JPH0798845A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPH0798845A
JPH0798845A JP24320493A JP24320493A JPH0798845A JP H0798845 A JPH0798845 A JP H0798845A JP 24320493 A JP24320493 A JP 24320493A JP 24320493 A JP24320493 A JP 24320493A JP H0798845 A JPH0798845 A JP H0798845A
Authority
JP
Japan
Prior art keywords
magnetic
powder
magnetic layer
hexagonal plate
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24320493A
Other languages
Japanese (ja)
Inventor
Noriyuki Kitaori
典之 北折
Osamu Yoshida
修 吉田
Hirohide Mizunoya
博英 水野谷
Akira Shiga
章 志賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP24320493A priority Critical patent/JPH0798845A/en
Publication of JPH0798845A publication Critical patent/JPH0798845A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a magnetic recording medium having high durability by forming a 2nd magnetic layer consisting of iron-based ferromagnetic metal powder and a binder on a 1st magnetic layer. CONSTITUTION:This magnetic recording medium has a substrate, a 1st magnetic layer formed on the substrate and consist.ing of hexagonal platy iron powder or cobalt-contg. hexagonal platy iron oxide powder and a binder and a 2nd magnetic layer formed on the 1st, magnetic layer and consisting of iron-based ferromagnetic metal powder and a binder. The coercive force Hc, of the magnetic powder in the 1st magnetic layer and the coercive force Hc2 of the magnetic powder in the 2nd magnetic layer satisfy the relation of Hc2>Ha1. This magnetic recording medium is excellent in durability, has a high S-N ratio and enables high density recording.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は磁気記録媒体、更に詳し
くは、磁気ディスク、磁気テープ、磁気シート等の塗布
型の磁気記録媒体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium, and more particularly to a coating type magnetic recording medium such as a magnetic disk, a magnetic tape or a magnetic sheet.

【0002】[0002]

【従来の技術】塗布型の磁気記録媒体は、磁性粉末を結
合剤と有機溶剤に分散してなる磁性塗料をポリエステル
等の基材上に塗布、乾燥して得られるものであり、特に
高画質のビデオテープ、大容量のフロッピーディスク等
には磁性粉末として鉄を主体とする強磁性金属粉末(メ
タル粉末)が用いられている。その理由としては、磁気
エネルギーは保磁力(Hc)×残留磁束密度(Br)で表す
ことができるが、メタル粉末はHcが高く、また、飽和磁
化(σs )が大きいのでBrが高くなり、高磁気エネルギ
ーが期待できるからである。
2. Description of the Related Art A coating type magnetic recording medium is obtained by coating a base material such as polyester with a magnetic paint prepared by dispersing magnetic powder in a binder and an organic solvent and drying it. In the video tapes, large-capacity floppy disks, etc., ferromagnetic metal powder (metal powder) mainly composed of iron is used as magnetic powder. The reason is that magnetic energy can be expressed by coercive force (Hc) × residual magnetic flux density (Br), but metal powder has a high Hc, and since saturation magnetization (σs) is large, Br is high and high. This is because magnetic energy can be expected.

【0003】一般に、高密度記録を行なうためには、磁
性粉末の粒子径を小さくする必要がある。なぜなら、S/
N は S/N∝ (1/Vp)1/2〔ここでVpは粒子の体積〕であ
り、高S/N を得るためには粒径を小さくする必要があ
る。
Generally, in order to perform high density recording, it is necessary to reduce the particle size of the magnetic powder. Because S /
N is S / N∝ (1 / Vp) 1/2 [where Vp is the volume of the particles], and it is necessary to reduce the particle size to obtain high S / N.

【0004】また、例えば、記録波長が 0.5μm 以下で
あるような高密度記録をする場合にも、前述したよう
に、磁気記録媒体に用いる磁性粉末の粒径はできるだけ
小さい方が好ましく、0.2 μm 以下である必要があり、
好ましくは0.12μm 以下である。
Also, for example, even in the case of high density recording such that the recording wavelength is 0.5 μm or less, it is preferable that the particle size of the magnetic powder used in the magnetic recording medium is as small as possible, as described above. Must be
It is preferably 0.12 μm or less.

【0005】また、メタル粉末以外の磁性粉末として、
高密度記録を達成するために、通常のγ−Fe2O3 にCoを
被着させて、保磁力を500 〜1000(Oe)程度に高めたCo被
着鉄酸化物もビデオテープ、オーディオテープ等に多用
されている。
As magnetic powders other than metal powders,
In order to achieve high-density recording, Co is deposited on normal γ-Fe 2 O 3 to increase the coercive force to about 500 to 1000 (Oe). It is often used for etc.

【0006】[0006]

【発明が解決しようとする課題】ところが、メタル粉末
の粒径を0.12μm 以下にした場合、σs が低下して110
(emu/g) 程度となり、高密度化には対応できなくな
る。すなわち、高密度記録を行なう場合には必然的に記
録波長が短くなることは、結果的にメタル粉末には障害
となる。
However, when the particle size of the metal powder is set to 0.12 μm or less, σs decreases and 110
It becomes about (emu / g), which makes it impossible to deal with higher density. That is, when the high density recording is performed, the recording wavelength is inevitably shortened, which results in an obstacle to the metal powder.

【0007】また、針状のメタル粉末を用いた場合、微
細化が進むと特性を向上するために配向しても配向度が
上がらないという問題がある。また、たとえ配向したと
しても、針状のメタル粉末は長手記録方式であるため、
例えば磁気テープなど、磁気ヘッドが、らせん走査(ヘ
リカルスキャン)をするような場合は、ヘッドの走査方
向と磁化方向にギャップが生じ、充填密度の割に有効な
記録再生が行なえないという欠点がある。
Further, when a needle-shaped metal powder is used, there is a problem that the degree of orientation does not rise even if the orientation is performed to improve the characteristics as the fineness advances. Further, even if oriented, since the acicular metal powder is a longitudinal recording system,
For example, in the case where a magnetic head such as a magnetic tape performs a helical scan, there is a disadvantage that a gap occurs in the scanning direction of the head and a magnetization direction, and effective recording / reproducing cannot be performed for the filling density. .

【0008】このように、メタル粉末を使用した高密度
記録には未だ問題点があり、コストの面からも更なる改
良が要望されている。
As described above, the high density recording using the metal powder still has problems, and further improvement is demanded in terms of cost.

【0009】また、Co被着鉄酸化物が使用する場合に
は、より高いS/N を得るためには、更に当該磁性粉末の
飽和磁束密度(Bs)を高くしたり、単位体積当りの有効磁
性体数を増やす必要がある。Co被着鉄酸化物は、耐食
性、生産コストには優れるものの、前述したメタル粉と
は反対に、Hc×Brで求まる磁気エネルギーが小さく、ま
た粒子サイズも大きい(0.3〜0.5 μm 程度) ため、特に
最短記録波長が 0.7μm 以下になるとノイズが増加し、
良好な再生出力が得られない。
When Co-deposited iron oxide is used, in order to obtain a higher S / N, the saturation magnetic flux density (Bs) of the magnetic powder is further increased, and the effective per unit volume is increased. It is necessary to increase the number of magnetic materials. Although Co-deposited iron oxide is excellent in corrosion resistance and production cost, on the contrary to the metal powder described above, the magnetic energy obtained by Hc × Br is small and the particle size is large (about 0.3 to 0.5 μm). Especially when the shortest recording wavelength is 0.7 μm or less, noise increases,
Good playback output cannot be obtained.

【0010】更に、従来主流であった単層構造の磁性層
を2層構造にして出力特性を向上させることが試みられ
ているが、高周波領域での出力が不充分であったり、ノ
イズ特性も不充分であることから、S/N が低く、電磁変
化特性をバランス良く向上することが望まれている。
Further, it has been attempted to improve the output characteristics by making the magnetic layer having a single-layer structure, which has been the mainstream in the past, into a two-layer structure, but the output in a high frequency region is insufficient and the noise characteristic is also increased. Since it is insufficient, S / N is low and it is desired to improve the electromagnetic change characteristics in a well-balanced manner.

【0011】このように、高密度記録を目的とした磁気
記録媒体では、磁気特性と物理的特性の両方をバランス
良く向上させるという点については未だ充分でなく、本
発明が解決しようとする課題は、耐久性に優れ、且つS/
N が良好で、高密度記録が可能な磁気記録媒体を提供す
ることである。
As described above, in a magnetic recording medium intended for high density recording, it is still insufficient to improve both magnetic characteristics and physical characteristics in a well-balanced manner, and the problem to be solved by the present invention is to be solved. , Durable and S /
An object of the present invention is to provide a magnetic recording medium having a good N and capable of high density recording.

【0012】[0012]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく鋭意研究した結果、二層を磁性層を有する
磁気記録媒体において、上層の磁性粉末として鉄を主体
とする強磁性金属粉末を使用し、下層の磁性粉末として
六角板状鉄粉末又はコバルトを含有する六角板状の鉄酸
化物粉末を使用することにより、耐久性に優れ、特にS/
N が良好で高密度記録が可能な磁気記録媒体が得られる
ことを見出し、本発明を完成するに至った。
As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention have found that in a magnetic recording medium having two magnetic layers, the ferromagnetic powder mainly composed of iron is used as the upper magnetic powder. Using a metal powder, by using a hexagonal plate-shaped iron powder or a hexagonal plate-shaped iron oxide powder containing cobalt as the magnetic powder of the lower layer, excellent durability, especially S /
The inventors have found that a magnetic recording medium having a good N 2 and capable of high-density recording can be obtained, and completed the present invention.

【0013】すなわち本発明は、基材と、該基材上に形
成され、六角板状鉄粉末又はコバルト含有六角板状鉄酸
化物粉末と結合剤とからなる第一磁性層と、鉄を主体と
する強磁性金属粉末と結合剤とからなり、前記第一磁性
層上に形成された第二磁性層とを有する磁気記録媒体を
提供するものである。
That is, the present invention is mainly composed of a base material, a first magnetic layer formed on the base material, the hexagonal plate iron powder or the cobalt-containing hexagonal plate iron oxide powder, and a binder, and iron. And a second magnetic layer formed on the first magnetic layer, the magnetic recording medium comprising a ferromagnetic metal powder and a binder.

【0014】本発明の磁気記録媒体は、上下二層の磁性
層を有し、下層の磁性層(第一磁性層)が六角板状鉄粉
末又はコバルト含有六角板状鉄酸化物粉末を含有し、上
層の磁性層(第二磁性層)が鉄を主体とする強磁性金属
粉末(以下、メタル粉末と略記する)を含有する。以
下、本発明の磁気記録媒体の各磁性層について説明す
る。
The magnetic recording medium of the present invention has two upper and lower magnetic layers, and the lower magnetic layer (first magnetic layer) contains hexagonal plate-like iron powder or cobalt-containing hexagonal plate-like iron oxide powder. The upper magnetic layer (second magnetic layer) contains a ferromagnetic metal powder mainly composed of iron (hereinafter abbreviated as metal powder). Hereinafter, each magnetic layer of the magnetic recording medium of the present invention will be described.

【0015】〔第一磁性層〕先ず、本発明の磁気記録媒
体の第一磁性層に使用される六角板状鉄粉末について説
明する。本発明の磁気記録媒体の第一磁性層に使用され
る六角板状鉄粉末は例えば以下のような方法により製造
される。
[First Magnetic Layer] First, the hexagonal plate-like iron powder used in the first magnetic layer of the magnetic recording medium of the present invention will be described. The hexagonal plate-shaped iron powder used for the first magnetic layer of the magnetic recording medium of the present invention is produced, for example, by the following method.

【0016】<六角板状鉄粉末の製造法>硫酸第一鉄水
溶液を攪拌し、これに当量以上の水酸化ナトリウムを加
え、アルカリ性にする。これにより水酸化鉄が沈澱す
る。この沈澱物を含んだ当該溶液に、攪拌下少量ずつ過
酸化水素を加える。過酸化水素を水酸化鉄に加えると、
急激に酸化されて、六角板状のδ−FeOOH が生じる。
<Method for producing hexagonal plate-shaped iron powder> An aqueous ferrous sulfate solution is stirred, and an equivalent amount or more of sodium hydroxide is added thereto to make it alkaline. This causes iron hydroxide to precipitate. Hydrogen peroxide is added to the solution containing the precipitate little by little with stirring. When hydrogen peroxide is added to iron hydroxide,
It is rapidly oxidized to form hexagonal plate-shaped δ-FeOOH.

【0017】次いで水ガラスと塩化アルミニウムを加
え、酢酸等を用いてpHを4〜6に調節する。次いでろ過
し残渣を水洗し、水洗後650 ℃で空気中で焼成する。次
に420℃で水素ガスで還元し、室温まで冷却して、六角
板状鉄粉末が得られる。
Next, water glass and aluminum chloride are added, and the pH is adjusted to 4 to 6 using acetic acid or the like. Then, it is filtered, the residue is washed with water, and then baked in air at 650 ° C. Next, it is reduced with hydrogen gas at 420 ° C. and cooled to room temperature to obtain hexagonal plate-shaped iron powder.

【0018】ここで、還元、冷却後、少量の空気や酸素
を通気し、表面を酸化させることが好ましい。
Here, after reduction and cooling, it is preferable that a small amount of air or oxygen is aerated to oxidize the surface.

【0019】本発明においては、上記六角板状鉄粉末に
更にコバルトを含有させ、酸化した六角板状鉄酸化物粉
末を使用することができる。ここで「コバルト含有」と
は、Co表面形成型のコバルト被着はもちろん、Coを内部
に含むCo−ドープ型、Co−吸着型や、Co−変性型などの
いずれの形態であってもよい。また、六角板状鉄粉末に
コバルトフェライトを含有させたものであってもよい。
コバルトを含有する六角板状鉄酸化物としては、六角板
状のCo−γ−Fe2O3 、Co−γ−Fe3O4 、Co−γ−FeOx(x
は1.33〜1.50) 、又はコバルトフェライトを被着した六
角板状のFe3O4、Fe2O3 、FeOxが好適に使用される。
In the present invention, a hexagonal plate-shaped iron oxide powder obtained by further adding cobalt to the above-mentioned hexagonal plate-shaped iron powder and oxidizing it can be used. Here, "cobalt-containing" means not only Co surface forming type cobalt deposition but also any form such as Co-doped type containing Co inside, Co-adsorption type and Co-modified type. . Alternatively, hexagonal plate-shaped iron powder containing cobalt ferrite may be used.
As the hexagonal plate-shaped iron oxide containing cobalt, hexagonal plate-shaped Co-γ-Fe 2 O 3 , Co-γ-Fe 3 O 4 , Co-γ-FeO x (x
Is 1.33 to 1.50), or hexagonal plate-shaped Fe 3 O 4 , Fe 2 O 3 , and FeO x coated with cobalt ferrite are preferably used.

【0020】ここで、コバルトを含有する六角板状の鉄
酸化物は、上記のような六角板状鉄粉末を核として、通
常のコバルト被着の方法等でコバルト含有六角板状鉄粉
末を製造し、次いでこれを酸化することにより、製造さ
れる。磁気特性はコバルトの添加量、Fe2+量の製造条件
等で操作することにより所定のものに調節できる。コバ
ルトの添加量は通常1〜20重量%(原料の酸化鉄に対し
て)、好ましくは2〜15重量%であり、Fe2+の量は通常
0.5〜30重量%(コバルト含有鉄酸化物全体における割
合)、好ましくは1〜25重量%である。
Here, the hexagonal plate-shaped iron oxide containing cobalt is produced by using the above-mentioned hexagonal plate-shaped iron powder as a core to produce a cobalt-containing hexagonal plate-shaped iron powder by a conventional method of depositing cobalt. And then oxidizing it. The magnetic characteristics can be adjusted to predetermined values by operating the manufacturing conditions such as the amount of cobalt added and the amount of Fe 2+ . The amount of cobalt added is usually 1 to 20% by weight (based on the raw iron oxide), preferably 2 to 15% by weight, and the amount of Fe 2+ is usually
It is 0.5 to 30% by weight (ratio in the total cobalt-containing iron oxide), preferably 1 to 25% by weight.

【0021】また、六角板状鉄粉末やコバルト含有六角
板状鉄酸化物にはCo以外にも、Mn,Cr, Ni, Zn, Sn等を
微量添加してもよい。
In addition to Co, a small amount of Mn, Cr, Ni, Zn, Sn or the like may be added to the hexagonal plate-shaped iron powder or the cobalt-containing hexagonal plate-shaped iron oxide.

【0022】第一磁性層に使用される六角板状鉄粉末又
は六角板状コバルト含有鉄酸化物粉末の保磁力は特に限
定されず、所望とする磁気記録媒体の性能に応じて適宜
決められるが、 400〜1600 (Oe) 程度が一般的である。
ただし、六角板状鉄粉末又はコバルト含有六角板状鉄酸
化物粉末の保磁力 (Hc1)と、後述の第二磁性層で用い
られるメタル粉末の保磁力 (Hc2)の大きさが、Hc2
>Hc1 の関係を満たすことが好ましい。
The coercive force of the hexagonal plate-shaped iron powder or the hexagonal plate-shaped cobalt-containing iron oxide powder used in the first magnetic layer is not particularly limited and may be appropriately determined according to the desired performance of the magnetic recording medium. , 400 to 1600 (Oe) is common.
However, the magnitude of the coercive force (Hc 1 ) of the hexagonal plate-shaped iron powder or the cobalt-containing hexagonal plate-shaped iron oxide powder and the coercive force (Hc 2 ) of the metal powder used in the second magnetic layer described later is Hc. 2
It is preferable to satisfy the relation of> Hc 1 .

【0023】また、六角板状鉄粉末又は六角板状コバル
ト含有鉄酸化物粉末の平均対角線長や板状比も特に限定
されないが、平均対角線長0.03〜5μm 程度、板状比は
3〜20程度である。
The hexagonal plate-like iron powder or the hexagonal plate-like cobalt-containing iron oxide powder is not particularly limited in the average diagonal length and plate ratio, but the average diagonal line length is about 0.03 to 5 μm and the plate ratio is about 3 to 20. Is.

【0024】上記のような六角板状の鉄粉末には、針状
メタル粉末と比べて、磁化容易軸が面内である、σs が
高い、塗布した時のパッキング性が向上する、板状であ
るため第二磁性層の表面平滑性が向上し、電磁変換特性
も向上する等の利点がある。また、単位体積当りの有効
磁性粉末数は六角板状鉄粉末を充填した方が多くなるた
め、高いS/N が得られる。
The hexagonal plate-like iron powder as described above has a plate-like shape in which the axis of easy magnetization is in-plane, the σs is high, the packing property when applied is improved, as compared with the acicular metal powder. Therefore, there are advantages that the surface smoothness of the second magnetic layer is improved and the electromagnetic conversion characteristics are improved. In addition, since the number of effective magnetic powders per unit volume is larger when the hexagonal plate-shaped iron powder is filled, a high S / N can be obtained.

【0025】第一磁性層は、上記のような六角板状鉄粉
末又は六角板状コバルト含有鉄酸化物粉末と結合剤を主
成分とする磁性塗料を、基材上に塗布して形成される
が、通常、第一磁性層の厚さは0.5 〜5μm 、好ましく
は2〜4μm である。
The first magnetic layer is formed by applying a hexagonal plate-like iron powder or a hexagonal plate-like cobalt-containing iron oxide powder as described above and a magnetic paint containing a binder as a main component onto a substrate. However, the thickness of the first magnetic layer is usually 0.5 to 5 .mu.m, preferably 2 to 4 .mu.m.

【0026】〔第二磁性層〕また、本発明の磁気記録媒
体の第二磁性層に用いられるメタル粉末は、従来公知の
鉄を主体とするものが使用でき、鉄粉末、或いは鉄とコ
バルト、ニッケル等の合金粉末、更にこれらにアルミニ
ウム、クロム、マンガン、珪素、亜鉛、希土類金属元
素、ランタノイド、アクチノイド等の遷移金属元素等を
含む金属粉末が挙げられる。メタル粉末の保磁力は限定
されないが、例えば、 800〜1900(Oe)程度が一般的であ
る。また、メタル粉末の粒径も同様で、特に限定されな
いが、平均長軸長が 0.1〜1.0 μm 、平均短軸長が0.01
〜0.1 μm 程度が一般的である。また粒子の形状も限定
されないが、針状のものが好ましい。
[Second Magnetic Layer] The metal powder used in the second magnetic layer of the magnetic recording medium of the present invention may be a conventionally known one mainly composed of iron, such as iron powder, or iron and cobalt, Examples thereof include alloy powders of nickel and the like, and metal powders containing transition metal elements such as aluminum, chromium, manganese, silicon, zinc, rare earth metal elements, lanthanoids and actinoids. The coercive force of the metal powder is not limited, but is generally about 800 to 1900 (Oe). The particle diameter of the metal powder is also the same and is not particularly limited, but the average major axis length is 0.1 to 1.0 μm, and the average minor axis length is 0.01.
It is generally about 0.1 μm. The shape of the particles is not limited, but needle-like particles are preferable.

【0027】第二磁性層は、上記のようなメタル粉末と
結合剤を主成分とする磁性塗料を、第一磁性層上に塗布
して形成されるが、第二磁性層の厚さは 0.1〜3μm が
好ましい。
The second magnetic layer is formed by coating the above-mentioned magnetic coating material containing a metal powder and a binder as a main component on the first magnetic layer. The thickness of the second magnetic layer is 0.1. -3 μm is preferred.

【0028】〔本発明の磁気記録媒体〕本発明におい
て、磁性層の形成(塗布)方法は、第一磁性層上と第二
磁性層を同時に形成する方法や一層ずつ順次形成する方
法のいずれでもよく、一層ずつ形成する場合は一層ごと
にカレンダー処理してもよい。
[Magnetic Recording Medium of the Present Invention] In the present invention, the method of forming (coating) the magnetic layer may be either a method of simultaneously forming the first magnetic layer and the second magnetic layer or a method of sequentially forming one layer at a time. Well, when forming one layer at a time, calendering may be performed on each layer.

【0029】本発明の磁気記録媒体の磁性層を形成する
磁性塗料は、第一、第二磁性層に上記の如き磁性粉末を
用い、その他の結合剤、有機溶媒等の成分は共通のもの
が使用できる。
The magnetic coating material for forming the magnetic layer of the magnetic recording medium of the present invention uses the above-mentioned magnetic powder for the first and second magnetic layers, and other components such as binder and organic solvent are common. Can be used.

【0030】本発明に使用される結合剤としては、ウレ
タン樹脂、特にスルホン酸基、スルホン酸金属塩基、ス
ルホベタイン基、カルボベタイン基、アミノ基、水酸
基、エポキシ基等の極性基を含有するポリウレタン樹
脂、塩化ビニル−酢酸ビニル共重合体、塩化ビニル−塩
化ビニリデン共重合体、塩化ビニル−アクリロニトリル
共重合体等の塩化ビニル系共重合体であって、特にスル
ホン酸基、スルホン酸金属塩基、アミノ基等の極性基を
含有する塩化ビニル共重合体、ブタジエン−アクリロニ
トリル共重合体、ポリアミド樹脂、ポリビニルブチラー
ル、セルロース誘導体(セルロースアセテートブチレー
ト、セルロースプロピオネート、ニトロセルロース
等)、スチレン−ブタジエン共重合体、ポリエステル樹
脂、各種の合成ゴム系、フェノール樹脂、エポキシ樹
脂、尿素樹脂、メラミン樹脂、フェノキシ樹脂、シリコ
ン樹脂、アクリル系反応樹脂、高分子量ポリエステル樹
脂とイソシアネートプレポリマーの混合物、ポリエステ
ルポリオールとポリイソシアネートの混合物、尿素ホル
ムアルデヒド樹脂、低分子量グリコール/高分子量ジオ
ール/イソシアネートの混合物、及びこれらの混合物等
が例示され、第一磁性層及び第二磁性層ともに同様のも
のが使用できる。通常、結合剤は磁性塗料中に3.0 〜10
重量%程度配合される。
As the binder used in the present invention, a urethane resin, particularly a polyurethane containing a polar group such as a sulfonic acid group, a metal sulfonate group, a sulfobetaine group, a carbobetaine group, an amino group, a hydroxyl group or an epoxy group is used. Resins, vinyl chloride-vinyl acetate copolymers, vinyl chloride-vinylidene chloride copolymers, vinyl chloride-acrylonitrile copolymers, and other vinyl chloride-based copolymers, particularly sulfonic acid groups, sulfonic acid metal bases, amino Chloride copolymers containing polar groups such as groups, butadiene-acrylonitrile copolymers, polyamide resins, polyvinyl butyral, cellulose derivatives (cellulose acetate butyrate, cellulose propionate, nitrocellulose, etc.), styrene-butadiene copolymer Coalesced, polyester resin, various synthetic rubber, Nole resin, epoxy resin, urea resin, melamine resin, phenoxy resin, silicone resin, acrylic reaction resin, mixture of high molecular weight polyester resin and isocyanate prepolymer, mixture of polyester polyol and polyisocyanate, urea formaldehyde resin, low molecular weight glycol / A mixture of high molecular weight diol / isocyanate, a mixture thereof, and the like are exemplified, and similar ones can be used for the first magnetic layer and the second magnetic layer. Usually, the binder is 3.0-10 in magnetic paint.
It is blended in a weight percentage of about.

【0031】有機溶媒としては、シクロヘキサノン、メ
チルエチルケトン、メチルイソブチルケトン、酢酸エチ
ル、酢酸ブチル、ベンゼン、トルエン、キシレン、ジメ
チルスルホキシド、テトラヒドロフラン、ジオキサン
等、使用する結合剤樹脂を溶解するのに適した溶剤が特
に制限されることなく単独又は二種以上混合して使用さ
れる。通常、有機溶媒は磁性塗料中に20〜80重量%程度
配合される。
As the organic solvent, cyclohexanone, methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, butyl acetate, benzene, toluene, xylene, dimethyl sulfoxide, tetrahydrofuran, dioxane and the like are suitable solvents for dissolving the binder resin used. There is no particular limitation and they may be used alone or in combination of two or more. Usually, the organic solvent is mixed in the magnetic coating material in an amount of about 20 to 80% by weight.

【0032】なお、磁性塗料中には、通常使用されてい
る各種添加剤、例えば分散剤、研磨剤、潤滑剤などを適
宜に添加使用してもよい。分散剤としては、レシチン、
ノニオン系界面活性剤、アニオン系界面活性剤、カチオ
ン系界面活性剤等が使用できる。研磨剤としては、α−
アルミナ、溶融アルミナ、酸化クロム(Cr2O3) 、酸化
鉄、炭化ケイ素、コランダム、ダイヤモンド等の平均粒
子径0.05〜1μm の微粉末が使用でき、通常前記したよ
うな結合剤100 重量部に対し 0.5〜100 重量部加えられ
る。また、潤滑剤としては、各種のポリシロキサン等の
シリコーンオイル、グラファイト、二硫化モリブデン等
の無機粉末、ポリエチレン、ポリテトラフルオロエチレ
ン等のプラスチック微粉末、高級脂肪酸、高級アルコー
ル、高級脂肪酸エステル、フルオロカーボン類などが前
述した結合剤100 重量部に対して0.1 〜50重量部の割合
で添加される。
In the magnetic paint, various commonly used additives such as dispersants, abrasives and lubricants may be appropriately added and used. As the dispersant, lecithin,
Nonionic surfactants, anionic surfactants, cationic surfactants and the like can be used. As an abrasive, α-
Fine powders having an average particle size of 0.05 to 1 μm, such as alumina, fused alumina, chromium oxide (Cr 2 O 3 ), iron oxide, silicon carbide, corundum, and diamond can be used, and usually 100 parts by weight of the binder as described above are used. 0.5 to 100 parts by weight is added. Examples of lubricants include silicone oils such as various polysiloxanes, graphite, inorganic powders such as molybdenum disulfide, fine plastic powders such as polyethylene and polytetrafluoroethylene, higher fatty acids, higher alcohols, higher fatty acid esters, and fluorocarbons. And the like are added in a ratio of 0.1 to 50 parts by weight with respect to 100 parts by weight of the binder.

【0033】本発明の磁気記録媒体に用いられる基材と
しては、合成樹脂(例えばポリエチレンテレフタレー
ト、ポリエチレンナフタレート等のポリエステル、ポリ
アミド、ポリオレフィン、セルロース系誘導体)、非磁
性の金属、ガラス、セラミック、紙等が挙げられ、その
形態は、フィルム、テープ、シート、カード、ディスク
等で使用される。
The substrate used in the magnetic recording medium of the present invention includes synthetic resins (for example, polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyamides, polyolefins, cellulosics), non-magnetic metals, glass, ceramics and papers. Etc., and the form thereof is used in films, tapes, sheets, cards, disks and the like.

【0034】[0034]

【実施例】以下実施例にて本発明を更に説明するが、本
発明はこれらの実施例に限定されるものではない。
The present invention will be further described in the following examples, but the present invention is not limited to these examples.

【0035】製造例 5%硫酸第一鉄水溶液を羽根付き攪拌反応槽に入れる。
次いで10%水酸化ナトリウム水溶液を少量ずつ添加し、
pHを10に調整する。この時、白色の水酸化鉄が沈澱す
る。次いで、溶液内の沈澱物が全て茶褐色(或いは黒み
がかった茶色)になるまで20%過酸化水素水溶液を添加
する。ここで生成する茶褐色の沈澱物は六角板状のδ−
FeOOH である。引き続きフィルタープレスを用いて水洗
及びろ過を行なった。
Production Example A 5% ferrous sulfate aqueous solution is placed in a stirring reaction vessel equipped with blades.
Then add 10% sodium hydroxide aqueous solution little by little,
Adjust pH to 10. At this time, white iron hydroxide precipitates. Then, 20% aqueous hydrogen peroxide solution is added until all the precipitate in the solution becomes dark brown (or dark brown). The brown-colored precipitate formed here is a hexagonal plate-like δ-
FeOOH. Subsequently, washing with water and filtration were performed using a filter press.

【0036】次いで、同じ攪拌反応槽に純水を加え、ろ
過残渣をよく分散させ、最初に仕込んだ硫酸第一鉄水溶
液の鉄に対して硝酸コバルトを5重量%添加した。更に
最初に仕込んだ硫酸第一鉄水溶液の鉄に対して水ガラス
を1重量%、塩化アルミニウムを1重量%加え、酢酸を
加えてpHを4に調整する。引き続きフィルタープレスを
用いて水洗及びろ過を行なった。その後、沈澱物をマッ
フル炉を用いて空気中で650 ℃で2時間焼成する。次い
で380 ℃でバッチ式キルンを用いて水素ガスで還元し、
再酸化を250 ℃で30分行なった。
Next, pure water was added to the same stirring reaction tank to thoroughly disperse the filtration residue, and 5% by weight of cobalt nitrate was added to the iron in the ferrous sulfate aqueous solution initially charged. Further, 1% by weight of water glass and 1% by weight of aluminum chloride are added to iron in the ferrous sulfate aqueous solution initially charged, and acetic acid is added to adjust the pH to 4. Subsequently, washing with water and filtration were performed using a filter press. The precipitate is then calcined in air in a muffle furnace at 650 ° C for 2 hours. Then reduce with hydrogen gas using a batch kiln at 380 ℃,
Reoxidation was carried out at 250 ° C for 30 minutes.

【0037】ここで、得られた金属粉末を化学分析した
結果、Co−γ−Fe2O3 であることが判明し、またTEM で
形状を観察した結果、六角板状であることを確認した。
この粉末の板状比は1:9で、Hcは 600(Oe)、σs は76
(emu/g)であった。この六角板状Co−γ−Fe2O3 粉末を
A粉とし、以下の実施例で用いた。
Here, as a result of chemical analysis of the obtained metal powder, it was found to be Co-γ-Fe 2 O 3 , and as a result of observing the shape with TEM, it was confirmed to be a hexagonal plate shape. .
The plate ratio of this powder is 1: 9, Hc is 600 (Oe), and σs is 76.
(emu / g). This hexagonal plate-shaped Co-γ-Fe 2 O 3 powder was used as powder A and used in the following examples.

【0038】実施例1 (1) 第一磁性層用の磁性塗料の調製 上記で得られたA粉と、以下に示す各成分をサンドミル
にて分散し、第一磁性層用の磁性塗料を作製した。 <磁性塗料成分> ・A粉 24.6重量% ・塩化ビニル系樹脂 1.9重量% ・ポリウレタン系樹脂 2.8重量% ・イソシアネート 0.7重量% ・Al2O3 (粒径0.15μm ) 3.0重量% ・脂肪酸エステル 0.8重量% ・トルエン 29.8重量% ・メチルエチルケトン 29.8重量% ・シクロヘキサノン 6.6重量%。
Example 1 (1) Preparation of magnetic coating material for first magnetic layer Powder A obtained above and the following components were dispersed in a sand mill to prepare a magnetic coating material for the first magnetic layer. did. <Magnetic paint components> ・ A powder 24.6% by weight ・ Vinyl chloride resin 1.9% by weight ・ Polyurethane resin 2.8% by weight ・ Isocyanate 0.7% by weight ・ Al 2 O 3 (particle size 0.15 μm) 3.0% by weight ・ Fatty acid ester 0.8% by weight % Toluene 29.8% by weight Methyl ethyl ketone 29.8% by weight Cyclohexanone 6.6% by weight.

【0039】(2) 第二磁性層用の磁性塗料の調製 上記第一磁性層用の磁性塗料成分のうち、A粉を、Hc=
1550(Oe)、σs =115(emu/g)、比表面積=53m2/g、平
均長軸長=0.1 μm 、軸比が1:8の針状メタル粉末に
代えて、第二磁性層用の磁性塗料を作製した。
(2) Preparation of Magnetic Coating Material for Second Magnetic Layer Among the above-mentioned magnetic coating material components for the first magnetic layer, powder A was used as Hc =
1550 (Oe), σs = 115 (emu / g), specific surface area = 53 m 2 / g, average major axis length = 0.1 μm, axial ratio 1: 8, instead of acicular metal powder, for the second magnetic layer The magnetic paint of was prepared.

【0040】(3) 磁性層の形成 上記の第一磁性層用の塗料(A粉を含有する塗料)を、
ダイレクトグラビア法により乾燥後の厚さが2μm にな
るように厚さ10μm のポリエチレンテレフタレートフィ
ルム上に塗布し、乾燥して第一磁性層を形成した。次い
で、第二磁性層用の塗料を、ダイレクトグラビア法によ
り乾燥後の厚さが0.4 μm になるように前記第一磁性層
上に塗布し、乾燥して第二磁性層を形成した。更にカー
ボンを主成分とする塗料を、フィルムの磁性層が形成さ
れている面の裏面に乾燥後の厚さが 0.5μm になるよう
に塗布し乾燥した。
(3) Formation of magnetic layer The above-mentioned coating material for the first magnetic layer (coating material containing A powder)
It was applied by a direct gravure method onto a polyethylene terephthalate film having a thickness of 10 μm so that the thickness after drying was 2 μm, and dried to form a first magnetic layer. Then, the coating material for the second magnetic layer was applied on the first magnetic layer by a direct gravure method so that the thickness after drying was 0.4 μm, and dried to form a second magnetic layer. Further, a coating material containing carbon as a main component was applied to the back surface of the film on which the magnetic layer was formed so that the thickness after drying was 0.5 μm, and the coating was dried.

【0041】このフィルムを8mm幅のテープ状に裁断
し、8mmカセットケースに入れて、市販の8mmVTR装
置をノイズメーターに接続し、Y-S/N 、C-S/N(AM、PM)
を測定し (記録波長 0.7μm)、市販のレファレンステー
プ(ソニー (株) 製)と比較してdB単位で表示した。ま
た、8mmテープの保磁力(Hc)と飽和磁束密度(Bs)をVSM
を用いて測定した。これらの結果を表1に示す。
This film is cut into a tape having a width of 8 mm, placed in an 8 mm cassette case, and a commercially available 8 mm VTR device is connected to the noise meter to make a YS / N, CS / N (AM, PM).
Was measured (recording wavelength 0.7 μm) and compared with a commercially available reference tape (manufactured by Sony Corporation), and displayed in dB. In addition, the coercive force (Hc) and saturation magnetic flux density (Bs) of 8mm tape are
Was measured using. The results are shown in Table 1.

【0042】実施例2 製造例において、再酸化を80℃で行い六角板状のCo−Fe
Ox (x=1.40)を得る。この六角板状のCo−FeOxは、Hc=
750(Oe)、σs=84(emu/g)であった。これを実施例1の
第一磁性層用の磁性塗料において、A粉の代わりに用
い、それ以外は実施例1と同様にして8mmテープを作製
し、同様の試験を行なった。結果を表1に示す。
Example 2 In the production example, reoxidation was performed at 80 ° C. and hexagonal plate-shaped Co—Fe was used.
Obtain O x (x = 1.40). This hexagonal plate-shaped Co-FeO x has Hc =
It was 750 (Oe) and σs = 84 (emu / g). This was used in the magnetic coating material for the first magnetic layer of Example 1 instead of the powder A, and an 8 mm tape was produced in the same manner as in Example 1 except for that, and the same test was conducted. The results are shown in Table 1.

【0043】実施例3 製造例において、450 ℃でバッチ式キルンを用いて水素
ガス還元を行い、次いで室温まで冷却した後、窒素ガス
に置換し、少量の空気を通気して表面を酸化し、六角板
状鉄粉末を得る。この六角板状鉄粉末は、Hc=1200 (O
e) 、σs =132(emu/g)であった。これを実施例1の第
一磁性層用の磁性塗料において、A粉の代わりに用い、
それ以外は実施例1と同様にして8mmテープを作製し、
同様の試験を行なった。結果を表1に示す。
Example 3 In the production example, hydrogen gas reduction was carried out at 450 ° C. using a batch kiln, and after cooling to room temperature, nitrogen gas was substituted and a small amount of air was passed through to oxidize the surface, Hexagonal plate-shaped iron powder is obtained. This hexagonal plate-shaped iron powder has Hc = 1200 (O
e) and σs = 132 (emu / g). This was used in place of A powder in the magnetic coating material for the first magnetic layer of Example 1,
Otherwise, an 8 mm tape was prepared in the same manner as in Example 1,
A similar test was conducted. The results are shown in Table 1.

【0044】比較例1 実施例1の第一磁性層用の磁性塗料において、六角板状
鉄粉末に代えて、Hc=600 (Oe)、σs =72 (emu/g)、比
表面積=34m2/g、平均長軸長=0.3 μm 、平均短軸長
=0.04μm の針状のCo−γ−Fe2O3 を用いた。それ以外
は実施例1と同様にして8mmテープを作製し、同様の試
験を行なった。結果を表1に示す。
Comparative Example 1 In the magnetic coating material for the first magnetic layer of Example 1, Hc = 600 (Oe), σs = 72 (emu / g), specific surface area = 34 m 2 instead of hexagonal plate-shaped iron powder. / G, average major axis length = 0.3 μm, average minor axis length = 0.04 μm, and needle-like Co-γ-Fe 2 O 3 was used. Otherwise, an 8 mm tape was produced in the same manner as in Example 1 and the same test was conducted. The results are shown in Table 1.

【0045】[0045]

【表1】 [Table 1]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 志賀 章 栃木県芳賀郡市貝町大字赤羽2606番地 花 王株式会社情報科学研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akira Shiga 2606 Akabane, Kaigai-cho, Haga-gun, Tochigi Prefecture Kao Corporation Information Science Laboratory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 基材と、該基材上に形成され、六角板状
鉄粉末又はコバルト含有六角板状鉄酸化物粉末と結合剤
とからなる第一磁性層と、鉄を主体とする強磁性金属粉
末と結合剤とからなり、前記第一磁性層上に形成された
第二磁性層とを有する磁気記録媒体。
1. A base material, a first magnetic layer formed on the base material, comprising a hexagonal plate-shaped iron powder or a cobalt-containing hexagonal plate-shaped iron oxide powder and a binder, and a strong iron-based material. A magnetic recording medium comprising a magnetic metal powder and a binder, and a second magnetic layer formed on the first magnetic layer.
【請求項2】 前記六角板状鉄粉末又はコバルト含有六
角板状鉄酸化物粉末の保磁力 (Hc1)と、前記鉄を主体
とする強磁性金属粉末の保磁力 (Hc2)の大きさが、H
2 >Hc1 の関係を満たす請求項1記載の磁気記録媒
体。
2. The coercive force (Hc 1 ) of the hexagonal plate-like iron powder or the cobalt-containing hexagonal plate-like iron oxide powder and the magnitude of the coercive force (Hc 2 ) of the ferromagnetic metal powder mainly containing iron. But H
The magnetic recording medium according to claim 1, wherein the relationship of c 2 > Hc 1 is satisfied.
JP24320493A 1993-09-29 1993-09-29 Magnetic recording medium Pending JPH0798845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24320493A JPH0798845A (en) 1993-09-29 1993-09-29 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24320493A JPH0798845A (en) 1993-09-29 1993-09-29 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH0798845A true JPH0798845A (en) 1995-04-11

Family

ID=17100385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24320493A Pending JPH0798845A (en) 1993-09-29 1993-09-29 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH0798845A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5993948A (en) * 1995-04-04 1999-11-30 Kao Corporation Magnetic recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5993948A (en) * 1995-04-04 1999-11-30 Kao Corporation Magnetic recording medium

Similar Documents

Publication Publication Date Title
JP3440741B2 (en) Magnetoplumbite type ferrite particle powder for magnetic card
US7510790B2 (en) Magnetic powder, method for producing the same and magnetic recording medium comprising the same
JP2872227B2 (en) Underlayer for magnetic recording media
JPH09134522A (en) Magnetic recording medium
JPH0798847A (en) Magnetic recording medium
JPH0798845A (en) Magnetic recording medium
JPH05135353A (en) Magnetic recording medium
JP2659957B2 (en) Magnetic powder, manufacturing method thereof, and magnetic recording medium using the magnetic powder
JP4870860B2 (en) Nonmagnetic particle powder for nonmagnetic underlayer of magnetic recording medium and magnetic recording medium
US5989703A (en) Iron oxide magnetic powder and magnetic recording medium using the same
US5798176A (en) Magnetic recording medium
JPH0798846A (en) Magnetic recording medium
JPH08102035A (en) Magnetic recording medium, its production and device therefor
JP2004103067A (en) Magnetic recording medium
JPH0619829B2 (en) Magnetic recording medium
JPH0719366B2 (en) Magnetic recording medium
JPH0798839A (en) Magnetic recording medium
JPH0729153A (en) Magnetic recording medium
JPH0729151A (en) Magnetic recording medium
JPH06349051A (en) Magnetic recording medium
JP2814527B2 (en) Magnetic recording media
JP3521002B2 (en) Magnetic recording medium and method for manufacturing the same
JPH0729160A (en) Magnetic recording medium
JPH09251911A (en) Magnetic metal powder, magnetic recording medium, and manufacturing method of magnetic metal powder
JPH07129947A (en) Magnetic recording medium