25gをアルゴンガス雰囲気下で、トルエン50
ミリリットルに溶かし、2.0M炭酸ナトリウム水溶液
20ミリリットルを加えた。そして、4時間加熱還流し
た。反応終了後、ろ過し、有機層を分取し、無水硫酸ナ
トリウムで乾燥させた後、減圧下で溶媒を留去した。得
られた結晶をエタノールで洗浄し、1,2−ビス−(4
−ナフタレン−1−イル−フェニル)−エタン−1,2
−ジオン2.5g (収率99%) を得た。 ・化合物(2)の合成 1,2−ビス−(4−ナフタレン−1−イル−フェニ
ル)−エタン−1,2−ジオン3.1g (6.8 mmo
l)、4,5−ジメチル−1,2−フェニレンジアミン
0.92g (6.8mmol) をエタノール30ミリリ
ットル中で、6時間加熱還流した。反応終了後、ろ過
し、得られた結晶をエタノールで洗浄し、化合物(2)
2.7g (収率72%) を得た。このものは、MS分析
の結果、前記化合物(2)であり、分子量562.24
に対し、M/S=562であった。また、NMR測定を
行ったところ、以下の結果であった。1 H-NMR(CDCl3,TMS),2.54(s,6H),7.3-8.0(m,24H)
Synthesis Example 3 (Compound (2)) Synthesis of 1,2-bis- (4-naphthalen-1-yl-phenyl) -ethane-1,2-dione 4,4'-dibromobenzyl 2. 0g (5.4mmo
l), 2.4 g of 1-naphthaleneboronic acid (14 mmo
l) and 0.25 g of tetrakis (triphenylphosphine) palladium under an argon gas atmosphere with toluene 50.
It was dissolved in milliliter and 20 ml of 2.0 M sodium carbonate aqueous solution was added. And it heated and refluxed for 4 hours. After completion of the reaction, the mixture was filtered, the organic layer was separated, dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. The obtained crystals were washed with ethanol, and 1,2-bis- (4
-Naphthalen-1-yl-phenyl) -ethane-1,2
2.5 g (yield 99%) of dione was obtained. -Synthesis of compound (2) 1,2-bis- (4-naphthalen-1-yl-phenyl) -ethane-1,2-dione 3.1 g (6.8 mmo)
l) and 0.92 g (6.8 mmol) of 4,5-dimethyl-1,2-phenylenediamine were heated under reflux in 30 ml of ethanol for 6 hours. After completion of the reaction, filtration was performed, and the obtained crystals were washed with ethanol to give compound (2)
2.7 g (yield 72%) was obtained. As a result of MS analysis, this was the above compound (2) and had a molecular weight of 562.24.
On the other hand, M / S = 562. Further, the results of the NMR measurement were as follows. 1 H-NMR (CDCl 3 , TMS), 2.54 (s, 6H), 7.3-8.0 (m, 24H)

【0041】合成実施例4(化合物(4)) ・化合物(4)の合成 合成実施例3において、4,5−ジメチル−1,2−フ
ェニレンジアミンの代わりに、2,3−ジアミノナフタ
レンを用いた以外は同様にして、化合物(4)3.4g
(収率95%) を得た。このものは、MS分析の結果、
前記化合物(4)であり、分子量634.24に対し、
M/S=634であった。また、NMR測定を行ったと
ころ、以下の結果であった。1 H-NMR(CDCl3,TMS),7.3-7.7(m,14H),7.8-8.0(m,10H),8.
15(m,2H),8.8(s,2H)
Synthesis Example 4 (Compound (4)) Synthesis of Compound (4) In Synthesis Example 3, 2,3-diaminonaphthalene was used instead of 4,5-dimethyl-1,2-phenylenediamine. 3.4 g of compound (4) in the same manner except that
(Yield 95%) was obtained. This is the result of MS analysis,
The compound (4) has a molecular weight of 634.24,
M / S = 634. Further, the results of the NMR measurement were as follows. 1 H-NMR (CDCl 3 , TMS), 7.3-7.7 (m, 14H), 7.8-8.0 (m, 10H), 8.
15 (m, 2H), 8.8 (s, 2H)

【0042】合成実施例5(化合物(5)) ・化合物(5)の合成 合成実施例3において、4,5−ジメチル−1,2−フ
ェニレンジアミンの代わりに、9,10−ジアミノナフ
タレンを用いた以外は同様にして、化合物(5)3.5
g (収率82%) を得た。このものは、MS分析の結
果、前記化合物(5)であり、分子量634.24に対
し、M/S=634であった。また、NMR測定を行っ
たところ、以下の結果であった。1 H-NMR(CDCl3,TMS),7.4-7.7(m,10H),7.8-8.1(m,18H),8.
75(m,2H)
Synthesis Example 5 (Compound (5)) Synthesis of Compound (5) In Synthesis Example 3, 9,10-diaminonaphthalene was used instead of 4,5-dimethyl-1,2-phenylenediamine. Compound (5) 3.5 in the same manner except that
g (yield 82%) was obtained. As a result of MS analysis, this product was the compound (5), and had a molecular weight of 634.24 and M / S = 634. Further, the results of the NMR measurement were as follows. 1 H-NMR (CDCl 3 , TMS), 7.4-7.7 (m, 10H), 7.8-8.1 (m, 18H), 8.
75 (m, 2H)

【0043】合成実施例6(化合物(3)) ・6,7−ジブロモ−2,3−ビス−(4−ナフタレン
−1−イル−フェニル)キノキサリンの合成 1,2−ビス−(4−ナフタレン−1−イル−フェニ
ル)−エタン−1,2−ジオン2.0g (2.9mmo
l)、4,5−ジブロモ−1,2−フェニレンジアミン
1.1g (4.3mmol) をエタノール20ミリリッ
トル中で、24時間加熱還流した。反応終了後、ろ過
し、得られた結晶をエタノールで洗浄し、6,7−ジブ
ロモ−2,3−ビス−(4−ナフタレン−1−イル−フ
ェニル)キノキサリン2.8g (収率99%) を得た。 ・化合物(3)の合成 6,7−ジブロモ−2,3−ビス−(4−ナフタレン−
1−イル−フェニル)キノキサリン2.8g (40mm
ol) 、フェニルボロン酸1.3g (11mmol) 、
ジクロロビス(トリフェニルホスフィン)パラジウム
0.13gをアルゴンガス雰囲気下で、1,2−ジメト
キシエタン30ミリリットルに溶かし、2.0M炭酸ナ
トリウム水溶液15ミリリットルを加えて、6時間加熱
還流した。反応終了後、ろ過し、有機層を分取し、無水
硫酸ナトリウムで乾燥させた後、減圧下で溶媒を留去し
た。得られた結晶をエタノールで洗浄し、化合物(3)
2.6g (収率94%) を得た。このものは、MS分析
の結果、化合物(3)であり、分子量686.27に対
し、M/S=686であった。また、NMR測定を行っ
たところ、以下の結果であった。1 H-NMR(CDCl3,TMS),7.1-7.3(m,10H),7.3-7.6(m,10H),7.
7-8.0(m,12H),8.34(s,2H)
Synthesis Example 6 (Compound (3)) Synthesis of 6,7-dibromo-2,3-bis- (4-naphthalen-1-yl-phenyl) quinoxaline 1,2-bis- (4-naphthalene) -1-yl-phenyl) -ethane-1,2-dione 2.0 g (2.9 mmo
l), 1.1 g (4.3 mmol) of 4,5-dibromo-1,2-phenylenediamine were heated under reflux for 24 hours in 20 ml of ethanol. After completion of the reaction, the crystals were filtered and washed with ethanol to give 2.8 g (yield 99%) of 6,7-dibromo-2,3-bis- (4-naphthalen-1-yl-phenyl) quinoxaline. Got -Synthesis of compound (3) 6,7-dibromo-2,3-bis- (4-naphthalene-
1-yl-phenyl) quinoxaline 2.8 g (40 mm
ol), phenylboronic acid 1.3 g (11 mmol),
Under an argon gas atmosphere, 0.13 g of dichlorobis (triphenylphosphine) palladium was dissolved in 30 ml of 1,2-dimethoxyethane, 15 ml of 2.0 M sodium carbonate aqueous solution was added, and the mixture was heated under reflux for 6 hours. After completion of the reaction, the mixture was filtered, the organic layer was separated, dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. The obtained crystals were washed with ethanol to give compound (3)
2.6 g (yield 94%) was obtained. As a result of MS analysis, this was compound (3), and had a molecular weight of 686.27 and M / S = 686. Further, the results of the NMR measurement were as follows. 1 H-NMR (CDCl 3 , TMS), 7.1-7.3 (m, 10H), 7.3-7.6 (m, 10H), 7.
7-8.0 (m, 12H), 8.34 (s, 2H)

【0044】応用実施例1 25mm×75mm×1.1mm厚のITO透明電極付
きガラス基板(ジオマティック社製)をイソプロピルア
ルコール中で超音波洗浄を5分間行なった後、UVオゾ
ン洗浄を30分間行なった。洗浄後の透明電極ライン付
きガラス基板を真空蒸着装置の基板ホルダーに装着し、
まず透明電極ラインが形成されている側の面上に前記透
明電極を覆うようにして膜厚60nmのN,N’−ビス
(N,N’−ジフェニル−4−アミノフェニル)−N,
N−ジフェニル−4,4’−ジアミノ−1,1’−ビフ
ェニル膜(TPD232膜)を成膜した。このTPD2
32膜は、正孔注入層として機能する。次に、このTP
D232膜上に膜厚20nmの4,4’−ビス[N−
(1−ナフチル)−N−フェニルアミノ]ビフェニル膜
(NPD膜)を成膜した。このNPD膜は正孔輸送層と
して機能する。さらに、このNPD膜上に膜厚40nm
の下記ホスト材料(E1)を蒸着し成膜した。同時に発
光分子として、スチリル基を有する下記アミン化合物
(D1)を(E1)に対し重量比3:40で蒸着した。
この膜は、発光層として機能する。この膜上に膜厚10
nmの6,7−ジメチル−2,3−ビス(4−ナフタレ
ン−1−イル−フェニル)−キノキサリン(DMNP
Q)を薄膜状に成膜した。DMNPQ膜は、電子注入層
として機能する。この後、還元性ドーパントであるLi
(Li源:サエスゲッター社製)とDMNPQを二元蒸
着させ、電子注入層(陰極)としてDMNPQ:Li膜
(膜厚10nm)を形成した。このAlq:Li膜上に
金属Alを蒸着させ金属陰極を形成し有機EL素子を製
造した。この素子は、直流電圧6.0Vで発光輝度11
8cd/m2 、発光効率9.95cd/Aの青色発光が
得られた。初期1000cd/m2 にて一定電流駆動を
行ったところ輝度が半減する時間(半減寿命)2000
時間(初期500cd/m2 換算では4000時間)で
あった。これらの結果を表1に示す。
Application Example 1 A 25 mm × 75 mm × 1.1 mm thick glass substrate with an ITO transparent electrode (manufactured by Geomatic) was ultrasonically cleaned in isopropyl alcohol for 5 minutes and then UV ozone cleaning for 30 minutes. It was Mount the glass substrate with the transparent electrode line after cleaning on the substrate holder of the vacuum evaporation system,
First, N, N′-bis (N, N′-diphenyl-4-aminophenyl) -N, having a film thickness of 60 nm is formed so as to cover the transparent electrode on the surface on which the transparent electrode line is formed.
An N-diphenyl-4,4′-diamino-1,1′-biphenyl film (TPD232 film) was formed. This TPD2
The 32nd film functions as a hole injection layer. Next, this TP
On the D232 film, 4,4'-bis [N-
A (1-naphthyl) -N-phenylamino] biphenyl film (NPD film) was formed. This NPD film functions as a hole transport layer. Furthermore, a film thickness of 40 nm is formed on this NPD film.
The following host material (E1) was vapor deposited to form a film. At the same time, the following amine compound (D1) having a styryl group as a luminescent molecule was vapor-deposited with respect to (E1) at a weight ratio of 3:40.
This film functions as a light emitting layer. A film thickness of 10
nm 6,7-Dimethyl-2,3-bis (4-naphthalen-1-yl-phenyl) -quinoxaline (DMNP
Q) was formed into a thin film. The DMNPQ film functions as an electron injection layer. After this, the reducing dopant Li
(Li source: manufactured by SAES Getter) and DMNPQ were binary-deposited to form a DMNPQ: Li film (film thickness 10 nm) as an electron injection layer (cathode). Metal Al was vapor-deposited on this Alq: Li film to form a metal cathode, and an organic EL device was manufactured. This device has a light emission luminance of 11 at a DC voltage of 6.0V.
Blue light emission of 8 cd / m 2 and a luminous efficiency of 9.95 cd / A was obtained. The time when the luminance is reduced to half when driven at a constant current at the initial 1000 cd / m 2 (half-life) 2000
It was time (4000 hours in terms of initial 500 cd / m 2 ). The results are shown in Table 1.

【0045】[0045]

【化8】 [Chemical 8]

【0046】応用実施例2 応用実施例1において、DMNPQの代わりに、2,3
−ビス(4−ナフタレン−1−イル−フェニル)−キノ
キサリン (NPQ1)を用いた以外は同様にして有機E
L素子を製造した。また、直流電圧7.5Vとした以外
は応用実施例1と同様にして、発光輝度、発光効率、半
減寿命を測定し、発光色を観察した結果を表1に示す。
Application Example 2 In the application example 1, instead of DMNPQ, 2, 3
-Bis (4-naphthalen-1-yl-phenyl) -quinoxaline (NPQ1) was used in the same manner as in the case of organic E
An L element was manufactured. In addition, the emission luminance, the emission efficiency, and the half life were measured in the same manner as in Application Example 1 except that the direct current voltage was 7.5 V, and the results of observing the emission color are shown in Table 1.

【0047】応用実施例3 応用実施例1において、DMNPQの代わりに、2,3
−ビス(4−ナフタレン−2−イル−フェニル)−キノ
キサリン (NPQ2)を用いた以外は同様にして有機E
L素子を製造した。また、直流電圧6.5Vとした以外
は応用実施例1と同様にして、発光輝度、発光効率、半
減寿命を測定し、発光色を観察した結果を表1に示す。
Application Example 3 In the application example 1, in place of DMNPQ, 2, 3
-Bis (4-naphthalen-2-yl-phenyl) -quinoxaline (NPQ2) was used in the same manner as in organic E
An L element was manufactured. In addition, the emission luminance, the emission efficiency, and the half-life were measured in the same manner as in Application Example 1 except that the direct current voltage was 6.5 V, and the results of observing the emission color are shown in Table 1.

【0048】比較例1 応用実施例1において、DMNPQの代わりに、2,
3,6,7−テトラフェニルキノキサリン(TPQ)を
用いた以外は同様にして有機EL素子を製造した。この
素子は、直流電圧15.0Vで、発光最大波長は475
nm、発光輝度88cd/m2 、発光効率0.1cd/
Aの青色発光が得られた。初期500cd/m2 にて一
定電流駆動を行ったところ通電後、24時間で発光しな
くなり、短絡箇所が生じていた。これは、TPQが結晶
化したことによる。これらの結果を表1に示す。
Comparative Example 1 In the application example 1, instead of DMNPQ, 2,
An organic EL device was manufactured in the same manner except that 3,6,7-tetraphenylquinoxaline (TPQ) was used. This device has a DC voltage of 15.0V and a maximum emission wavelength of 475.
nm, emission brightness 88 cd / m 2 , emission efficiency 0.1 cd /
A blue light emission of A was obtained. When the device was driven at a constant current at an initial 500 cd / m 2 , it stopped emitting light for 24 hours after energization, and a short circuit portion was generated. This is because TPQ crystallized. The results are shown in Table 1.

【0049】[0049]

【表1】 [Table 1]

【0050】[0050]

【発明の効果】以上詳細に説明したように、本発明の新
規キノキサリン誘導体は、有機EL素子の構成成分とし
て有用な新規な化合物である。このキノキサリン誘導体
を有機化合物層の少なくとも一層に用いることにより、
有機EL素子の高輝度化,高発光効率化及び電極の付着
改善による長期安定化が可能である。
INDUSTRIAL APPLICABILITY As described in detail above, the novel quinoxaline derivative of the present invention is a novel compound useful as a constituent component of an organic EL device. By using this quinoxaline derivative in at least one of the organic compound layers,
It is possible to achieve long-term stabilization by increasing the brightness of the organic EL element, increasing the luminous efficiency, and improving the adhesion of the electrodes.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 下記一般式(I)で示される新規なキノ
キサリン誘導体。 【化1】 (式中、R1〜R6 は、それぞれ独立に、水素原子、ハ
ロゲン原子、炭素数1〜6のアルキル基、炭素数1〜6
のアルコキシ基、炭素数6〜20のアリールオキシ基、
炭素数1〜6のアルキルチオ基、炭素数6〜40のアリ
ールチオ基、炭素数1〜6のアルキルスルホニル基、炭
素数1〜6のアルキルスルフィニル基、炭素数6〜40
のアリールスルホニル基、炭素数6〜40のアリールス
ルフィニル基、シアノ基、置換もしくは無置換の炭素数
6〜40のアリール基、又は置換もしくは無置換の炭素
数6〜40のヘテロアリール基を表す。R1〜R4 は、
隣同士で互いに結合して環を形成していてもよく、置換
されていてもよい。Ar1及びAr2は、それぞれ独立
に、水素原子、ハロゲン原子、炭素数1〜6のアルキル
基、炭素数1〜6のアルコキシ基、炭素数6〜40のア
リールオキシ基、炭素数1〜6のアルキルチオ基、炭素
数6〜40のアリールチオ基、炭素数1〜6のアルキル
スルホニル基、炭素数1〜6のアルキルスルフィニル
基、炭素数6〜40のアリールスルホニル基、炭素数6
〜40のアリールスルフィニル基、シアノ基を有してい
てもよい炭素数6〜40のアリール基、又は置換もしく
は無置換の炭素数6〜40のヘテロアリール基を表す。
k及びlは、それぞれ独立に、0〜2の整数を表し、m
及びnは、それぞれ独立に、0〜5の整数を表す。ただ
し、R2及びR3 が同時に水素原子、フェニル基又はア
ルキル基置換フェニル基であり、かつm=n=0である
場合を除く。)
1. A novel quinoxaline derivative represented by the following general formula (I): [Chemical 1] (In the formula, R 1 to R 6 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, or 1 to 6 carbon atoms.
An alkoxy group, an aryloxy group having 6 to 20 carbon atoms,
Alkylthio group having 1 to 6 carbon atoms, arylthio group having 6 to 40 carbon atoms, alkylsulfonyl group having 1 to 6 carbon atoms, alkylsulfinyl group having 1 to 6 carbon atoms, and 6 to 40 carbon atoms
Represents an arylsulfonyl group, an arylsulfinyl group having 6 to 40 carbon atoms, a cyano group, a substituted or unsubstituted aryl group having 6 to 40 carbon atoms, or a substituted or unsubstituted heteroaryl group having 6 to 40 carbon atoms. R 1 to R 4 are
They may be bonded to each other adjacent to each other to form a ring or may be substituted. Ar 1 and Ar 2 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an aryloxy group having 6 to 40 carbon atoms, and 1 to 6 carbon atoms. Alkylthio group, C6-40 arylthio group, C1-6 alkylsulfonyl group, C1-6 alkylsulfinyl group, C6-40 arylsulfonyl group, C6
Represents an arylsulfinyl group having 40 to 40 carbon atoms, an aryl group having 6 to 40 carbon atoms which may have a cyano group, or a substituted or unsubstituted heteroaryl group having 6 to 40 carbon atoms.
k and l each independently represent an integer of 0 to 2, and m
And n represent the integer of 0-5 each independently. However, the case where R 2 and R 3 are simultaneously a hydrogen atom, a phenyl group or an alkyl group-substituted phenyl group and m = n = 0 is excluded. )
【請求項2】 有機エレクトロルミネッセンス素子に含
有される前記一般式(I)で表される請求項1に記載の
新規なキノキサリン誘導体。
2. The novel quinoxaline derivative according to claim 1, which is contained in the organic electroluminescence device and is represented by the general formula (I).
【請求項3】 一対の電極間に有機発光層又は有機発光
層を含む複数層からなる有機化合物層を有する有機エレ
クロルミネッセンス素子であって、該有機化合物層の少
なくとも一層が請求項1に記載の前記一般式(I)で表
されるキノキサリン誘導体を含有する有機エレクトロル
ミネッセンス素子。
3. An organic electroluminescence device having an organic light emitting layer or a plurality of organic compound layers including an organic light emitting layer between a pair of electrodes, wherein at least one of the organic compound layers is an organic electroluminescent device. 2. An organic electroluminescent device containing the quinoxaline derivative represented by the above general formula (I).
【請求項4】 前記一般式(I)で表されるキノキサリ
ン誘導体を、主として発光帯域に含有させてなる請求項
3に記載の有機エレクトロルミネッセンス素子。
4. The organic electroluminescence device according to claim 3, wherein the quinoxaline derivative represented by the general formula (I) is mainly contained in the emission band.
【請求項5】 前記一般式(I)で表されるキノキサリ
ン誘導体を、有機発光層に含有させてなる請求項3又は
4に記載の有機エレクトロルミネッセンス素子。
5. The organic electroluminescent device according to claim 3, wherein the quinoxaline derivative represented by the general formula (I) is contained in the organic light emitting layer.
【請求項6】 前記有機化合物層が電子注入層を有し、
該電子注入層が前記一般式(I)で表されるキノキサリ
ン誘導体からなる請求項3に記載の有機エレクトロルミ
ネッセンス素子。
6. The organic compound layer has an electron injection layer,
The organic electroluminescence device according to claim 3, wherein the electron injection layer is made of a quinoxaline derivative represented by the general formula (I).
JP2001223867A 2001-07-25 2001-07-25 New quinoxaline derivative and organic electroluminescent element utilizing the same Withdrawn JP2003040873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001223867A JP2003040873A (en) 2001-07-25 2001-07-25 New quinoxaline derivative and organic electroluminescent element utilizing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001223867A JP2003040873A (en) 2001-07-25 2001-07-25 New quinoxaline derivative and organic electroluminescent element utilizing the same

Publications (1)

Publication Number Publication Date
JP2003040873A true JP2003040873A (en) 2003-02-13

Family

ID=19057125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001223867A Withdrawn JP2003040873A (en) 2001-07-25 2001-07-25 New quinoxaline derivative and organic electroluminescent element utilizing the same

Country Status (1)

Country Link
JP (1) JP2003040873A (en)

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004043937A1 (en) * 2002-11-13 2004-05-27 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative, organic semiconductor device and electroluminescent element
WO2004094389A1 (en) 2003-04-18 2004-11-04 Semiconductor Energy Laboratory Co. Ltd. Quinoxaline derivatives, and organic semiconductor devices, electroluminescent devices and electronic appliances, made by using the derivatives
WO2005003095A1 (en) * 2003-07-02 2005-01-13 Idemitsu Kosan Co., Ltd. Metal complex compound and organic electroluminescence device containing the same
WO2005009979A1 (en) * 2003-07-28 2005-02-03 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative and luminescent element comprising the same
JP2005514739A (en) * 2001-12-31 2005-05-19 キヤノン株式会社 Organic light emitting device
JP2006016384A (en) * 2004-06-03 2006-01-19 Mitsui Chemicals Inc Amine compound, and organic electroluminescent device containing the same
WO2006022193A1 (en) * 2004-08-23 2006-03-02 Semiconductor Energy Laboratory Co., Ltd. Light emitting element, light emitting device, and lighting system
JP2006073272A (en) * 2004-08-31 2006-03-16 Nissan Motor Co Ltd Functional thin film element, manufacturing method of functional thin film element and article using functional thin film element
JP2006073992A (en) * 2004-05-20 2006-03-16 Semiconductor Energy Lab Co Ltd Light-emitting element and light-emitting device
JP2006073273A (en) * 2004-08-31 2006-03-16 Nissan Motor Co Ltd Functional thin film element, manufacturing method of functional thin film element and article using functional thin film element
JP2006089728A (en) * 2004-08-23 2006-04-06 Semiconductor Energy Lab Co Ltd Light-emitting element, light-emitting device and illuminator
WO2006062144A1 (en) * 2004-12-07 2006-06-15 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex, and light-emitting element and light-emittng device using the same
JP2006298965A (en) * 2005-04-15 2006-11-02 Showa Denko Kk Conductive composition containing compound having diphenylquinoxaline skeleton
JP2007070361A (en) * 2002-11-13 2007-03-22 Semiconductor Energy Lab Co Ltd Quinoxaline derivatives, organic semiconductor element and electroluminescent element
WO2007032258A1 (en) * 2005-09-12 2007-03-22 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative, and light emitting element, light emitting device, and electronic appliance using the same
JP2007099766A (en) * 2005-09-12 2007-04-19 Semiconductor Energy Lab Co Ltd Quinoxaline derivative, and light emitting element, light emitting device and electronic equipment using the quinoxaline derivative
WO2007142216A1 (en) * 2006-06-05 2007-12-13 Idemitsu Kosan Co., Ltd. Organic electroluminescent device and material for organic electroluminescent device
WO2008047589A1 (en) * 2006-10-06 2008-04-24 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative, and light-emitting element and light-emitting device using quinoxaline derivative
JP2008094776A (en) * 2006-10-13 2008-04-24 Mitsui Chemicals Inc Anthracene compound and organic light emitting device containing the compound
JP2008110968A (en) * 2006-10-06 2008-05-15 Semiconductor Energy Lab Co Ltd Quinoxaline derivative, and luminescent element and luminescent device using quinoxaline derivative
EP2004616A1 (en) * 2006-03-21 2008-12-24 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative, and light-emitting element, light-emitting device, electronic device using the quinoxaline derivative
KR20090056870A (en) * 2007-11-30 2009-06-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Quinoxaline derivative, and light-emitting element, light-emitting device and electronic device using quinoxaline derivative
JP2009149629A (en) * 2007-11-30 2009-07-09 Semiconductor Energy Lab Co Ltd Quinoxaline derivative, and light-emitting element, light-emitting device and electronic equipment each obtained using the derivative
JP2009149632A (en) * 2007-11-30 2009-07-09 Semiconductor Energy Lab Co Ltd Quinoxaline derivative, luminescent element, luminescent device, and electronic equipment each using quinoxaline
JP2009167180A (en) * 2007-12-21 2009-07-30 Semiconductor Energy Lab Co Ltd Quinoxaline derivative and light-emitting device using the same, light-emitting equipment and electronic equipment
JP2009298794A (en) * 2004-05-20 2009-12-24 Semiconductor Energy Lab Co Ltd Organic metal complex, light emitting device, illuminator and electronic equipment
US7771844B2 (en) 2004-12-03 2010-08-10 Semiconductor Energy Laboratory Co., Ltd Organic metal complex and photoelectronic device, light-emitting element and light-emitting device using the same
US7795429B2 (en) 2004-12-03 2010-09-14 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex, and light-emitting element and light-emitting device using the organometallic complex
US7804238B2 (en) 2004-08-31 2010-09-28 Nissan Motor Co., Ltd. Functional thin-film element, producing method thereof, and article using functional thin-film element
US7915409B2 (en) 2003-12-02 2011-03-29 Semiconductor Energy Laboratory Co., Ltd. Organometal complex and light-emitting element using the same
WO2011081431A2 (en) * 2009-12-30 2011-07-07 주식회사 두산 Organic light emitting compound, and organic electroluminescent device using same
US7993761B2 (en) 2007-12-03 2011-08-09 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative, and light-emitting element, light-emitting device, and electronic device using the same
US8178216B2 (en) 2007-02-28 2012-05-15 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative, and light-emitting element, light-emitting device, and electronic device including quinoxaline derivative
JP2012134509A (en) * 2005-03-28 2012-07-12 Semiconductor Energy Lab Co Ltd Light-emitting element, light-emitting device, and electronic appliance
US8283052B2 (en) 2006-09-29 2012-10-09 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative, light-emitting element, light-emitting device, and electronic appliance
KR20130027420A (en) * 2011-08-31 2013-03-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Heterocyclic compound, light-emitting element, light-emitting device, electronic device, lighting device, and organic compound
JP2014005277A (en) * 2012-06-01 2014-01-16 Semiconductor Energy Lab Co Ltd Method of synthesizing pyrazine derivative, and light-emitting element, light-emitting device, electronic device, and lighting device
US8703305B2 (en) 2006-09-29 2014-04-22 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative, and light emitting element, light emitting device, and electronic device using the quinoxaline derivative
KR20150051119A (en) * 2013-10-29 2015-05-11 주식회사 엠비케이 New electron injection layer compounds and organic electroluminescent device comprising the same
US9978960B2 (en) 2013-06-14 2018-05-22 Semiconductor Energy Laboratory Co., Ltd. Organometallic iridium complex, light-emitting element, light-emitting device, and lighting device
US10270042B2 (en) 2016-05-31 2019-04-23 Samsung Sdi Co., Ltd. Compound for organic optoelectric device and organic optoelectric device and display device
US10446764B2 (en) 2014-05-22 2019-10-15 Samsung Sdi Co., Ltd. Organic compound, composition, organic optoelectric device, and display device
WO2019208991A1 (en) * 2018-04-24 2019-10-31 주식회사 엘지화학 Novel heterocyclic compound and organic light emitting device using same

Cited By (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005514739A (en) * 2001-12-31 2005-05-19 キヤノン株式会社 Organic light emitting device
JP4574606B2 (en) * 2002-11-13 2010-11-04 株式会社半導体エネルギー研究所 Electroluminescent device
WO2004043937A1 (en) * 2002-11-13 2004-05-27 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative, organic semiconductor device and electroluminescent element
JP2007070361A (en) * 2002-11-13 2007-03-22 Semiconductor Energy Lab Co Ltd Quinoxaline derivatives, organic semiconductor element and electroluminescent element
US7355340B2 (en) 2002-11-13 2008-04-08 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivatives, organic semiconductor device and electroluminescent device
US8758905B2 (en) 2003-04-18 2014-06-24 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative, and organic semiconductor device, electric field light emitting device, and electronic device which have the same
US8231984B2 (en) 2003-04-18 2012-07-31 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative, and organic semiconductor device, electric field light emitting device, and electronic device which have the same
US7601435B2 (en) 2003-04-18 2009-10-13 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative, and organic semiconductor device, electric field light emitting device, and electronic device which have the same
WO2004094389A1 (en) 2003-04-18 2004-11-04 Semiconductor Energy Laboratory Co. Ltd. Quinoxaline derivatives, and organic semiconductor devices, electroluminescent devices and electronic appliances, made by using the derivatives
WO2005003095A1 (en) * 2003-07-02 2005-01-13 Idemitsu Kosan Co., Ltd. Metal complex compound and organic electroluminescence device containing the same
WO2005009979A1 (en) * 2003-07-28 2005-02-03 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative and luminescent element comprising the same
US9219236B2 (en) 2003-12-02 2015-12-22 Semiconductor Energy Laboratory Co., Ltd. Organometal complex and light-emitting element using the same
US8569486B2 (en) 2003-12-02 2013-10-29 Semiconductor Energy Laboratory Co., Ltd. Organometal complex and light-emitting element using the same
US7915409B2 (en) 2003-12-02 2011-03-29 Semiconductor Energy Laboratory Co., Ltd. Organometal complex and light-emitting element using the same
US8278444B2 (en) 2003-12-02 2012-10-02 Semiconductor Energy Laboratory Co., Ltd. Organometal complex and light-emitting element using the same
JP2009298794A (en) * 2004-05-20 2009-12-24 Semiconductor Energy Lab Co Ltd Organic metal complex, light emitting device, illuminator and electronic equipment
JP2006073992A (en) * 2004-05-20 2006-03-16 Semiconductor Energy Lab Co Ltd Light-emitting element and light-emitting device
US7811677B2 (en) 2004-05-20 2010-10-12 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and light emitting device
US8637167B2 (en) 2004-05-20 2014-01-28 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and light emitting device
JP4637651B2 (en) * 2004-06-03 2011-02-23 三井化学株式会社 Amine compound and organic electroluminescence device containing the amine compound
JP2006016384A (en) * 2004-06-03 2006-01-19 Mitsui Chemicals Inc Amine compound, and organic electroluminescent device containing the same
US7951470B2 (en) 2004-08-23 2011-05-31 Semiconductor Energy Laboratory Co., Ltd. Light emitting element, light emitting device, and lighting system
JP2006089728A (en) * 2004-08-23 2006-04-06 Semiconductor Energy Lab Co Ltd Light-emitting element, light-emitting device and illuminator
KR101163194B1 (en) 2004-08-23 2012-07-06 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light emitting element, light emitting device, and lighting system
WO2006022193A1 (en) * 2004-08-23 2006-03-02 Semiconductor Energy Laboratory Co., Ltd. Light emitting element, light emitting device, and lighting system
JP2006073273A (en) * 2004-08-31 2006-03-16 Nissan Motor Co Ltd Functional thin film element, manufacturing method of functional thin film element and article using functional thin film element
JP4534673B2 (en) * 2004-08-31 2010-09-01 日産自動車株式会社 Functional thin film element, method for producing functional thin film element, and article using functional thin film element
JP4534674B2 (en) * 2004-08-31 2010-09-01 日産自動車株式会社 Functional thin film element, method for producing functional thin film element, and article using functional thin film element
US7804238B2 (en) 2004-08-31 2010-09-28 Nissan Motor Co., Ltd. Functional thin-film element, producing method thereof, and article using functional thin-film element
JP2006073272A (en) * 2004-08-31 2006-03-16 Nissan Motor Co Ltd Functional thin film element, manufacturing method of functional thin film element and article using functional thin film element
US8512880B2 (en) 2004-12-03 2013-08-20 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex, and light-emitting element and light-emitting device using the organometallic complex
US7771844B2 (en) 2004-12-03 2010-08-10 Semiconductor Energy Laboratory Co., Ltd Organic metal complex and photoelectronic device, light-emitting element and light-emitting device using the same
US7795429B2 (en) 2004-12-03 2010-09-14 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex, and light-emitting element and light-emitting device using the organometallic complex
US7951471B2 (en) 2004-12-07 2011-05-31 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex, and light-emitting element and light-emitting device using the same
US8227600B2 (en) 2004-12-07 2012-07-24 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex, and light-emitting element and light-emitting device using the same
WO2006062144A1 (en) * 2004-12-07 2006-06-15 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex, and light-emitting element and light-emittng device using the same
JP2012134509A (en) * 2005-03-28 2012-07-12 Semiconductor Energy Lab Co Ltd Light-emitting element, light-emitting device, and electronic appliance
JP2006298965A (en) * 2005-04-15 2006-11-02 Showa Denko Kk Conductive composition containing compound having diphenylquinoxaline skeleton
JP2007099766A (en) * 2005-09-12 2007-04-19 Semiconductor Energy Lab Co Ltd Quinoxaline derivative, and light emitting element, light emitting device and electronic equipment using the quinoxaline derivative
US8623523B2 (en) 2005-09-12 2014-01-07 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative, and light emitting element, light emitting device, and electronic appliance using the same
US7901792B2 (en) 2005-09-12 2011-03-08 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative, and light emitting element, light emitting device, and electronic appliance using the same
WO2007032258A1 (en) * 2005-09-12 2007-03-22 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative, and light emitting element, light emitting device, and electronic appliance using the same
US20120211738A1 (en) * 2005-09-12 2012-08-23 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline Derivative, and Light Emitting Element, Light Emitting Device, and Electronic Appliance Using the Same
US8173277B2 (en) 2005-09-12 2012-05-08 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative, and light-emitting element, light-emitting device, and electronic appliance using the same
KR101540037B1 (en) * 2005-09-12 2015-07-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Quinoxaline derivative, and light emitting element, light emitting device, and electronic appliance using the same
EP2004616A1 (en) * 2006-03-21 2008-12-24 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative, and light-emitting element, light-emitting device, electronic device using the quinoxaline derivative
US8471017B2 (en) 2006-03-21 2013-06-25 Semiconductor Energy Laboratory Co. Ltd. Quinoxaline derivative, and light-emitting element, light-emitting device, electronic device using the quinoxaline derivative
EP2004616A4 (en) * 2006-03-21 2011-06-08 Semiconductor Energy Lab Quinoxaline derivative, and light-emitting element, light-emitting device, electronic device using the quinoxaline derivative
US8008489B2 (en) 2006-03-21 2011-08-30 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative, and light-emitting element, light-emitting device, electronic device using the quinoxaline derivative
US7696348B2 (en) 2006-03-21 2010-04-13 Semiconductor Energy Laboratories Co., Ltd. Quinoxaline derivative, and light-emitting element, light-emitting device, electronic device using the quinoxaline derivative
WO2007142216A1 (en) * 2006-06-05 2007-12-13 Idemitsu Kosan Co., Ltd. Organic electroluminescent device and material for organic electroluminescent device
JP5213705B2 (en) * 2006-06-05 2013-06-19 出光興産株式会社 ORGANIC ELECTROLUMINESCENT ELEMENT AND MATERIAL FOR ORGANIC ELECTROLUMINESCENT ELEMENT
US9062036B2 (en) 2006-09-29 2015-06-23 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative, and light emitting element, light emitting device, and electronic device using the quinoxaline derivative
US9328098B2 (en) 2006-09-29 2016-05-03 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative, and light emitting element, light emitting device, and electronic device using the quinoxaline derivative
US8703305B2 (en) 2006-09-29 2014-04-22 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative, and light emitting element, light emitting device, and electronic device using the quinoxaline derivative
US8283052B2 (en) 2006-09-29 2012-10-09 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative, light-emitting element, light-emitting device, and electronic appliance
WO2008047589A1 (en) * 2006-10-06 2008-04-24 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative, and light-emitting element and light-emitting device using quinoxaline derivative
US7612204B2 (en) 2006-10-06 2009-11-03 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative, and light-emitting element and light-emitting device using quinoxaline derivative
JP2008110968A (en) * 2006-10-06 2008-05-15 Semiconductor Energy Lab Co Ltd Quinoxaline derivative, and luminescent element and luminescent device using quinoxaline derivative
JP2008094776A (en) * 2006-10-13 2008-04-24 Mitsui Chemicals Inc Anthracene compound and organic light emitting device containing the compound
US8178216B2 (en) 2007-02-28 2012-05-15 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative, and light-emitting element, light-emitting device, and electronic device including quinoxaline derivative
EP2065378A1 (en) 2007-11-30 2009-06-03 Semiconductor Energy Laboratory Co, Ltd. Quinoxaline derivate, and light-emitting element, light-emitting device, and electronic device using quinoxaline derivative
US7927720B2 (en) 2007-11-30 2011-04-19 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative and light-emitting element, light-emitting device, and electronic device using quinoxaline derivative
US8314101B2 (en) 2007-11-30 2012-11-20 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative, and light-emitting element, light-emitting device, and electronic device using quinoxaline derivative
JP2016054305A (en) * 2007-11-30 2016-04-14 株式会社半導体エネルギー研究所 Light-emitting element, light-emitting device, luminaire, electronic apparatus
US8119259B2 (en) 2007-11-30 2012-02-21 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative, and light-emitting element and electronic device using the same
KR101600593B1 (en) * 2007-11-30 2016-03-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Quinoxaline derivative and light-emitting element light-emitting device and electronic device using quinoxaline derivative
US8586740B2 (en) 2007-11-30 2013-11-19 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative, and light-emitting element, light-emitting device, and electronic device using quinoxaline derivative
CN103396411B (en) * 2007-11-30 2016-01-20 株式会社半导体能源研究所 Quinoxaline derivatives and use its luminous element and electronics
JP2009149629A (en) * 2007-11-30 2009-07-09 Semiconductor Energy Lab Co Ltd Quinoxaline derivative, and light-emitting element, light-emitting device and electronic equipment each obtained using the derivative
JP2009149631A (en) * 2007-11-30 2009-07-09 Semiconductor Energy Lab Co Ltd Quinoxaline derivative, and light-emitting element, light-emitting device and electronic equipment each obtained using quinoxaline derivative
JP2009149632A (en) * 2007-11-30 2009-07-09 Semiconductor Energy Lab Co Ltd Quinoxaline derivative, luminescent element, luminescent device, and electronic equipment each using quinoxaline
KR20090056870A (en) * 2007-11-30 2009-06-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Quinoxaline derivative, and light-emitting element, light-emitting device and electronic device using quinoxaline derivative
JP2014139237A (en) * 2007-11-30 2014-07-31 Semiconductor Energy Lab Co Ltd Quinoxaline derivative
US7993761B2 (en) 2007-12-03 2011-08-09 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative, and light-emitting element, light-emitting device, and electronic device using the same
JP2009167180A (en) * 2007-12-21 2009-07-30 Semiconductor Energy Lab Co Ltd Quinoxaline derivative and light-emitting device using the same, light-emitting equipment and electronic equipment
US8815412B2 (en) 2007-12-21 2014-08-26 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative, and light-emitting element, light-emitting device, and electronic appliance using the quinoxaline derivative
WO2011081431A2 (en) * 2009-12-30 2011-07-07 주식회사 두산 Organic light emitting compound, and organic electroluminescent device using same
WO2011081431A3 (en) * 2009-12-30 2011-12-15 주식회사 두산 Organic light emitting compound, and organic electroluminescent device using same
KR101290011B1 (en) * 2009-12-30 2013-07-30 주식회사 두산 Organic electroluminescent compounds and organic electroluminescent device comprising same
KR102082373B1 (en) 2011-08-31 2020-02-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Heterocyclic compound, light-emitting element, light-emitting device, electronic device, lighting device, and organic compound
JP2014028784A (en) * 2011-08-31 2014-02-13 Semiconductor Energy Lab Co Ltd Heterocyclic compound, light-emitting element, light-emitting device, electronic device, lighting device, and organic compound
KR20130027420A (en) * 2011-08-31 2013-03-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Heterocyclic compound, light-emitting element, light-emitting device, electronic device, lighting device, and organic compound
JP2014005277A (en) * 2012-06-01 2014-01-16 Semiconductor Energy Lab Co Ltd Method of synthesizing pyrazine derivative, and light-emitting element, light-emitting device, electronic device, and lighting device
US9978960B2 (en) 2013-06-14 2018-05-22 Semiconductor Energy Laboratory Co., Ltd. Organometallic iridium complex, light-emitting element, light-emitting device, and lighting device
US10431752B2 (en) 2013-06-14 2019-10-01 Semiconductor Energy Laboratory Co., Ltd. Organometallic iridium complex, light-emitting element, light-emitting device, and lighting device
KR101636968B1 (en) 2013-10-29 2016-07-08 주식회사 엠비케이 New electron injection layer compounds and organic electroluminescent device comprising the same
KR20150051119A (en) * 2013-10-29 2015-05-11 주식회사 엠비케이 New electron injection layer compounds and organic electroluminescent device comprising the same
US10446764B2 (en) 2014-05-22 2019-10-15 Samsung Sdi Co., Ltd. Organic compound, composition, organic optoelectric device, and display device
US10270042B2 (en) 2016-05-31 2019-04-23 Samsung Sdi Co., Ltd. Compound for organic optoelectric device and organic optoelectric device and display device
WO2019208991A1 (en) * 2018-04-24 2019-10-31 주식회사 엘지화학 Novel heterocyclic compound and organic light emitting device using same
CN111788192A (en) * 2018-04-24 2020-10-16 株式会社Lg化学 Novel heterocyclic compound and organic light emitting device using the same

Similar Documents

Publication Publication Date Title
JP2003040873A (en) New quinoxaline derivative and organic electroluminescent element utilizing the same
JP5274459B2 (en) Material for organic electroluminescence device and organic electroluminescence device
EP2174933B1 (en) Benzimidazole derivatives for use in organic electroluminescent devices
JP4435990B2 (en) Organometallic complex molecule and organic electroluminescent device using the same
JP5619853B2 (en) Material for organic electroluminescence device and organic electroluminescence device
EP2371812B1 (en) Indenofluorenedione derivative, material for organic electroluminescent element, and organic electroluminescent element
TWI580666B (en) Aromatic amine derivatives, organic electroluminescent elements and electronic machines
TWI436981B (en) Composite material, and light emitting element and light emitting device using the composite material
KR20150002072A (en) Novel compound for organic electroluminescent device and organic electroluminescent device comprising the same
TW200803613A (en) Material for organic electroluminescent device and organic electroluminescent device using the same
KR20140099082A (en) Novel compound for organic electroluminescent device and organic electroluminescent device comprising the same
KR20140145355A (en) Novel compound for organic electroluminescent device and organic electroluminescent device comprising the same
JP2001335516A (en) Organic electroluminescence element
JP2003026616A (en) Compound for organic el(electroluminescent) device and organic el device using it
US9024304B2 (en) Naphthalene derivative, organic material including the same, and organic electroluminescent device including the same
JPWO2003050201A1 (en) Organic electroluminescence element material
KR20110054225A (en) Organic light emitting material and organic light emitting diode having the same
KR20130069431A (en) Novel compound for organic electroluminescent device and organic electroluminescent device comprising the same
KR20150037133A (en) Novel compound for organic electroluminescent device and organic electroluminescent device comprising the same
KR20150025379A (en) Novel compound for organic electroluminescent device and organic electroluminescent device comprising the same
KR101562882B1 (en) Novel compound for organic electroluminescent device and organic electroluminescent device comprising the same
KR20040060270A (en) Red color emitting compounds for organic electroluminescent device and organic electroluminescent device using them
KR20130133518A (en) Organic light emitting material and organic light emitting diode having the same
KR101502764B1 (en) Novel compound for organic electroluminescent device and organic electroluminescent device comprising the same
JP2002313581A (en) Organic el element using alkali metal salt of carboxylic acid having pyridine ring

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080703

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20081211