JPH0794957B2 - Multi-tube heat exchanger - Google Patents

Multi-tube heat exchanger

Info

Publication number
JPH0794957B2
JPH0794957B2 JP2030263A JP3026390A JPH0794957B2 JP H0794957 B2 JPH0794957 B2 JP H0794957B2 JP 2030263 A JP2030263 A JP 2030263A JP 3026390 A JP3026390 A JP 3026390A JP H0794957 B2 JPH0794957 B2 JP H0794957B2
Authority
JP
Japan
Prior art keywords
tube
refrigerant
fluid
heat exchanger
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2030263A
Other languages
Japanese (ja)
Other versions
JPH03233298A (en
Inventor
邦生 杉山
直樹 田中
嘉裕 隅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2030263A priority Critical patent/JPH0794957B2/en
Publication of JPH03233298A publication Critical patent/JPH03233298A/en
Publication of JPH0794957B2 publication Critical patent/JPH0794957B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、缶胴内に多数のチューブをもち、各チュー
ブ内の流体と缶胴側流体との間で熱交換を行なう多管式
熱交換器に関するものである。
Description: [Industrial application] The present invention has a multi-tube heat exchanger having a large number of tubes in a can body and exchanging heat between the fluid in each tube and the can body side fluid. It is about the exchanger.

[従来の技術] 第4,5図は例えば実公昭60−9597号公報に示された従来
の多管式熱交換器を示すもので、第4図はその分解斜視
図、第5図はその冷媒出入り口側の冷媒蓋部付近の断面
図である。これらの図において、1はシェル(缶胴)、
2はこのシェル1に内装されるU字状のチューブ、3は
シェル1の長さ方向の一端側に溶接等にて取り付けられ
た管板である。シェル1は、その長さ方向一端側のみが
開放され、他端側が閉鎖された有底筒体を用い、その長
さ方向両側には、シェル側流体入口部4およびシェル側
流体出口部5が設けられている。また、チューブ2は、
その屈曲部が水平方向に向かうごとく配置され、シェル
1内に複数本内装されており、これらの各チューブ2の
各開口端を、管板3により支持してこの管板3の外面に
それぞれ開口させている。
[Prior Art] Figs. 4 and 5 show a conventional multi-tube heat exchanger disclosed in, for example, Japanese Utility Model Publication No. 60-9597, Fig. 4 is an exploded perspective view thereof, and Fig. 5 is thereof. FIG. 4 is a cross-sectional view of the vicinity of a refrigerant lid portion on the refrigerant inlet / outlet side. In these figures, 1 is a shell (can body),
Reference numeral 2 denotes a U-shaped tube that is installed in the shell 1, and reference numeral 3 denotes a tube plate attached to one end of the shell 1 in the longitudinal direction by welding or the like. The shell 1 uses a bottomed cylindrical body in which only one end in the length direction is opened and the other end is closed, and a shell side fluid inlet part 4 and a shell side fluid outlet part 5 are provided on both sides in the length direction. It is provided. Also, the tube 2 is
The bent portions are arranged so as to extend in the horizontal direction, and a plurality of the tubes are internally provided in the shell 1. Each open end of each tube 2 is supported by the tube sheet 3 and opened on the outer surface of the tube sheet 3. I am letting you.

そして、6は管板3にボルト10で固定される冷媒蓋、7
は冷媒蓋における冷媒入口部、8は冷媒蓋6における冷
媒出口部、9は管板3と冷媒蓋6との間に挟まれるガス
ケットである。
6 is a refrigerant lid fixed to the tube sheet 3 with bolts 10, 7
Is a refrigerant inlet portion of the refrigerant lid, 8 is a refrigerant outlet portion of the refrigerant lid 6, and 9 is a gasket sandwiched between the tube plate 3 and the refrigerant lid 6.

次に動作について説明する。熱交換器の上流において膨
張し気液二相流となった冷媒は、冷媒蓋6の冷媒入口部
7を通り、チューブ2内に流入する。流入した冷媒は、
各チューブ2内を流れながら、シェル側流体入口部4か
らシェル1内へ流入したシェル側流体と熱交換を行ない
熱を吸収し、ガス化して冷媒出口部8から流出する。一
方、冷却されたシェル側流体は、シェル側流体出口部5
から流出する。
Next, the operation will be described. The refrigerant that has expanded into a gas-liquid two-phase flow upstream of the heat exchanger passes through the refrigerant inlet portion 7 of the refrigerant lid 6 and flows into the tube 2. The inflowing refrigerant is
While flowing through each tube 2, heat is exchanged with the shell-side fluid that has flowed into the shell 1 from the shell-side fluid inlet portion 4, absorbs heat, is gasified, and flows out from the refrigerant outlet portion 8. On the other hand, the cooled shell-side fluid is the shell-side fluid outlet 5
Drained from.

なお、このような多管式熱交換器では、冷媒入口部7に
おけるチューブ2への冷媒分布が性能に大きく影響し、
気液二相流中の液分の冷媒分布が均一に近くなるほど性
能は向上する。
In such a multi-tube heat exchanger, the distribution of the refrigerant in the tubes 2 at the refrigerant inlet portion 7 greatly affects the performance,
The performance improves as the refrigerant distribution of the liquid component in the gas-liquid two-phase flow becomes more uniform.

[発明が解決しようとする課題] 従来の多管式熱交換器は以上のように構成されているの
で、気液二相流にて流入する冷媒は、冷媒入口部7にて
流路が拡大されるために流速が減速される。その結果、
気液が分離され、気体は上部側に配置されたチューブ2
内を、液体は下部側に配置されたチューブ2内を流れや
すくなる。また、流入した冷媒は、チューブ2に流れ込
むが、一部は、管板3に当たり流速が減速されて液体が
落下し、下部側に配置されたチューブ2内を流れる。こ
のような理由により、各チューブ2内に気液二相流の液
分が均等に分配されず、熱交換器本来の性能を十分に発
揮できないという課題があった。また、これらの現象
は、容量制御にて流入する冷媒量が減収する程、顕著に
なる。
[Problems to be Solved by the Invention] Since the conventional multi-tubular heat exchanger is configured as described above, the refrigerant flowing in the gas-liquid two-phase flow has an enlarged flow path at the refrigerant inlet portion 7. Therefore, the flow velocity is reduced. as a result,
The gas and liquid are separated, and the gas is placed in the upper tube 2
Inside, the liquid easily flows through the tube 2 arranged on the lower side. Further, the inflowing refrigerant flows into the tube 2, but a part thereof hits the tube sheet 3 and the flow velocity is decelerated so that the liquid drops and flows in the tube 2 arranged on the lower side. For this reason, there is a problem that the liquid component of the gas-liquid two-phase flow is not evenly distributed in each tube 2 and the original performance of the heat exchanger cannot be sufficiently exhibited. Further, these phenomena become more remarkable as the amount of refrigerant flowing in by the capacity control decreases.

なお、以上の現象については、水と空気との混合にて気
液二相流を生成して行なった流れの可視化にて確認され
ている。
The above phenomenon has been confirmed by visualization of a flow performed by generating a gas-liquid two-phase flow by mixing water and air.

この発明は上記のような課題を解消するためになされた
もので、気液二相流にて流入する冷媒の液分を各チュー
ブに均等に分配できるようにして、性能の向上をはかっ
た多管式熱交換器を得ることを目的とする。
The present invention has been made to solve the above problems, and the liquid component of the refrigerant flowing in a gas-liquid two-phase flow can be evenly distributed to each tube to improve the performance. The purpose is to obtain a tubular heat exchanger.

[課題を解決するための手段] この発明に係る多管式熱交換器は、斜め下方向へ流体を
噴射する液体分配用噴射口を有するノズルを、蓋から流
体分配用空間内へ向けて突設したものである。
[Means for Solving the Problem] In a multitubular heat exchanger according to the present invention, a nozzle having a liquid distribution injection port for ejecting a fluid obliquely downward is projected from a lid toward the fluid distribution space. It was set up.

[作用] この発明における多管式熱交換器では、各チューブに分
配されるべき流体が、ノズルの流体分配用噴射口から斜
め下方向に向けて、流体分配用空間内へ噴射されるの
で、気液分離により前記空間の下部に滞りがちになる液
相部分が、再度前記空間内の上部方向へ噴き上げられ、
前記空間内の流体の分布状態が均一化され、流体の液分
が、各チューブ内へ均等に分配される。
[Operation] In the multitubular heat exchanger according to the present invention, since the fluid to be distributed to each tube is jetted obliquely downward from the fluid distribution injection port of the nozzle into the fluid distribution space, The liquid phase portion that tends to stay in the lower part of the space due to gas-liquid separation is again jetted upward in the space,
The distribution state of the fluid in the space is made uniform, and the liquid component of the fluid is evenly distributed in each tube.

[発明の実施例] 以下、この発明の一実施例を図について説明する。[Embodiment of the Invention] An embodiment of the present invention will be described below with reference to the drawings.

第1図において、従来の同様に、1はシェル(缶胴)、
2はこのシェルに内装されるU字状のチューブ、3はシ
ェル1の一端側に取り付けられた管板であり、シェル1
の長さ方向両側には、シェル側流体入口部およびシェル
側流体出口部(第4図の符号4,5参照)が設けらるほ
か、チューブ2は、その屈曲部が水平方向に向かうごと
く配置されシェル1内に多数内装されており、これらの
各チューブ2の各開口端が、管板3により支持してこの
管板3の外面にそれぞれ開口されている。
In FIG. 1, as in the conventional case, 1 is a shell (can body),
Reference numeral 2 is a U-shaped tube which is installed in the shell, and 3 is a tube plate attached to one end of the shell 1.
A shell side fluid inlet and a shell side fluid outlet (see symbols 4 and 5 in FIG. 4) are provided on both sides in the length direction of the tube, and the tube 2 is arranged so that its bent portion is oriented in the horizontal direction. A large number of the tubes 2 are internally provided in the shell 1, and the open ends of the tubes 2 are supported by the tube sheet 3 and opened on the outer surface of the tube sheet 3, respectively.

また、6Aはガスケット9を介して管板3にボルト(第4
図の符号10参照)等で固定される冷媒蓋であり、この冷
媒蓋6Aは、冷媒入口部7および冷媒出口部8が設けられ
ている。
6A is bolted to the tube sheet 3 through the gasket 9 (4th
Refrigerant lid 6 </ b> A is fixed with reference numeral 10 in the figure, and this refrigerant lid 6 </ b> A is provided with a refrigerant inlet 7 and a refrigerant outlet 8.

そして、本実施例において、冷媒蓋6Aには、各チューブ
2内へ冷媒(流体)を分配するための流体分配用空間12
が形成されており、この空間12内において、第2,3図に
示すように、斜め下方向(例えば鉛直下方から60゜の角
度方向)へ冷媒を噴射する2つの流体分配用噴射口11a
を有するノズル11が、冷媒蓋6Aから空間12内へ向けて突
設されている。
In this embodiment, the refrigerant lid 6A has a fluid distribution space 12 for distributing a refrigerant (fluid) into each tube 2.
In this space 12, as shown in FIGS. 2 and 3, two fluid distribution injection ports 11a for injecting the refrigerant in an obliquely downward direction (for example, an angle direction of 60 ° from vertically downward) are formed.
A nozzle 11 having a is projected from the refrigerant lid 6A into the space 12.

次に、本実施例の装置の動作について説明する。本実施
例の熱交換器の上流側にて膨張し、気液二相流となった
冷媒は、冷媒蓋6Aの冷媒入口部7を通り、ノズル11の噴
射口11aから冷却分配用空間12に流入する。このとき、
冷媒は、噴射口11aから斜め下方向に向けて噴射される
ので、空間12内における冷媒の流れは、第3図に矢印で
示すようになることが、流れの可視化試験により確認さ
れている。
Next, the operation of the apparatus of this embodiment will be described. The refrigerant that has expanded into the gas-liquid two-phase flow on the upstream side of the heat exchanger of the present embodiment passes through the refrigerant inlet portion 7 of the refrigerant lid 6A, and from the injection port 11a of the nozzle 11 to the cooling distribution space 12. Inflow. At this time,
It is confirmed by a flow visualization test that the refrigerant is jetted obliquely downward from the injection port 11a, so that the flow of the refrigerant in the space 12 is as shown by an arrow in FIG.

つまり、気液分離により従来では空間12の下部に落下し
て滞りがちになる液相部分が、空間12内の上部方向へ噴
き上げられた後、落下しながらチューブ2へ分配される
ことになる。従って、空間12内の冷媒の分布状態が均一
化され、従来方式では、上部側のチューブ2に、うまく
分配されなかった液相部分の冷媒も均一に分配されるよ
うになる。
In other words, the liquid phase portion, which conventionally falls to the lower part of the space 12 and tends to stay due to the gas-liquid separation, is sprayed upward in the space 12 and then distributed to the tube 2 while falling. Therefore, the distribution state of the refrigerant in the space 12 is made uniform, and in the conventional method, the refrigerant in the liquid phase portion, which was not properly distributed, is evenly distributed to the upper tube 2.

また、チューブ2に流れ込めず空間12の下部へ落下した
ままの液相部分もノズル11から噴射される冷媒により再
び上部へ押し上げられることになる。
Further, the liquid phase portion which cannot flow into the tube 2 and has dropped to the lower portion of the space 12 is also pushed up to the upper portion again by the refrigerant injected from the nozzle 11.

このように、本実施例の多管式熱交換器によれば、従来
の熱交換器と比べて冷媒分布が格段に均一化されるた
め、実機にて、その性能が5〜8%程度も向上すること
が確認されている。
As described above, according to the shell-and-tube heat exchanger of the present embodiment, the refrigerant distribution is remarkably uniformed as compared with the conventional heat exchanger, so that the performance of the actual machine is about 5 to 8%. It has been confirmed to improve.

なお、上記実施例では、ノズル11における噴射口11aを
鉛直下方から60゜の角度方向に形成した場合について説
明したが、本発明はこれに限定されるものではない。た
だし、この60゜という角度が冷媒を均一化するには最適
であると推定される。
In the above embodiment, the case where the injection port 11a of the nozzle 11 is formed in the angle direction of 60 ° from the vertically lower side has been described, but the present invention is not limited to this. However, it is estimated that this angle of 60 ° is optimal for uniformizing the refrigerant.

また、上記実施例では、ノズル11において、噴射口11a
を2つ形成しているが、本発明はこれに限定されるもの
ではない。
Further, in the above embodiment, the nozzle 11 has the injection port 11a.
However, the present invention is not limited to this.

[発明の効果] 以上のように、この発明によれば、斜め下方向へ流体を
噴射する流体分配用噴射口を有するノズルを、流体分配
用空間内へ向けて突設し、該空間の下部に滞りがちにな
る液相部分を、空間内の上部方向へ噴き上げ、空間内の
流体の分布状態を均一化できるように構成したので、流
体の液分が、各チューブ内へ均等に分配され、熱交換器
としての性能が大幅に向上する効果がある。
[Effects of the Invention] As described above, according to the present invention, a nozzle having a fluid distribution injection port for ejecting a fluid in an obliquely downward direction is provided so as to project toward the inside of the fluid distribution space, and Since the liquid phase portion that tends to stay in the space is sprayed upward in the space and the distribution state of the fluid in the space can be made uniform, the liquid component of the fluid is evenly distributed in each tube, This has the effect of significantly improving the performance as a heat exchanger.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例による多管式熱交換器を示
す要部断面図、第2図は第1図のII−II線に沿う拡大断
面図、第3図は第1図のIII−III線に沿う断面図、第4,
5図は従来の多管式熱交換器を示すもので、第4図はそ
の分解斜視図、第5図はその冷媒出入り口側の冷媒蓋部
付近の断面図である。 図において、1……シェル(缶胴)、2……チューブ、
6A……冷媒蓋、11……ノズル、11a……流体分配用噴射
口、12……流体分配用空間。 なお、図中、同一の符号は同一、又は相当部分を示して
いる。
FIG. 1 is a sectional view showing a main part of a shell-and-tube heat exchanger according to an embodiment of the present invention, FIG. 2 is an enlarged sectional view taken along the line II-II of FIG. 1, and FIG. 3 is a sectional view of FIG. Sectional view taken along line III-III, fourth,
FIG. 5 shows a conventional multi-tube heat exchanger, FIG. 4 is an exploded perspective view thereof, and FIG. 5 is a cross-sectional view of the vicinity of a refrigerant lid portion on the refrigerant inlet / outlet side thereof. In the figure, 1 ... Shell (can body), 2 ... Tube,
6A ... Refrigerant lid, 11 ... Nozzle, 11a ... Fluid distribution injection port, 12 ... Fluid distribution space. In the drawings, the same reference numerals indicate the same or corresponding parts.

フロントページの続き (56)参考文献 実開 昭54−156865(JP,U) 実開 昭51−151159(JP,U) 実開 昭53−30002(JP,U) 実開 昭54−149767(JP,U)Continuation of front page (56) References Open 54-156865 (JP, U) Open 51-151159 (JP, U) Open 53-30002 (JP, U) Open 54-149767 (JP) , U)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】内部に管板を有し、両端に蓋を有する缶胴
と、 前記管板にその入出口が設けられ該缶胴内に収納された
複数のチューブとから構成され、前記缶胴内の流体と前
記チューブ内の流体との間で熱交換を行なう多管式熱交
換器であって、前記缶胴と、前記管板と、前記蓋とで囲
まれる流体分配用空間と、この流体分配用空間を入口側
と出口側に2分するしきり板と、この流体分配用空間の
入口側に前記蓋から突出して設けられた流体分配用ノズ
ルとを有するものにおいて、 このノズルの噴射口の向きが、この缶胴を水平に設置し
た際に、前記管板の面に平行する面内で、かつ、斜め下
の方向に向けて設けられている事を特徴とする多管式熱
交換器。
1. A can body having a tube sheet inside and having lids at both ends thereof, and a plurality of tubes provided in the tube sheet and provided with an inlet / outlet port to accommodate the can. A multi-tube heat exchanger for exchanging heat between a fluid in a barrel and a fluid in the tube, the space for fluid distribution surrounded by the can barrel, the tube sheet, and the lid, A nozzle having a partition plate that divides the fluid distribution space into two parts, an inlet side and an outlet side, and a fluid distribution nozzle provided on the inlet side of the fluid distribution space so as to project from the lid. A multi-tube heat generator characterized in that when the can body is installed horizontally, the mouth is provided in a plane parallel to the plane of the tube sheet and in an obliquely downward direction. Exchanger.
JP2030263A 1990-02-08 1990-02-08 Multi-tube heat exchanger Expired - Lifetime JPH0794957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2030263A JPH0794957B2 (en) 1990-02-08 1990-02-08 Multi-tube heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2030263A JPH0794957B2 (en) 1990-02-08 1990-02-08 Multi-tube heat exchanger

Publications (2)

Publication Number Publication Date
JPH03233298A JPH03233298A (en) 1991-10-17
JPH0794957B2 true JPH0794957B2 (en) 1995-10-11

Family

ID=12298819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2030263A Expired - Lifetime JPH0794957B2 (en) 1990-02-08 1990-02-08 Multi-tube heat exchanger

Country Status (1)

Country Link
JP (1) JPH0794957B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016076499A1 (en) * 2014-11-14 2016-05-19 박종헌 Gas-liquid mixing and distribution apparatus, and multi-pipe type heat exchanger

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5330002U (en) * 1976-08-19 1978-03-15
JPS577990Y2 (en) * 1978-03-29 1982-02-16

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016076499A1 (en) * 2014-11-14 2016-05-19 박종헌 Gas-liquid mixing and distribution apparatus, and multi-pipe type heat exchanger
KR20160057745A (en) * 2014-11-14 2016-05-24 박종헌 Gas-liquid mixing and distributing apparatus, shell and tube type heat exchanger

Also Published As

Publication number Publication date
JPH03233298A (en) 1991-10-17

Similar Documents

Publication Publication Date Title
US5203405A (en) Two pass shell and tube heat exchanger with return annular distributor
US6935418B1 (en) Fluid conveying tube and vehicle cooler provided therewith
US4548260A (en) Heat exchanger
US2391244A (en) Heat exchanger
JPS60263088A (en) Heat exchanger
JPH03140764A (en) Heat exchanger
JPS60103294A (en) Heat exchanger, compressor intermediate cooler, method of adjusting temperature of fluid and method of removing moisture
EP1347261B1 (en) Heat exchanger with reduced fouling
JPH0794957B2 (en) Multi-tube heat exchanger
JPS5849519Y2 (en) Shell-and-tube heat exchanger
JPS5773392A (en) Corrugated fin type heat exchanger
US2452391A (en) Heat exchanger
US2138469A (en) Heat exchanger
CN210346409U (en) Double-flow-channel shell-and-tube heat exchanger
JP2001304720A (en) Heat exchanger
WO2000071956A1 (en) Wind tunnel and heat exchanger therefor
CN208139894U (en) The built-in telescopic efficient heat exchanger of distribution
CN216898505U (en) Heat exchanger
JP7369557B2 (en) economizer
CN108458605A (en) The built-in telescopic efficient heat exchanger of distribution
JPS5919877Y2 (en) Open rack type heat exchanger
JPH02225999A (en) Heat exchanger
JP2003065695A (en) Condenser for refrigerating machine
CN219347430U (en) Tubular heat exchanger for chemical production
RU2700990C1 (en) Multistage shell-and-tube heat exchanger

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071011

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081011

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091011

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091011

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101011

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101011

Year of fee payment: 15