JPH03233298A - Shell and tube heat exchanger - Google Patents

Shell and tube heat exchanger

Info

Publication number
JPH03233298A
JPH03233298A JP3026390A JP3026390A JPH03233298A JP H03233298 A JPH03233298 A JP H03233298A JP 3026390 A JP3026390 A JP 3026390A JP 3026390 A JP3026390 A JP 3026390A JP H03233298 A JPH03233298 A JP H03233298A
Authority
JP
Japan
Prior art keywords
fluid
refrigerant
space
heat exchanger
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3026390A
Other languages
Japanese (ja)
Other versions
JPH0794957B2 (en
Inventor
Kunio Sugiyama
杉山 邦生
Naoki Tanaka
直樹 田中
Yoshihiro Sumida
嘉裕 隅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2030263A priority Critical patent/JPH0794957B2/en
Publication of JPH03233298A publication Critical patent/JPH03233298A/en
Publication of JPH0794957B2 publication Critical patent/JPH0794957B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

PURPOSE:To enhance performance of a heat exchanger, by a construction wherein a nozzle having fluid-distributing jet ports for jetting a fluid obliquely downward is projected into a fluid-distributing space so that the distribution of the fluid in the space can be made uniform. CONSTITUTION:A nozzle 11 having two fluid-distributing jet ports 11a for jetting a fluid obliquely downward is projected from a cooling-medium cover 6A into a fluid-distributing space 12. Consequently, a liquid phase portion tending to drop to and collect in a lower part of the space 12 is blown upward, thereby making the distribution of the fluid in the space 12 uniform. Thus, heat exchanger performance can be enhanced.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は、缶胴内に多数のチューブをもち、各チュー
ブ内の流体と缶胴側流体との間で熱交換を行なう多管式
熱交換器に関するものである。
Detailed Description of the Invention [Industrial Field of Application] This invention is a multi-tube heat exchanger that has a large number of tubes in the can body and performs heat exchange between the fluid in each tube and the fluid on the can body side. It concerns exchangers.

[従来の技術] 第4,5図は例えば実公昭60−9597号公報に示さ
れた従来の多管式熱交換器を示すもので、第4図はその
分解斜視図、第5図はその冷媒出入り口側の冷媒蓋部付
近の断面図である。これらの図において、1はシェル(
缶胴)、2はこのシェル1に内装されるU字状のチュー
ブ、3はシェル1の長さ方向の一端側に溶接等にて取り
付けられた管板である。シェル1は、その長さ方向一端
側のみが開放され、他端側か閉鎖された有底筒体を用い
、その長さ方向両側には、シェル側流体入口部4および
シェル側流体出口部5が設けられている。
[Prior Art] Figures 4 and 5 show a conventional multi-tube heat exchanger as disclosed in, for example, Japanese Utility Model Publication No. 60-9597. Figure 4 is an exploded perspective view of the same, and Figure 5 is its FIG. 3 is a sectional view of the vicinity of the refrigerant lid on the refrigerant inlet/outlet side. In these figures, 1 is the shell (
2 is a U-shaped tube installed inside the shell 1, and 3 is a tube plate attached to one end of the shell 1 in the longitudinal direction by welding or the like. The shell 1 is a bottomed cylindrical body that is open at one lengthwise end and closed at the other end, and has a shell-side fluid inlet 4 and a shell-side fluid outlet 5 on both sides in the lengthwise direction. is provided.

また、チューブ2は、その屈曲部が水平方向に向かうご
とく配置され、シェル1内に複数本内装されており、こ
れらの各チューブ2の各開口端を、管板3により支持し
てこの管板3の外面にそれぞれ開口させている。
Further, the tubes 2 are arranged with their bent portions facing in the horizontal direction, and a plurality of tubes 2 are housed inside the shell 1. Each open end of each tube 2 is supported by a tube plate 3. 3 are each opened on the outer surface.

そして、6は管板3にボルト10で固定される冷媒蓋、
7は冷媒蓋6における冷媒入口部、8は冷媒M6におけ
る冷媒出口部、9は管板3と冷媒蓋6との間に挾まれる
ガスケットである。
and 6 a refrigerant lid fixed to the tube plate 3 with bolts 10;
7 is a refrigerant inlet of the refrigerant lid 6, 8 is a refrigerant outlet of the refrigerant M6, and 9 is a gasket sandwiched between the tube plate 3 and the refrigerant lid 6.

次に動作について説明する。熱交換器の上流において膨
張し気液二相流となった冷媒は、冷媒蓋6の冷媒入口部
7を通り、チューブ2内に流入する。流入した冷媒は、
各チューブ2内を流れながら、シェル側流体入口部4か
らシェル1内へ流入したシェル側流体と熱交換を行ない
熱を吸収し、ガス化して冷媒出口部8から流出する6一
方、冷却されたシェル側流体は、シェル側流体出口部5
から流出する。
Next, the operation will be explained. The refrigerant expanded into a gas-liquid two-phase flow upstream of the heat exchanger passes through the refrigerant inlet 7 of the refrigerant lid 6 and flows into the tube 2 . The inflowing refrigerant is
While flowing in each tube 2, it exchanges heat with the shell-side fluid that has flowed into the shell 1 from the shell-side fluid inlet 4, absorbs heat, gasifies, and flows out from the refrigerant outlet 8. The shell side fluid flows through the shell side fluid outlet section 5.
flows out from

なお、このような多管式熱交換器では、冷媒入口部7に
おけるチューブ2への冷媒分布が性能に大きく影響し、
気液二相流中の液分の冷媒分布が均一に近くなるほど性
能は向上する。
In addition, in such a multi-tube heat exchanger, the refrigerant distribution to the tubes 2 at the refrigerant inlet 7 greatly affects the performance.
The performance improves as the liquid refrigerant distribution in the gas-liquid two-phase flow becomes more uniform.

[発明が解決しようとする課題] 従来の多管式熱交換器は以上のように構成されているの
で、気液二相流にて流入する冷媒は、冷媒入口部7にて
流路が拡大されるために流速が減速される。その結果、
気液が分離され、気体は上部側に配置されたチューブ2
内を、液体は下部側に配置されたチューブ2内を流れや
すくなる。また、流入した冷媒は、チューブ2に流れ込
むが、一部は、管板3に当たり流速が減速されて液体が
落下し、下部側に配置されたチューブ2内を流れる。こ
のような理由により、各チューブ2内に気液二相流の液
分が均等に分配されず、熱交換器本来の性能を十分に発
揮できないという課題があった。また、これらの現象は
、容量制御にて流入する冷媒量が減少する程、顕著にな
る。
[Problems to be Solved by the Invention] Since the conventional multi-tubular heat exchanger is configured as described above, the flow path of the refrigerant flowing in the gas-liquid two-phase flow is expanded at the refrigerant inlet portion 7. The flow rate is slowed down due to the the result,
Gas and liquid are separated, and the gas is placed in the tube 2 located on the upper side.
The liquid can easily flow inside the tube 2 disposed on the lower side. Further, the inflowing refrigerant flows into the tube 2, but a portion of the refrigerant hits the tube plate 3 and its flow rate is reduced, causing the liquid to fall and flow within the tube 2 disposed on the lower side. For these reasons, the liquid component of the gas-liquid two-phase flow is not evenly distributed within each tube 2, resulting in a problem that the original performance of the heat exchanger cannot be fully demonstrated. Moreover, these phenomena become more remarkable as the amount of refrigerant flowing in is reduced by capacity control.

なお、以上の現象については、水と空気との混合にて気
液二相流を生成して行なった流れの可視化にて確認され
ている。
The above phenomenon has been confirmed by visualizing the flow by creating a gas-liquid two-phase flow by mixing water and air.

この発明は上記のような課題を解消するためになされた
もので、気液二相流にて流入する冷媒の液分を各チュー
ブに均等に分配できるようにして、性能の向上をはかっ
た多管式熱交換器を得ることを目的とする。
This invention was made in order to solve the above-mentioned problems, and is a multi-layer system that improves performance by making it possible to evenly distribute the liquid component of the refrigerant flowing into each tube in a gas-liquid two-phase flow. The purpose is to obtain a tubular heat exchanger.

[課題を解決するための手段] この発明に係る多管式熱交換器は、斜め下方向へ流体を
噴射する流体分配用噴射口を有するノズルを、蓋から流
体分配用空間内へ向けて突設したものである。
[Means for Solving the Problems] A shell-and-tube heat exchanger according to the present invention has a nozzle having a fluid distribution injection port that sprays fluid diagonally downward, which is projected from a lid into a fluid distribution space. It was established.

[作   用コ この発明における多管式熱交換器では、各チューブに分
配されるべき流体が、ノズルの流体分配用噴射口から斜
め下方向へ向けて、流体分配用空間内へ噴射されるので
、気液分離により前記空間の下部に滞りがちになる液相
部分が、再度前記空間内の上部方向へ噴き上げられ、前
記空間内の流体の分布状態が均一化され、流体の液分が
、各チューブ内へ均等に分配される。
[Function] In the multi-tubular heat exchanger according to the present invention, the fluid to be distributed to each tube is injected obliquely downward from the fluid distribution injection port of the nozzle into the fluid distribution space. , the liquid phase portion that tends to stay in the lower part of the space due to gas-liquid separation is again blown up towards the upper part of the space, and the distribution state of the fluid in the space is made uniform, and the liquid components of the fluid are evenly distributed within the tube.

[発明の実施例] 以下、この発明の一実施例を図について説明する。[Embodiments of the invention] An embodiment of the present invention will be described below with reference to the drawings.

第1図において、従来と同様に、1はシェル(缶胴)、
2はこのシェル1に内装されるU字状のチューブ、3は
シェル1の一端側に取り付けられた管板であり、シェル
1の長さ方向両側には、シェル側流体入口部およびシェ
ル側流体出口部(第4図の符号4,5参照)が設けらる
ほか、チューブ2は、その屈曲部が水平方向に向かうご
とく配置されシェル1内に多数内装されており、これら
の各チューブ2の各開口端が、管板3により支持してこ
の管板3の外面にそれぞれ開口されている。
In Fig. 1, as in the past, 1 is a shell (can body);
2 is a U-shaped tube installed inside this shell 1, 3 is a tube plate attached to one end of the shell 1, and a shell-side fluid inlet and a shell-side fluid inlet are provided on both sides of the shell 1 in the length direction. In addition to being provided with outlet portions (see reference numerals 4 and 5 in FIG. 4), a large number of tubes 2 are arranged within the shell 1 with their bent portions facing in the horizontal direction, and each of these tubes 2 has a Each open end is supported by the tube sheet 3 and opened at the outer surface of the tube sheet 3, respectively.

また、6Aはガスケット9を介して管板3にボルト(第
4図の符号10参照)等で固定される冷媒蓋であり、こ
の冷媒蓋6Aに、冷媒入口部7および冷媒出口部8が設
けられている。
Further, 6A is a refrigerant lid that is fixed to the tube plate 3 with a bolt (see reference numeral 10 in FIG. 4) through a gasket 9, and this refrigerant lid 6A is provided with a refrigerant inlet portion 7 and a refrigerant outlet portion 8. It is being

そして、本実施例において、冷媒蓋6Aには、各チュー
ブ2内へ冷媒(流体)を分配するための流体分配用空間
12が形成されており、この空間12内において、第2
,3図に示すように、斜め下方向(例えば鉛直下方から
60°の角度方向)へ冷媒を噴射する2つの流体分配用
噴射口11aを有するノズル11が、冷媒蓋6Aがら空
間12内へ向けて突設されている。
In this embodiment, a fluid distribution space 12 for distributing the refrigerant (fluid) into each tube 2 is formed in the refrigerant lid 6A.
, 3, a nozzle 11 having two fluid distribution injection ports 11a that injects refrigerant diagonally downward (for example, at an angle of 60 degrees from vertically downward) is directed into the space 12 through the refrigerant lid 6A. It is installed protrudingly.

次に、本実施例の装置の動作について説明する。Next, the operation of the apparatus of this embodiment will be explained.

本実施例の熱交換器の上流側にて膨張し、気液二相流と
なった冷媒は、冷媒蓋6Aの冷媒入口部7を通り、ノズ
ル11の噴射口11aから冷却分配用空間12に流入す
る。このとき、冷媒は、噴射口11aから斜め下方向へ
向けて噴射されるので、空間12内における冷媒の流れ
は、第3図に矢印で示すようになることが、流れの可視
化試験により確認されている。
The refrigerant expanded on the upstream side of the heat exchanger of this embodiment and turned into a gas-liquid two-phase flow passes through the refrigerant inlet 7 of the refrigerant lid 6A, and enters the cooling distribution space 12 from the injection port 11a of the nozzle 11. Inflow. At this time, since the refrigerant is injected diagonally downward from the injection port 11a, it was confirmed by a flow visualization test that the refrigerant flow within the space 12 is as shown by the arrow in FIG. ing.

つまり、気液分離により従来では空間12の下部に落下
して滞りがちになる液相部分が、空間12内の上部方向
へ噴き上げられた後、落下しながらチューブ2へ分配さ
れることになる。従って、空間12内の冷媒の分布状態
が均一化され、従来方式では、上部側のチューブ2に、
うまく分配されなかった液相部分の冷媒も均一に分配さ
れるようになる。
That is, due to gas-liquid separation, the liquid phase portion, which conventionally tends to fall and stagnate in the lower part of the space 12, is blown upward in the space 12 and then distributed to the tube 2 while falling. Therefore, the distribution state of the refrigerant in the space 12 is made uniform, and in the conventional method, the refrigerant is distributed in the upper tube 2.
The refrigerant in the liquid phase portion, which was not well distributed, is now evenly distributed.

また、チューブ2に流れ込めず空間12の下部へ落下し
たままの液相部分もノズル11から噴射される冷媒によ
り再び上部へ押し上げられることになる。
Furthermore, the liquid phase portion that cannot flow into the tube 2 and remains at the bottom of the space 12 is pushed upward again by the refrigerant injected from the nozzle 11.

このように、本実施例の多管式熱交換器によれば、従来
の熱交換器と比べて冷媒分布が格段に均一化されるため
、実機にて、その性能が5〜8%程度も向上することが
確認されている。
In this way, according to the multi-tubular heat exchanger of this embodiment, the refrigerant distribution is much more uniform compared to conventional heat exchangers, so the performance was improved by about 5 to 8% in actual equipment. It has been confirmed that this will improve.

なお、上記実施例では、ノズル11における噴射口11
aを鉛直下方から6o°の角度方向に形成した場合につ
いて説明したが、本発明はこれに限定されるものではな
い。ただし、この60°という角度が冷媒を均一化する
には最適であると推定される。
In addition, in the above embodiment, the injection port 11 in the nozzle 11
Although the case where a is formed in an angular direction of 60° from vertically downward has been described, the present invention is not limited to this. However, this angle of 60° is estimated to be optimal for making the refrigerant uniform.

また、上記実施例では、ノズル11において、噴射口1
1aを2つ形成しているが、本発明はこれに限定される
ものではない。
Further, in the above embodiment, in the nozzle 11, the injection port 1
Although two 1a are formed, the present invention is not limited to this.

[発明の効果コ 以上のように、この発明によれば、斜め下方向へ流体を
噴射する流体分配用噴射口を有するノズルを、流体分配
用空間内へ向けて突設し、該空間の下部に滞りがちにな
る液相部分を、空間内の上部方向へ噴き上げ、空間内の
流体の分布状態を均一化できるように構成したので、流
体の液分が、各チューブ内へ均等に分配され、熱交換器
としての性能が大幅に向上する効果がある。
[Effects of the Invention] As described above, according to the present invention, a nozzle having a fluid distribution injection port that injects fluid diagonally downward is provided to protrude into a fluid distribution space, and The liquid phase part, which tends to stagnate, is blown upward in the space, and the distribution of the fluid in the space can be made uniform, so the liquid component of the fluid is evenly distributed into each tube, This has the effect of significantly improving the performance as a heat exchanger.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による多管式熱交換器を示
す要部断面図、第2図は第1図の■−■線に沿う拡大断
面図、第3図は第1図の■−■線に沿う断面図、第4,
5図は従来の多管式熱交換器を示すもので、第4図はそ
の分解斜視図、第5図はその冷媒8入り口側の冷媒蓋部
付近の断面図である。 図において、1−シェル(缶胴)、2−チューブ、6A
−冷媒蓋、11−ノズル、1la−流体分配用噴射口、
12−流体分配用空間。 なお、図中、同一の符号は同一、又は相当部分を示して
いる。
FIG. 1 is a cross-sectional view of essential parts of a shell-and-tube heat exchanger according to an embodiment of the present invention, FIG. 2 is an enlarged cross-sectional view taken along the line ■-■ in FIG. 1, and FIG. Sectional view along ■-■ line, 4th,
FIG. 5 shows a conventional multi-tubular heat exchanger, FIG. 4 is an exploded perspective view thereof, and FIG. 5 is a sectional view of the vicinity of the refrigerant lid on the refrigerant 8 inlet side. In the figure, 1-shell (can body), 2-tube, 6A
- refrigerant lid, 11 - nozzle, 1la - fluid distribution injection port,
12-Space for fluid distribution. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 缶胴と、該缶胴内に収納される多数のチューブと、これ
らの各チューブ内へ流体を分配するための流体分配用空
間を有し前記缶胴の端部に取り付けられる蓋とから構成
され、前記缶胴内の缶胴側流体と前記の各チューブ内の
流体との間で熱交換を行なう多管式熱交換器において、
斜め下方向へ前記流体を噴射する流体分配用噴射口を有
するノズルが、前記蓋から前記空間内へ向けて突設され
ていることを特徴とする多管式熱交換器。
It consists of a can body, a number of tubes housed within the can body, and a lid attached to the end of the can body and having a fluid distribution space for distributing fluid into each of these tubes. , in a multi-tube heat exchanger that performs heat exchange between the can body side fluid in the can body and the fluid in each of the tubes,
A multi-tubular heat exchanger, characterized in that a nozzle having a fluid distribution injection port that injects the fluid obliquely downward is provided to protrude from the lid into the space.
JP2030263A 1990-02-08 1990-02-08 Multi-tube heat exchanger Expired - Lifetime JPH0794957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2030263A JPH0794957B2 (en) 1990-02-08 1990-02-08 Multi-tube heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2030263A JPH0794957B2 (en) 1990-02-08 1990-02-08 Multi-tube heat exchanger

Publications (2)

Publication Number Publication Date
JPH03233298A true JPH03233298A (en) 1991-10-17
JPH0794957B2 JPH0794957B2 (en) 1995-10-11

Family

ID=12298819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2030263A Expired - Lifetime JPH0794957B2 (en) 1990-02-08 1990-02-08 Multi-tube heat exchanger

Country Status (1)

Country Link
JP (1) JPH0794957B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101672295B1 (en) * 2014-11-14 2016-11-03 박종헌 Gas-liquid mixing and distributing apparatus, shell and tube type heat exchanger

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5330002U (en) * 1976-08-19 1978-03-15
JPS54156865U (en) * 1978-03-29 1979-10-31

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5330002U (en) * 1976-08-19 1978-03-15
JPS54156865U (en) * 1978-03-29 1979-10-31

Also Published As

Publication number Publication date
JPH0794957B2 (en) 1995-10-11

Similar Documents

Publication Publication Date Title
US4434112A (en) Heat transfer surface with increased liquid to air evaporative heat exchange
RU2011942C1 (en) Tubular heat exchanger
US4227570A (en) Heat exchange structure
US2391244A (en) Heat exchanger
US20070006991A1 (en) Heat exchanger with internal baffle and an external bypass for the baffle
JP3007839B2 (en) Shunt
JPS60263088A (en) Heat exchanger
JPH03140764A (en) Heat exchanger
JPH03233298A (en) Shell and tube heat exchanger
US3983935A (en) Heat exchanger
JP2001304720A (en) Heat exchanger
JPH0455693A (en) Multi-tube type heat exchanger
JP2820428B2 (en) Refrigerant flow divider
CN208139894U (en) The built-in telescopic efficient heat exchanger of distribution
US2056492A (en) Heat exchanger
JPH05203285A (en) Heat exchanger
JP7369557B2 (en) economizer
CN209147499U (en) A kind of vertical type evaporator
JP2650937B2 (en) Water cooler
JPH0419346Y2 (en)
JPH10206081A (en) Heat-exchange panel for open rack type evaporation device
JP2003065695A (en) Condenser for refrigerating machine
CN110375574B (en) Falling film uniform distribution device capable of improving film distribution and exhaust performance
JPS5919877Y2 (en) Open rack type heat exchanger
JPH0619972Y2 (en) Horizontal plate fin type evaporator

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071011

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081011

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091011

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091011

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101011

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101011

Year of fee payment: 15