JPH079363B2 - Surface mechanical property measuring device - Google Patents

Surface mechanical property measuring device

Info

Publication number
JPH079363B2
JPH079363B2 JP63017195A JP1719588A JPH079363B2 JP H079363 B2 JPH079363 B2 JP H079363B2 JP 63017195 A JP63017195 A JP 63017195A JP 1719588 A JP1719588 A JP 1719588A JP H079363 B2 JPH079363 B2 JP H079363B2
Authority
JP
Japan
Prior art keywords
spring
force
frictional force
stylus
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63017195A
Other languages
Japanese (ja)
Other versions
JPH01195301A (en
Inventor
礼三 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP63017195A priority Critical patent/JPH079363B2/en
Publication of JPH01195301A publication Critical patent/JPH01195301A/en
Publication of JPH079363B2 publication Critical patent/JPH079363B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は表面機械特性測定装置に関するもので、特に物
質の表面に対して、気体中、真空中を問わず、容易な操
作かつ高い分解能でその表面の特定位置における表面形
状、吸着力、摩擦力を測定できる装置に関するものであ
る。
Description: TECHNICAL FIELD The present invention relates to a surface mechanical property measuring device, and particularly to a surface of a substance with easy operation and high resolution in a gas or a vacuum. The present invention relates to a device capable of measuring a surface shape, an adsorption force, and a frictional force at a specific position on the surface.

(従来の技術) 半導体、磁気記録媒体、光記録媒体などにおける表面の
欠陥や吸着物質は、これらの性能や歩留りに大きな影響
を与える。これらの欠陥はミクロン以下の大きさでも問
題になり、時には原子レベルの大きさのものでさえ欠陥
成長の原因として問題になることがある。これらは、表
面の凹凸、吸着力、摩擦力などの表面機械特性を測定す
ることにより観測することができる。
(Prior Art) Surface defects and adsorbed substances in semiconductors, magnetic recording media, optical recording media, etc., have a great influence on their performance and yield. These defects can be problematic even at submicron sizes, and sometimes even atomic size can cause problems for defect growth. These can be observed by measuring surface mechanical properties such as surface irregularities, adsorption force and frictional force.

表面の凹凸を測定するもっとも一般的な測定器は、触針
を表面におしつけ表面をなぞる触針式表面粗さ計であ
る。これはてこ式のレバーの先端に触針をつけ、他端の
変位を電磁式変換器で検出するものである。
The most common measuring device for measuring surface irregularities is a stylus-type surface roughness meter that applies a stylus to the surface and traces the surface. In this system, a lever is attached to the tip of a lever and the displacement of the other end is detected by an electromagnetic transducer.

最近、非接触で表面の凹凸を光で検出する光式表面粗さ
計も用いられるようになった。
Recently, an optical surface roughness meter has also been used, which detects the unevenness of the surface by light without contact.

また高い面分解能を有する走査型電子顕微鏡がある。There is also a scanning electron microscope having a high surface resolution.

さらに、鋭い針を表面にオングストロームオーダまで近
付け、その間に流れるトンネル電流を検出する走査トン
ネル顕微鏡が開発されている。
Furthermore, a scanning tunneling microscope has been developed in which a sharp needle is brought close to the surface to the angstrom order and the tunnel current flowing between them is detected.

また、柔らかいばねで支持した鋭い針を表面に、オング
ストロームオーダまで近づけ、針と測定表面との作用力
によるばねのたわみを測定する原子間力顕微鏡も開発さ
れている。
Also, an atomic force microscope has been developed in which a sharp needle supported by a soft spring is brought close to the angstrom order to the surface, and the deflection of the spring due to the acting force between the needle and the measurement surface is measured.

(発明が解決しようとする課題) しかしながら前記触針式表面粗さ計においては、可動部
の重量は大きく、表面への押し付け荷重はミリグラムオ
ーダにしなければ針の「飛び」が生じてしまう。この荷
重に触針が耐えるためにはその先端半径はミクロンオー
ダにする必要がある。よってミクロン以下のピッチの微
細な凹凸は検出出来ない。さらにこの大きな荷重で表面
を損傷する危険もある。
(Problems to be Solved by the Invention) However, in the above-mentioned stylus type surface roughness meter, the weight of the movable portion is large, and the needle “jumps” unless the pressing load on the surface is in the order of milligrams. In order for the stylus to withstand this load, its tip radius must be on the order of microns. Therefore, fine irregularities with a pitch of less than micron cannot be detected. Furthermore, there is a risk of damaging the surface with this large load.

また光式表面粗さ計は、表面を損傷する危険はないが、
光スポットの直径は1ミクロン以上あり、やはりミクロ
ン以下のピッチの微小凹凸の測定には分解能が不足であ
る。
Also, the optical surface roughness meter has no risk of damaging the surface,
The diameter of the light spot is 1 micron or more, and the resolution is insufficient for measuring minute irregularities with a pitch of micron or less.

また、走査型電子顕微鏡は高い面分解能を持っている
が、凹凸の高さを直接求めることは出来ない。しかも測
定は真空中で行われるため、吸着物質が散逸し正確な測
定が出来ないこともある。
Further, although the scanning electron microscope has a high surface resolution, it is not possible to directly obtain the height of the unevenness. Moreover, since the measurement is performed in a vacuum, the adsorbed substance may be scattered and accurate measurement may not be possible.

さらに走査型トンネル顕微鏡においては、分解能は原子
レベルまで期待出来、空気中でも測定可能であるが、ト
ンネル電流を利用するかぎり表面は導体に限定されると
いう大きな欠点がある。
Further, in the scanning tunneling microscope, the resolution can be expected to the atomic level and the measurement can be performed in the air, but there is a big drawback that the surface is limited to the conductor as long as the tunnel current is used.

原子間力顕微鏡は表面は導体に限定されず測定が可能で
あるが、従来の原子間力顕微鏡では、ばねの変位測定を (a)トンネル電流による検知方法(G.Binnig,C.F.Qua
te,and Ch,Gerber:PHYSICAL REVIEW LETTERS,Vol.56
No.9(1986)p.930)もしくは (b)レーザ干渉による検知方法(Y.Martin,Williams,
C,C.and H.K.Wickrasinghe:J.Appl.phys.Lett.,61(19
87)p.4723) で行っていた。上記(a)の方法では、トンネル電流を
検知するためには少くとも1ナノメートル程度に電極を
ばねの背面の導体表面に近づける必要がある。ところが
空気中の導体表面は、酸化や空気中の物質の吸着によっ
て絶縁層をしばしば形成しトンネル電流が流れなくなる
ことがある。この場合には電極は相手表面に接触し、前
記絶縁層を破壊した後ようやくトンネル電流が流れ始め
る(C.Mathew MATE,Ragnar ERLANDSSON,Gary M.McCL
ELLAND and Shirley CHIANG:Surface Science,208
(1989)p.473)。よって、トンネル電流による検知方
法には、電極を相手表面に極めて接近させねばならず、
電極が相手表面に衝突する危険が大きく、さらに電極や
相手表面に絶縁層が形成された場合には衝突が起こると
いう実用上大きな欠点があった。
The surface of an atomic force microscope is not limited to a conductor, but it is possible to measure it. With conventional atomic force microscopes, spring displacement measurement is performed by (a) detection method using tunnel current (G.Binnig, CFQua
te, and Ch, Gerber: PHYSICAL REVIEW LETTERS, Vol.56
No.9 (1986) p.930) or (b) Detection method by laser interference (Y.Martin, Williams,
C, C.and HKWickrasinghe: J.Appl.phys.Lett., 61 (19
87) p.4723). In the above method (a), in order to detect the tunnel current, it is necessary to bring the electrode close to the conductor surface on the back surface of the spring by at least about 1 nanometer. However, the surface of the conductor in the air often forms an insulating layer due to oxidation or adsorption of substances in the air, and the tunnel current may not flow. In this case, the electrode contacts the mating surface, and after the insulating layer is destroyed, the tunnel current finally starts to flow (C. Mathew MATE, Ragnar ERLANDSSON, Gary M. McCL
ELLAND and Shirley CHIANG: Surface Science, 208
(1989) p.473). Therefore, in the detection method using tunnel current, the electrodes must be brought very close to the mating surface,
There is a great drawback in practical use that there is a high risk of the electrode colliding with the mating surface, and further collision occurs when an insulating layer is formed on the electrode or the mating surface.

また(b)の方法では、光を離れた位置から照射できる
ため、(a)のトンネル電流による検知の電極のように
衝突の危険はないが、光学系が複雑かつ大型になってし
まう欠点があった。
Further, in the method of (b), since light can be emitted from a distant position, there is no danger of collision unlike the detection electrode by the tunnel current of (a), but there is a drawback that the optical system becomes complicated and large. there were.

表面を評価するためには、単に凹凸だけではなく、欠陥
分布などの表面の微視的な不均一性を知ることが重要で
ある。触針が固体表面に接触したときの吸着力には、固
体間の相互作用(河野彰夫:日本物理学会誌、第32巻
第7号(1977)、「マイクロアドヒージョンについて」
p.584)や固体表面に吸着した液体層と触針および固体
表面層の毛細管現象による吸着力(井本立也:日刊工業
新聞社、SCIENCE AND TECHNOLOGY「接着のはなし」
(1984)p.16)がある。これらの吸着力は固体表面の不
均一性により変化する。また、摩擦力の分布も同様に表
面の不均一性を反映する。このため、表面の吸着力や摩
擦力の分布を知ることは、表面の不均一性の評価に重要
なデータを提供するものである。
In order to evaluate a surface, it is important to know not only unevenness but also microscopic non-uniformity of the surface such as defect distribution. The adsorption force when the stylus comes into contact with the solid surface depends on the interaction between the solid bodies (Akio Kono: Journal of the Physical Society of Japan, Volume 32).
No. 7 (1977), "About Micro Adhesion"
(p.584) or the adsorption force of the liquid layer adsorbed on the solid surface with the stylus and the solid surface layer due to the capillary phenomenon (Tatsuya Imoto: Nikkan Kogyo Shimbun, SCIENCE AND TECHNOLOGY
(1984) p.16). These adsorption forces change due to the non-uniformity of the solid surface. The distribution of frictional force also reflects the non-uniformity of the surface. Therefore, knowing the distribution of the adsorption force and the frictional force on the surface provides important data for the evaluation of the surface non-uniformity.

ばねの変位を、トンネル電流による検知方法以外に光干
渉による検知方法が公知になっているが、この装置は複
雑で、取扱も困難であるという欠点がある。
Although a method of detecting the displacement of the spring by optical interference has been known in addition to the method of detecting by the tunnel current, this device has a drawback that it is complicated and difficult to handle.

一般に吸着力は吸着面積に比例する。よってミクロン以
下の領域での吸着力の測定にはマイクログラムもしくは
それ以下の感度の力センサを必要とする。また、ミクロ
ン以下の面分解能で摩擦力分布を測定するためには、触
針の先端をサブミクロンもしくはそれ以下に鋭くする必
要がある。表面損傷をさけるためには荷重はミリグラム
をはるかに下回る軽荷重でなければならない。一般に摩
擦力は荷重に比例する。よって摩擦力の測定にはやはり
マイクログラムもしくはそれ以下の感度の力センサを必
要とする。このような高感度の力センサを吸着力や摩擦
力測定に適用することは従来困難であったため、吸着力
や摩擦力のミクロン以下の分布の測定はほとんど不可能
であった。
Generally, the suction force is proportional to the suction area. Therefore, a force sensor with a sensitivity of microgram or less is required to measure the suction force in the submicron region. Further, in order to measure the frictional force distribution with a surface resolution of submicron, it is necessary to make the tip of the stylus sharp to submicron or smaller. To avoid surface damage, the load should be light, well below milligrams. Generally, the frictional force is proportional to the load. Therefore, measurement of the frictional force also requires a force sensor having a sensitivity of microgram or less. Since it has been difficult to apply such a high-sensitivity force sensor to the measurement of the attraction force or the frictional force, it is almost impossible to measure the distribution of the attraction force or the frictional force in the submicron range.

さらに、表面の特定位置における表面の形状、吸着力、
摩擦力を知る必要があるのに、従来の測定装置はすべて
1項目の測定しか出来ず前記目的には無力であった。
Furthermore, the shape of the surface at a specific position on the surface, the adsorption force
Although it was necessary to know the frictional force, all the conventional measuring devices could measure only one item and were ineffective for the above purpose.

本発明の目的は、これら従来の測定装置の欠点を解消
し、物質の表面に対して、気体中、真空中を問わず、容
易な操作かつ高い分解能でその表面の特定位置における
表面形状、吸着力、及び摩擦力を測定できる簡単な構造
の表面機械特性測定装置を提供することにある。
The object of the present invention is to eliminate the drawbacks of these conventional measuring devices, and to the surface of a substance, regardless of whether it is in a gas or in a vacuum, the surface shape and adsorption at a specific position on the surface with easy operation and high resolution. An object is to provide a surface mechanical property measuring device having a simple structure capable of measuring force and frictional force.

(課題を解決するための手段) 上記目的を達成するために、表面の機械特性測定装置
を、 1) ばねの先端に触針を設置した軽量な触針ばね支持
機構 2) ばねの変位を高感度に検出する球面静電容量プロ
ーブ 3) 球面静電容量プローブを微小な適正隙間でばねに
設定する位置調整機構 4) 触針が測定表面を走査し、ばねが表面の凹凸にし
たがって変位しても、球面静電容量プローブとばねの隙
間をつねに一定にし、凹凸の測定範囲を拡大する調整制
御機構 5) 測定表面の移動方向に作用する摩擦力を検出す
る、触針支持機構と同様の摩擦力検出ばね機構 6) 摩擦力検出ばね機構の変位を高感度に検出する球
面静電容量プローブと該球面静電容量プローブを微小な
適正隙間でばねに設定する位置調整機構 7) 摩擦力に応じた力を摩擦力検出ばね機構に摩擦力
と反対の方向に加え、該ばね機構の変位を零にする吸引
力発生制御機構 の手段により構成した。
(Means for Solving the Problems) In order to achieve the above object, a surface mechanical property measuring device is provided: 1) A lightweight stylus spring support mechanism having a stylus at the tip of the spring 2) High displacement of the spring Spherical capacitance probe for sensitive detection 3) Position adjustment mechanism that sets the spherical capacitance probe to the spring with a small appropriate gap 4) The stylus scans the measurement surface and the spring is displaced according to the unevenness of the surface. Also, the adjustment control mechanism that keeps the gap between the spherical capacitance probe and the spring constant and expands the measurement range of unevenness 5) Friction similar to the stylus support mechanism that detects the frictional force acting in the moving direction of the measurement surface Force detection spring mechanism 6) Spherical capacitance probe that detects the displacement of the friction force detection spring mechanism with high sensitivity, and position adjustment mechanism that sets the spherical capacitance probe as a spring with a fine gap 7) Depending on the friction force Friction force Out spring mechanism in addition to the direction opposite to the frictional force, was constructed by means of a suction force generation control mechanism to zero the displacement of the spring mechanism.

(作用) 本発明を前記の通り構成したので、従来の測定装置の欠
点を解消し、物質の表面に対して、気体中、真空中を問
わず、容易な操作かつ高い分解能でその表面の特定位置
における表面形状、吸着力、及び摩擦力を測定できる簡
単な構造の表面機械特性測定装置を得ることができるの
である。
(Operation) Since the present invention is configured as described above, the drawbacks of the conventional measuring device are solved, and the surface of a substance can be specified with easy operation and high resolution regardless of whether it is in a gas or in a vacuum. Thus, it is possible to obtain a surface mechanical property measuring device having a simple structure capable of measuring the surface shape, suction force, and frictional force at a position.

(実施例) 以下、本発明の実施例を図面にもとずいて詳細に説明す
る。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は本発明の第1の実施例の側面図である。本実施
例では表面形状と吸着力を測定できる。
FIG. 1 is a side view of the first embodiment of the present invention. In this embodiment, the surface shape and the suction force can be measured.

1は触針、2は板ばねである。触針1は板ばね2の先端
に固定されている。触針1の先端半径はサブミクロンの
分解能を得るのにサブミクロンもしくはそれ以下にす
る。板ばね2はたわみやすいものとし、例えば長さ10ミ
リメートル、幅1ミリメートル、厚さ数十ミクロンとす
れば100マイクログラム/ミクロン以下の剛性が得られ
る。
Reference numeral 1 is a stylus, and 2 is a leaf spring. The stylus 1 is fixed to the tip of the leaf spring 2. The tip radius of the stylus 1 is set to submicron or less to obtain submicron resolution. If the leaf spring 2 is made flexible, and has a length of 10 mm, a width of 1 mm, and a thickness of several tens of microns, a rigidity of 100 microgram / micron or less can be obtained.

3は板ばね2への対向面が球面である球面静電容量プロ
ーブ、4はプローブ固定部、5はバイモルフである。球
面静電容量プローブ36は、プローブ固定部4を介して、
バイモルフ5の先端に固定されている。
Reference numeral 3 is a spherical capacitance probe whose surface facing the leaf spring 2 is a spherical surface, 4 is a probe fixing portion, and 5 is a bimorph. The spherical capacitance probe 36, via the probe fixing unit 4,
It is fixed to the tip of the bimorph 5.

6は積層ピエゾ素子である。板ばね2とバイモルフ5の
基部は積層ピエゾ素子6に固定されている。
Reference numeral 6 is a laminated piezo element. The leaf spring 2 and the base of the bimorph 5 are fixed to the laminated piezo element 6.

以上前記触針1から6(以下同じ)の部品をあわせて測
定機構7が構成される。8は測定面である。15は電極で
ある。
As described above, the measuring mechanism 7 is configured by combining the parts of the stylus 1 to 6 (same below). 8 is a measurement surface. 15 is an electrode.

以下前記の部品又は測定機構の駆動又は調整手段の図示
は省略している。次にこれを動作させるには、まず、触
針1と測定面8が離れた状態でバイモルフ5を図中矢印
aの方向に駆動し、球面静電容量プローブ3と板ばね2
との隙間を適正に調整する。この隙間は微小であればあ
るほど板ばね2の変位の感度は良好となる。例えばナノ
メートル以下の感度を得るにはミクロンからサブミクロ
ンの隙間が望ましい。静電容量プローブの先端を平面に
して、板ばねと平行に設置すれば静電容量は大きくなる
が、ミクロンからサブミクロンの隙間を平行に設定する
ことは容易ではなく、プローブの先端平面がミクロンオ
ーダで傾いていても静電容量は大幅に減少し、かつ先端
表面が板ばねに接触する危険がある。これに対し、先端
が球面の場合、平行平面の場合より静電容量は小さくな
るが、プローブ軸と板ばね面が直角から傾いても、球面
と対向平面との静電容量はほとんど変化せず、また球面
加工は平面加工より容易に高精度の加工ができるという
利点がある。よって、球面静電容量プローブ3の板ばね
2への対向面は球面であるから板ばね2の面のうねりや
ねじれの影響による接触や感度不良を起こすことなく微
小隙間に容易に設定できる。
In the following, illustration of the driving or adjusting means of the above-mentioned parts or measuring mechanism is omitted. Next, in order to operate this, first, the bimorph 5 is driven in the direction of the arrow a in the figure with the stylus 1 and the measurement surface 8 separated, and the spherical capacitance probe 3 and the leaf spring 2 are moved.
Adjust the gap between and properly. The smaller the gap, the better the sensitivity of displacement of the leaf spring 2. For example, a micron to submicron gap is desirable to obtain sub-nanometer sensitivity. Capacitance increases if the tip of the capacitance probe is placed flat and parallel to the leaf spring, but it is not easy to set the gap from micron to submicron in parallel, and the probe tip plane is Even if tilted on the order, the capacitance is greatly reduced, and there is a risk that the tip surface contacts the leaf spring. On the other hand, when the tip is a spherical surface, the capacitance is smaller than when it is a parallel plane, but even if the probe shaft and the leaf spring surface are tilted from a right angle, the capacitance between the spherical surface and the opposing plane does not change much. Further, spherical surface processing has an advantage that high-precision processing can be performed more easily than flat surface processing. Therefore, since the surface of the spherical capacitance probe 3 facing the leaf spring 2 is a spherical surface, it is possible to easily set a minute gap without causing contact or poor sensitivity due to the influence of waviness or twist of the surface of the leaf spring 2.

つぎに積層ピエゾ素子6を駆動し触針1を測定面8に接
触させる。接触は球面静電容量プローブ3の容量変化で
検知できる。さらに積層ピエゾ素子6を微小に駆動する
ことによって触針1の接触荷重を調整できる。
Next, the laminated piezoelectric element 6 is driven to bring the stylus 1 into contact with the measurement surface 8. The contact can be detected by the capacitance change of the spherical capacitance probe 3. Further, the contact load of the stylus 1 can be adjusted by minutely driving the laminated piezoelectric element 6.

この状態で測定面8を図中bの矢印方向に動かすが、測
定機構7を図中cの破線の矢印方向に動かすと、触針1
は測定面8の凹凸にしたがって上下するから、これを球
面静電容量プローブ3で検出すれば表面形状が測定でき
る。この方法は測定面の凹凸が板ばね2と球面静電容量
プローブ3との隙間よりかなり小さいとき有効な方法で
ある。
In this state, the measuring surface 8 is moved in the direction of the arrow b in the figure, but when the measuring mechanism 7 is moved in the direction of the dashed line c in the figure, the stylus 1
Since it moves up and down according to the unevenness of the measurement surface 8, the surface shape can be measured by detecting this with the spherical capacitance probe 3. This method is effective when the unevenness of the measurement surface is much smaller than the gap between the leaf spring 2 and the spherical capacitance probe 3.

測定面の凹凸が板ばね2と球面静電容量プローブ3との
隙間と同程度か大きいときには、測定中に板ばね2と球
面静電容量プローブ3との隙間を一定になるように積層
ピエゾ素子6を駆動制御し積層ピエゾ素子の駆動電圧を
もって測定面の凹凸を計測すればよい。
When the unevenness of the measurement surface is equal to or larger than the gap between the leaf spring 2 and the spherical capacitance probe 3, the laminated piezoelectric element is arranged so that the gap between the leaf spring 2 and the spherical capacitance probe 3 becomes constant during measurement. The unevenness of the measurement surface may be measured by controlling the driving of 6 and the driving voltage of the laminated piezo element.

吸着力の測定では、まず球面静電容量プローブ3と板ば
ね2との隙間を適正に調整したのち、積層ピエゾ素子6
を駆動し触針1を測定面8に接触させる。つぎに積層ピ
エゾ素子6を触針1が測定面8から引き離される方向に
駆動する。板ばね2のたわみによる力が吸着より小さい
うちは板ばね2は表面に吸着されており、板ばね2と球
面静電容量プローブ3との隙間が大きくなるが、板ばね
2のたわみによる力が吸着力より大きくなった瞬間、板
ばね2は測定面8から離れ、荷重零の位置にもどる。こ
の動作での板ばね2の最大たわみが吸着力を示すことに
なる。この測定は1点づつの測定となるが、凹凸測定の
線に沿って多点測定すれば、凹凸と吸着力の相関が得ら
れる。
In the measurement of the attractive force, first, the gap between the spherical capacitance probe 3 and the leaf spring 2 is properly adjusted, and then the laminated piezoelectric element 6
Is driven to bring the stylus 1 into contact with the measurement surface 8. Next, the laminated piezoelectric element 6 is driven in the direction in which the stylus 1 is separated from the measurement surface 8. While the force due to the deflection of the leaf spring 2 is smaller than the attraction, the leaf spring 2 is attracted to the surface and the gap between the leaf spring 2 and the spherical capacitance probe 3 becomes large, but the force due to the deflection of the leaf spring 2 is At the moment when the force becomes larger than the attraction force, the leaf spring 2 separates from the measurement surface 8 and returns to the position where the load is zero. The maximum deflection of the leaf spring 2 in this operation indicates the attraction force. This measurement is one point at a time, but if multiple points are measured along the unevenness measurement line, the correlation between the unevenness and the suction force can be obtained.

第2図は本発明の第2の実施例の側面図である。FIG. 2 is a side view of the second embodiment of the present invention.

この実施例では第1の実施例に摩擦力測定のための機構
を付加している。
In this embodiment, a mechanism for measuring the frictional force is added to the first embodiment.

9は平行ばねで、板ばね2と同様たわみやすいもので構
成する。平行ばね9の下部には第1の実施例で示した1
から5の部品が固定され、また上部には積層ピエゾ素子
6が固定され表面形状と吸着力測定を受け持つ。
Reference numeral 9 is a parallel spring, which is made of a flexible material similar to the leaf spring 2. The lower part of the parallel spring 9 has the structure shown in the first embodiment.
5 is fixed, and the laminated piezo element 6 is fixed on the upper part, and is in charge of measuring the surface shape and the suction force.

3′は平行ばね9への対向面が球面である球面静電容量
プローブ、5′はバイモルフ、10は平行ばね9を吸引す
る電磁石、11は球面静電容量プローブ3′と電磁石10の
固定部である。球面静電容量プローブ3′と電磁石10は
固定部11を介して、バイモルフ5′の先端に固定されて
いる。以上の部品で測定機構7′が構成される。
Reference numeral 3'denotes a spherical capacitance probe whose surface facing the parallel spring 9 is a spherical surface, 5'denotes a bimorph, 10 an electromagnet for attracting the parallel spring 9, and 11 a fixed portion of the spherical capacitance probe 3'and the electromagnet 10. Is. The spherical capacitance probe 3'and the electromagnet 10 are fixed to the tip of the bimorph 5'via a fixing portion 11. A measuring mechanism 7'is composed of the above components.

これを動作させ、表面形状と吸着力を測定する方法は第
1の実施例とおなじであり、ここでは省略する。
The method of operating this and measuring the surface shape and the suction force is the same as in the first embodiment, and is omitted here.

摩擦力の測定では、まずバイモルフ5′を駆動し、球面
静電容量プローブ3′と平行ばね9との隙間を適正に調
整する。つぎに積層ピエゾ素子6を駆動し触針1を測定
面8に接触させる。さらに積層ピエゾ素子6を美粧に駆
動することによって触針1の接触荷重を調整できる。
In measuring the frictional force, first, the bimorph 5'is driven to properly adjust the gap between the spherical capacitance probe 3'and the parallel spring 9. Next, the laminated piezoelectric element 6 is driven to bring the stylus 1 into contact with the measurement surface 8. Further, the contact load of the stylus 1 can be adjusted by driving the laminated piezo element 6 for beauty.

この状態で測定面8を図中bの矢印方向に動かすか、測
定機構7′を図中cの破線の矢印方向に動かすと、平行
ばね9は測定面8と触針1の摩擦力により図中矢印dの
方向にたわむから、これを球面静電容量プローブ3′で
検出すれば摩擦力が測定できる。この方法は摩擦力が小
さく平行ばね4の変位が必要な面分解能以上のとき有効
な方法である。
In this state, when the measuring surface 8 is moved in the direction of the arrow b in the drawing or the measuring mechanism 7'is moved in the direction of the broken line arrow c in the drawing, the parallel spring 9 is moved by the frictional force between the measuring surface 8 and the stylus 1. Since it bends in the direction of the middle arrow d, the frictional force can be measured by detecting this with the spherical capacitance probe 3 '. This method is effective when the frictional force is small and the displacement of the parallel spring 4 is higher than the required surface resolution.

摩擦力が大きく平行ばね9の変位が面分解能に無視でき
ない場合は、測定中に平行ばね9と球面静電容量プロー
ブ3′との隙間を摩擦力零のときと同じになるように電
磁石10を駆動制御し平行ばね9を吸引する。電磁石10の
吸引力は摩擦力と同じになるから、電磁石の駆動電流を
もって摩擦力を計測できる。
When the frictional force is large and the displacement of the parallel spring 9 cannot be ignored in terms of surface resolution, the electromagnet 10 is set so that the gap between the parallel spring 9 and the spherical capacitance probe 3 ′ during measurement is the same as when the frictional force is zero. The drive is controlled and the parallel spring 9 is attracted. Since the attractive force of the electromagnet 10 is the same as the frictional force, the frictional force can be measured by the drive current of the electromagnet.

第3図は本発明の第3の実施例の側面図である。この実
施例は第2図の実施例と同様に摩擦力測定のための機構
を含んでおり、第2の実施例で用いたバイモルフの代わ
りに積層ピエゾ素子、板ばねと平行ばねの代わりにL形
ばねを用いたものである。動作は第2の実施例と同じで
ある。
FIG. 3 is a side view of the third embodiment of the present invention. Similar to the embodiment of FIG. 2, this embodiment includes a mechanism for measuring the frictional force. Instead of the bimorph used in the second embodiment, a laminated piezo element, a leaf spring and a parallel spring are replaced by L. It uses a shaped spring. The operation is the same as in the second embodiment.

12はL形ばねで、板ばね2と同様たわみやすいもので構
成する。L形ばね12の先端には触針1が固定されてい
る。3はL形ばね12への対向面が球面である球面静電容
量プローブ、4′はプローブ固定部、13は積層ピエゾ素
子である。球面静電容量プローブ3は、プローブ固定部
4′を介して、積層ピエゾ素子13の先端に固定されてい
る。
Reference numeral 12 is an L-shaped spring, which is made of a material that is easily bent like the leaf spring 2. The stylus 1 is fixed to the tip of the L-shaped spring 12. Reference numeral 3 is a spherical capacitance probe whose surface facing the L-shaped spring 12 is a spherical surface, 4'is a probe fixing portion, and 13 is a laminated piezoelectric element. The spherical capacitance probe 3 is fixed to the tip of the laminated piezo element 13 via the probe fixing portion 4 '.

3′はL形ばね12への対向面が球面である球面静電容量
プローブ、13′は積層ピエゾ素子、10′はL形ばね12を
吸引する電磁石、11′は球面静電容量プローブ3′と電
磁石10′の固定部である。
Reference numeral 3'denotes a spherical capacitance probe whose surface facing the L-shaped spring 12 is a spherical surface, 13 'denotes a laminated piezo element, 10' denotes an electromagnet for attracting the L-shaped spring 12, 11 'denotes a spherical capacitance probe 3'. And the fixed part of the electromagnet 10 '.

球面静電容量プローブ3′と電磁石10′は固定部11′を
介して、積層ピエゾ素子13′の先端に固定されている。
6は積層ピエゾ素子である。以上の部品で測定機構7″
が構成される。
The spherical capacitance probe 3'and the electromagnet 10 'are fixed to the tip of the laminated piezo element 13' via a fixing portion 11 '.
Reference numeral 6 is a laminated piezo element. Measuring mechanism 7 ″ with the above parts
Is configured.

本発明の摩擦力の測定は表面形状と同時に行うことがで
き、凹凸と摩擦力の完全な相関を得ることができる。
The measurement of the frictional force of the present invention can be carried out simultaneously with the surface shape, and a perfect correlation between the unevenness and the frictional force can be obtained.

なお、本発明の実施例では駆動素子として、積層ピエゾ
素子、バイモルフ、電磁石を例として示したが、それら
は実際の装置設計において適切に選ばれるものであっ
て、ほかの原理の駆動素子、たとえば、磁歪素子、静電
吸着板、リニアモータガイドなどを用いても本発明の効
果は失われない。また、板状ばねのかわりに棒状ばねを
用いても静電容量プローブが球面を有しており、容量変
化が検出できるため、この場合も本発明の効果は失われ
ない。
In the embodiments of the present invention, as the driving element, the laminated piezo element, the bimorph, and the electromagnet are shown as an example, but they are appropriately selected in the actual device design, and the driving element of another principle, for example, The effect of the present invention is not lost even if a magnetostrictive element, an electrostatic attraction plate, a linear motor guide, or the like is used. Further, even if a rod-shaped spring is used instead of the plate-shaped spring, the capacitance probe has a spherical surface and a capacitance change can be detected, so that the effect of the present invention is not lost in this case as well.

(発明の効果) 以上述べたごとく、本発明の請求項1〜3によれば、以
下のような効果をもち、従来装置では実現できなかっ
た、物質の表面に対して、気体中、真空中を問わず、容
易な操作かつ高い分解能でその表面の特定位置における
表面形状、吸着力、摩擦力を測定できる簡単な構造の表
面検査装置を実現できる。
(Effects of the Invention) As described above, according to claims 1 to 3 of the present invention, the following effects can be obtained, which cannot be realized by the conventional apparatus, in the gas or in the vacuum in the surface of the substance. Regardless of this, it is possible to realize a surface inspection device having a simple structure capable of measuring the surface shape, suction force, and frictional force at a specific position on the surface with easy operation and high resolution.

1) 軽量な触針ばね機構による超軽荷重測定 2) 球面静電容量プローブと、プローブとばねを微小
隙間に高精度に設定する位置調整機構による微少変位の
高感度検出 3) 球面静電容量プローブとばねの隙間をつねに一定
にする調整制御機構による高精度広範囲測定 4) 測定表面の移動方向に作用する摩擦力を検出す
る、触針支持機構と連結した摩擦力検出ばね機構による
表面形状と摩擦力の同時測定 5) 摩擦力に応じた力を摩擦力検出ばね機構に摩擦力
と反対の方向に加え、該ばね機構の変位を零にする吸引
力発生制御機構による摩擦力の精密測定
1) Ultra-light load measurement using a lightweight stylus spring mechanism 2) Sensitive detection of minute displacements by a spherical capacitance probe and a position adjustment mechanism that sets the probe and spring in a minute gap with high accuracy 3) Spherical capacitance High-accuracy wide-range measurement by an adjustment control mechanism that constantly keeps the gap between the probe and the spring 4) A surface shape by a friction force detection spring mechanism that is connected to the stylus support mechanism that detects the friction force that acts in the moving direction of the measurement surface. Simultaneous measurement of frictional force 5) Precise measurement of frictional force by a suction force generation control mechanism that applies a force according to the frictional force to the frictional force detection spring mechanism in the direction opposite to the frictional force and makes the displacement of the spring mechanism zero.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の第1の実施例の側面図、第2図は本発
明の第2の実施例の1部切り欠き側面図、第3図は本発
明の第3の実施例の側面図である。 1……触針、2……板ばね、3,3′……球面静電容量プ
ローブ、4,4′……プローブ固定部、5……バイモル
フ、6……積層ピエゾ素子、7,7′,7″……測定機構、
8……測定面、9……平行ばね、10,10′……電磁石、1
1,11′……固定部、12……L形ばね、13,13′……積層
ピエゾ素子、15……電極、矢印a,b,c,d……方向。
1 is a side view of a first embodiment of the present invention, FIG. 2 is a side view of a cutaway portion of a second embodiment of the present invention, and FIG. 3 is a side view of a third embodiment of the present invention. It is a figure. 1 ... Stylus, 2 ... Leaf spring, 3, 3 '... Spherical capacitance probe, 4, 4' ... Probe fixing part, 5 ... Bimorph, 6 ... Multilayer piezo element, 7, 7 ' , 7 ″ …… Measuring mechanism,
8 ... Measuring surface, 9 ... Parallel spring, 10,10 '... Electromagnet, 1
1, 11 '... fixed part, 12 ... L-shaped spring, 13, 13' ... laminated piezo element, 15 ... electrode, arrow a, b, c, d ... direction.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】表面の機械特性を測定する装置において、
ばねで支持した触針を表面に接触させ、表面の形状、吸
着力、摩擦力のいずれかもしくはすべてをばねの変位に
変換し、該ばねの変位を球面静電容量プローブで検出す
る機構を具備するとともに、該球面静電容量プローブを
ミクロンオーダもしくはそれ以下の隙間でばね表面へ設
定する調整機構を具備することを特徴とする表面機械特
性測定装置。
1. A device for measuring mechanical properties of a surface, comprising:
Equipped with a mechanism that brings a stylus supported by a spring into contact with the surface, converts any or all of the surface shape, adsorption force, and frictional force into the displacement of the spring, and detects the displacement of the spring with a spherical capacitance probe. In addition, the surface mechanical property measuring device is provided with an adjusting mechanism for setting the spherical capacitance probe on the spring surface with a clearance of micron order or less.
【請求項2】ばねで支持した触針を測定表面に1ミリグ
ラム以下の荷重で接触走行させ、表面の凹凸にそって変
位するばねと、常に一定の隙間を球面静電容量プローブ
が保持するよう調整機構を制御し、その制御信号から表
面形状を検知することを特徴とする請求項1記載の表面
機械特性測定装置。
2. A spherical capacitance probe is provided so that a stylus supported by a spring is brought into contact with a measurement surface under a load of 1 milligram or less, and the spring is displaced along the unevenness of the surface and a constant gap is always maintained. The surface mechanical property measuring device according to claim 1, wherein the adjusting mechanism is controlled and the surface shape is detected from the control signal.
【請求項3】ばねで支持した触針を測定表面に接触走行
させ、摩擦力によって変位するばねを摩擦力零の位置に
もどるようにばねに力を加える機構を制御し、その制御
信号から摩擦力を検知することを特徴とする請求項1記
載の表面機械特性測定装置。
3. A mechanism in which a stylus supported by a spring is brought into contact with a measurement surface to travel, and a mechanism for applying a force to the spring so that the spring displaced by the frictional force returns to a position where the frictional force is zero is controlled, and friction is generated from the control signal. The surface mechanical property measuring device according to claim 1, wherein force is detected.
JP63017195A 1988-01-29 1988-01-29 Surface mechanical property measuring device Expired - Lifetime JPH079363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63017195A JPH079363B2 (en) 1988-01-29 1988-01-29 Surface mechanical property measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63017195A JPH079363B2 (en) 1988-01-29 1988-01-29 Surface mechanical property measuring device

Publications (2)

Publication Number Publication Date
JPH01195301A JPH01195301A (en) 1989-08-07
JPH079363B2 true JPH079363B2 (en) 1995-02-01

Family

ID=11937150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63017195A Expired - Lifetime JPH079363B2 (en) 1988-01-29 1988-01-29 Surface mechanical property measuring device

Country Status (1)

Country Link
JP (1) JPH079363B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2647543B2 (en) * 1990-09-07 1997-08-27 日本電信電話株式会社 Shape measurement method
JP2665391B2 (en) * 1990-09-12 1997-10-22 日本電信電話株式会社 Shape measuring device
WO2010084662A1 (en) * 2009-01-20 2010-07-29 国立大学法人東北大学 Load measuring apparatus
JP5912338B2 (en) * 2011-08-26 2016-04-27 国立大学法人埼玉大学 Force measuring device
WO2015133113A1 (en) * 2014-03-03 2015-09-11 国立大学法人香川大学 Tactile sensor and method for evaluating sense of touch

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0512724Y2 (en) * 1987-03-24 1993-04-02

Also Published As

Publication number Publication date
JPH01195301A (en) 1989-08-07

Similar Documents

Publication Publication Date Title
US5193383A (en) Mechanical and surface force nanoprobe
US6267005B1 (en) Dual stage instrument for scanning a specimen
JP3157840B2 (en) New cantilever structure
JP3069923B2 (en) Cantilever probe, atomic force microscope, information recording / reproducing device
JPH079363B2 (en) Surface mechanical property measuring device
JPH09251026A (en) Scanning probe microscope
EP0887794A1 (en) Recording apparatus
JPH06258072A (en) Piezoelectric element thin film evaluating apparatus, interatomic force microscope
JP2007240238A (en) Probe microscope and measuring method of probe microscope
JPH01259210A (en) Surface shape measuring instrument
JP2594452B2 (en) Surface profile measuring device
Kim et al. Tunnel current controlled atomic force microscope designs
JP3272314B2 (en) measuring device
Stadelmann Review of Scanning Probe Microscopy Techniques
JP2002014023A (en) Probe-rotating mechanism and scanning probe microscope having the same
JP2925114B2 (en) measuring device
Gandhi Scanning Probe Microscopy for Nanoscale Semiconductor Device Analysis
WO1998057119A1 (en) Improved stylus profiler and array
JPH07110969A (en) Face alignment method, position control mechanism and information processor with the mechanism
JPH0670565B2 (en) Surface shape measuring method and device
JP2004325339A (en) Cantilever probe structure, and scanning force microscope
JPH08263885A (en) Information processor
JPH0752102B2 (en) Micro-part force measuring method and device
JPH08221816A (en) Recording and reproducing device and information processor of scanning type probe microscope and the like
JP2533728C (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term