JP3272314B2 - measuring device - Google Patents

measuring device

Info

Publication number
JP3272314B2
JP3272314B2 JP34806298A JP34806298A JP3272314B2 JP 3272314 B2 JP3272314 B2 JP 3272314B2 JP 34806298 A JP34806298 A JP 34806298A JP 34806298 A JP34806298 A JP 34806298A JP 3272314 B2 JP3272314 B2 JP 3272314B2
Authority
JP
Japan
Prior art keywords
sample
displacement
probe
piezo element
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34806298A
Other languages
Japanese (ja)
Other versions
JPH11237393A (en
Inventor
純男 保坂
茂行 細木
啓二 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP34806298A priority Critical patent/JP3272314B2/en
Publication of JPH11237393A publication Critical patent/JPH11237393A/en
Application granted granted Critical
Publication of JP3272314B2 publication Critical patent/JP3272314B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は微小領域の力を測定する
測定装置に係り、特に絶縁物表面の計測に好適な微小領
域の力を測定し、これに基づいて試料表面構造等を観察
することのできる測定装置に関する。 【0002】 【従来の技術】従来、微小領域の力検出については、フ
ィジカル、レビュー、レータ56,(1986年)第9
30頁から第933頁(Phys. Rev, Lett, 56,(1986)pp9
30-933)において論じられている。 【0003】 【発明が解決しようとする課題】上記従来技術は図2に
示すごとく、はり支持具5により一端支点とされたはり
(板材)2の先端に鋭利な探針1を具備する。試料3の
接近に伴なって、原子間力によりはり2が変位し、該変
位を走査型トンネル顕微鏡(STM)のごとくトンネル
電流を一定に流し、はり2と探針14との間隙を一定に
保つことにより測定する。このような非接触間隙測定方
式を用いることで、力を変位に変換し、変位を測定する
ことによって微小領域の力検出が実行されていた。 【0004】この技術は、変位測定のための安定性、即
ち、はり2の測定表面の表面粗さによる測定誤差の点に
ついて配慮がされておらず、検出精度に問題があった。
すなわち、従来の図2の技術では、はり2が変位するこ
とにより、STM用探針14先端がはり2条で原子オー
ダで横にずれる。いいかえると、STM用探針14先端
は、はり2の背面上を面方向に動く。ところで、はり2
の背面には通常、原子オーダで見れば大きな起伏(数n
m以上)が存在することが避けえない。従って、STM
用探針14は面方向に大きな分解能を有するために、は
り2背面の起伏を検出してしまい、はり2の変位検出に
誤差が混入してしまう。 【0005】さらに、従来技術では力検出のための探針
1の剛性について問題があった。 【0006】 【課題を解決するための手段】上記課題は、試料台に搭
載される試料表面に対向する板材の一方の面に設けられ
た探針と、前記板材の他方の面に照射される光を利用し
て前記探針と前記試料表面との間に作用して前記探針に
加わる力によって生じる前記板材の弾性変位を検出する
光てこ式の光学変位測定手段と、前記試料を保持する試
料台を移動させるピエゾ素子と、該ピエゾ素子を前記弾
性変位を一定に保つように前記検出された変位に対応し
て駆動する制御装置と、前記ピエゾ素子を保持して前記
試料表面を前記探針に近づけるための粗動機構とを有す
る測定装置を備えることにより解決できる。 【0007】 【0008】上述したように、従来技術では面方向に大
きな分解能を有するSTMの原理を利用して変位を測定
しているために、はり2のたわみと共に発生する横方向
のずれと、はり2の背面の原子オーダの凹凸が測定値に
影響する。 【0009】一方、本願発明で用いる光てこ式の光学変
位測定手段は、はり部材の微小な変位を非接触で高感度
に測定することを可能とする。しかも、はり部材裏面の
比較的広い範囲の変位を検出し、大面積で微小変位を測
定できる非接触変位測定手段であるために、はり2の変
位測定での表面凹凸による微小変位測定誤差を防止する
ことができ、はりの測定表面の表面粗さによる測定誤差
の問題を回避できる。 【0010】また、光てこ式の光学変位測定手段によれ
ば、カンチレバー及び試料が真空中でも、気体または液
体中でも同様に変位を測定できるという利点がある。こ
れにより測定の応用範囲が広がり、探針と試料間の力を
測定したり、化学的な観察と複合した測定も行うことが
できる。 【0011】 【0012】 【実施例】以下、本発明の一実施例を図1により説明す
る。図1は微小領域の3次元形状測定器に本発明を応用
した例を示す。 【0013】図1において、力の検出部ははり2の両端
を支持具5で支持し、その中央部にダイヤモンド製の先
端が非常に尖った探針1を設置し、はり2を介して探針
1と反対側に容量変位計のような非接触変位計4を設け
る構造とした。 【0014】試料3は粗動機構11の上に設けた3次元
微動機構上の試料台6に搭載される。3次元微動機構は
X軸,Y軸,Z軸ピエゾ素子7,8,9を台座10に図
の様に設置してトライポット型の構成としている。さら
に、力による変位を検出して、その力を一定、即ち、変
位を一定にする様にZ軸ピエゾ素子9を制御するととも
に、2次元走査や探針1に試料3を近ずける粗動機構1
1を制御する制御装置12を有する。表示装置13は試
料の3次元構造を3次元表示する。 【0015】はり2を厚さ10μm,幅0.5cm,長
さ5cmの銀等で構成すると、約10-12N(ニュート
ン)の力で約1Åの変化が生じる。一方、非接触変位測
定手段4には被測定部分が大面積である容量変位計、光
てこ式の光学変位測定器が使用される。構成は、力によ
るはり2の弾性変位を測定するために、はり2を構成す
る板材に対して探針1と反対側に非接触でかつ板材の大
面積部分を被測定領域とする非接触変位測定手段を配置
する。大面積部の変位検出部分を持つ非接触変位測定器
ははり2表面の凹凸や原子の配列の影響を受けることな
く測定することができる。また、粗動機構11には尺取
り虫機構やネジ式あるいは縮小変位機構を使用したもの
を使用する。 【0016】上記の粗動機構11により探針1に試料3
を近接し、数Å程度までに接近すると、双方の表面原子
で最近接同士の原子間に力が働き、はり2の変位が起
り、非接触変位測定手段で検出される。この変化を一定
に保つ様に制御装置12でZ軸ピエゾ素子9を駆動し、
探針1と試料3との間隙を一定に保つ。この状態を保ち
つつ、X軸,Y軸ピエゾ素子7,8で2次元走査する
と、試料3の表面形状に基づいてZ軸ピエゾ素子が変化
して試料表面の3次元形状が得られ、表示装置13に微
細構造を表示することができる。実際の原子間力は10
-9〜10-10Nと言われており、上述のはり構造及び変
位計で十分、表面の原子構造を観察できる。 【0017】尚、本実施例は重力の影響を受けるような
構成としたが、90゜回転し重力の影響を受けない構成
とすることもできる。また、微小機構や粗動機構を試料
側あるいは力測定部に設置しても良い。探針1はダイヤ
モンド以外に硬度の高いものが良く、先端を鋭く尖らせ
ることが重要であり、イオンエッチングや化学エッチン
グあるいは精密加工技術によって製作されることが望ま
しい。さらに、探針を絶縁物以外のものにすれば、走査
型トンネル顕微鏡としても利用できる。 【0018】本システムは計算機と結合してデータ処理
を行なうことにより、より良い像を得ることができる。 【0019】 【発明の効果】本発明によれば、測定面積の大きい非接
触変位測定手段を用いるため、はりの表面の凹凸の影響
を除くことができるので、高精度な微小部分の微小を検
出することができる。また、探針の機械的剛性が増加
し、力の影響を正確に変位に変換する。 【0020】また、3次元形状測定器に応用することに
より、全ての材料が測定可能となる。また、上記の非接
触変位測定手段は通常、大気中で安定に動作するのでS
TMのように真空中での動作の必要がなくなる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a measuring device for measuring a force in a minute area, and particularly to a force in a minute area suitable for measuring the surface of an insulator. The present invention relates to a measurement device capable of observing a sample surface structure or the like based on the measurement. 2. Description of the Related Art Conventionally, force detection in a minute area has been described in Physical, Review, Rator 56, (1986), ninth.
30 to 933 (Phys. Rev, Lett, 56, (1986) pp9)
30-933). As shown in FIG. 2, the prior art includes a sharp probe 1 at the tip of a beam (plate material) 2 which is supported at one end by a beam support 5. As the sample 3 approaches, the beam 2 is displaced by an atomic force, and the displacement is caused to flow a constant tunnel current as in a scanning tunneling microscope (STM), so that the gap between the beam 2 and the probe 14 is kept constant. Measure by keeping. By using such a non-contact gap measuring method, a force is converted into a displacement, and the displacement is measured to detect a force in a minute area. This technique does not consider stability for measuring displacement, that is, measurement error due to surface roughness of the measurement surface of the beam 2, and has a problem in detection accuracy.
That is, in the conventional technique shown in FIG. 2, the tip of the STM probe 14 is displaced laterally in the atomic order by two beams due to the displacement of the beam 2. In other words, the tip of the STM probe 14 moves on the back surface of the beam 2 in the plane direction. By the way, beam 2
Is usually large undulations (number n) in atomic order.
m) is inevitable. Therefore, STM
Since the probe 14 has a large resolution in the plane direction, it detects undulations on the back surface of the beam 2, and an error is mixed in the displacement detection of the beam 2. Further, in the prior art, there is a problem regarding the rigidity of the probe 1 for detecting a force. [0006] The above object is achieved by mounting a sample stage.
Provided on one side of the plate facing the sample surface
Probe and the light irradiated on the other surface of the plate material.
Acting between the probe and the sample surface,
Detecting the elastic displacement of the plate caused by the applied force
Optical lever-type optical displacement measuring means and a sample holding sample
A piezo element for moving a platform, and the piezo element
Corresponding to the detected displacement so as to keep the constant displacement constant.
A control device for driving the piezoelectric element, and
A coarse movement mechanism for bringing the sample surface close to the probe
The problem can be solved by providing a measuring device . As described above, in the prior art, the displacement is measured by using the principle of the STM having a large resolution in the plane direction. The irregularities in the atomic order on the back of beam 2 affect the measured values. On the other hand, the optical lever type optical displacement measuring means used in the present invention makes it possible to measure the minute displacement of the beam member without contact and with high sensitivity. Moreover, since it is a non-contact displacement measuring means that can detect a relatively wide range of displacement of the back surface of the beam member and measure a small displacement in a large area, it prevents a small displacement measurement error due to surface irregularities in the displacement measurement of the beam 2. The problem of measurement errors due to the surface roughness of the measurement surface of the beam can be avoided. According to the optical lever type optical displacement measuring means, there is an advantage that the displacement can be measured even when the cantilever and the sample are in a vacuum, gas or liquid. As a result, the application range of the measurement is expanded, and the force between the probe and the sample can be measured, and the measurement combined with the chemical observation can be performed. An embodiment of the present invention will be described below with reference to FIG. FIG. 1 shows an example in which the present invention is applied to a three-dimensional shape measuring instrument for a minute area. In FIG. 1, a force detecting section supports both ends of a beam 2 with a support 5, and a probe 1 having a very sharp diamond tip is installed at the center thereof. A non-contact displacement meter 4 such as a capacitance displacement meter is provided on the opposite side of the needle 1. The sample 3 is mounted on a sample stage 6 on a three-dimensional fine movement mechanism provided on a coarse movement mechanism 11. The three-dimensional fine movement mechanism has a tri-pot type configuration in which X-, Y-, and Z-axis piezo elements 7, 8, and 9 are installed on a pedestal 10 as shown in the figure. Further, the displacement due to the force is detected, and the Z-axis piezo element 9 is controlled so as to keep the force constant, that is, the displacement. Mechanism 1
1 is provided with a control device 12 for controlling the control device 1. The display device 13 displays the three-dimensional structure of the sample three-dimensionally. When the beam 2 is made of silver or the like having a thickness of 10 μm, a width of 0.5 cm and a length of 5 cm, a change of about 1 ° occurs with a force of about 10 −12 N (Newton). On the other hand, as the non-contact displacement measuring means 4, a capacitance displacement meter having a large area to be measured or an optical lever type optical displacement measuring device is used. In order to measure the elastic displacement of the beam 2 due to the force, the non-contact displacement of the plate material forming the beam 2 in a non-contact manner on the side opposite to the probe 1 and a large area portion of the plate material as a measurement area. Arrange the measuring means. A non-contact displacement measuring instrument having a large area displacement detecting portion can perform measurement without being affected by irregularities on the surface of the beam 2 and arrangement of atoms. As the coarse movement mechanism 11, a mechanism using a scale insect mechanism, a screw type or a reduction displacement mechanism is used. The sample 3 is attached to the probe 1 by the coarse movement mechanism 11 described above.
Approaching to several Å, a force acts between the atoms closest to each other on both surface atoms, causing displacement of the beam 2 and being detected by the non-contact displacement measuring means. The control device 12 drives the Z-axis piezo element 9 to keep this change constant,
The gap between the probe 1 and the sample 3 is kept constant. When two-dimensional scanning is performed by the X-axis and Y-axis piezo elements 7 and 8 while maintaining this state, the Z-axis piezo element changes based on the surface shape of the sample 3 to obtain a three-dimensional shape of the sample surface. 13, a fine structure can be displayed. The actual atomic force is 10
It is said to be -9 to 10 -10 N, and the above-mentioned beam structure and displacement meter can sufficiently observe the atomic structure of the surface. Although the present embodiment is configured to be affected by gravity, it may be configured to rotate 90 ° and not be affected by gravity. Further, a minute mechanism or a coarse movement mechanism may be provided on the sample side or the force measuring unit. The probe 1 is preferably made of a material having high hardness other than diamond, and it is important to sharpen the tip, and it is preferable that the probe 1 is manufactured by ion etching, chemical etching, or precision processing technology. Further, if the probe is made of a material other than an insulator, it can be used as a scanning tunnel microscope. This system can obtain a better image by performing data processing in combination with a computer. According to the present invention, since the non-contact displacement measuring means having a large measuring area is used, the influence of the unevenness of the surface of the beam can be eliminated, so that the minute part of the minute part can be detected with high accuracy. can do. In addition, the mechanical rigidity of the probe increases, and the effect of the force is accurately converted to displacement. Further, by applying the present invention to a three-dimensional shape measuring instrument, all materials can be measured. Further, since the above-mentioned non-contact displacement measuring means normally operates stably in the atmosphere, S
The need for operation in a vacuum unlike TM is eliminated.

【図面の簡単な説明】 【図1】本発明の一実施例の構成を示す要部構成図。 【図2】従来の力測定装置の原理的構成を示す要部構成
図。 【符号の説明】 1…探針、2…はり、3…試料、4…測定面積の大きい
非接触変位測定手段、5…はり支持具、6…試料台、7
…X軸ピエゾ素子、8…Y軸ピエゾ素子、9…Z軸ピエ
ゾ素子、10…台座、11…粗動機構、12…制御回
路、13…表示手段。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a main configuration diagram showing a configuration of an embodiment of the present invention. FIG. 2 is a main configuration diagram showing a basic configuration of a conventional force measuring device. [Explanation of Symbols] 1 ... probe, 2 ... beam, 3 ... sample, 4 ... non-contact displacement measuring means with large measuring area, 5 ... beam support, 6 ... sample stand, 7
... X-axis piezo element, 8 ... Y-axis piezo element, 9 ... Z-axis piezo element, 10 ... pedestal, 11 ... coarse movement mechanism, 12 ... control circuit, 13 ... display means.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高田 啓二 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所 中央研究所内 (56)参考文献 特開 昭62−130302(JP,A) 特開 昭61−206148(JP,A) 実開 昭55−127210(JP,U) Y.Martin ほか2名,”At omic force microsc ope−force mapping and profiling on a sub Ioo−A Scale”, Journal of Applied Physics,American institute of Physi ce,1987年5月15日 Vol.61 N o.10 pp.4723〜4729 奈良治郎「工場測定講座『表面アラサ 測定器』」日刊工業新聞社 pp.82 (58)調査した分野(Int.Cl.7,DB名) G01N 13/16 G01B 21/30 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Keiji Takada 1-280 Higashi Koikebo, Kokubunji-shi, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd. (56) References JP-A-62-130302 (JP, A) JP-A-61 -206148 (JP, A) Japanese Utility Model Showa 55-127210 (JP, U) Martin and two others, "Atomic force microscope-force mapping and profiling on a sub-Io-A Scale", Journal of Applied Physics, Journal of Physics, 1987. 61 No. 10 pp. 4723-4729 Jiro Nara, “Factory Measurement Lecture“ Surface Arasa Measuring Instrument ”” Nikkan Kogyo Shimbun pp. 82 (58) Field surveyed (Int.Cl. 7 , DB name) G01N 13/16 G01B 21/30

Claims (1)

(57)【特許請求の範囲】 1.試料台に搭載される試料表面に対向する板材の一方
の面に設けられた探針と、前記板材の他方の面に照射さ
れる光を利用して前記探針と前記試料表面との間に作用
して前記探針に加わる力によって生じる前記板材の弾性
変位を検出する光てこ式の光学変位測定手段と、前記試
料を保持する試料台を移動させるピエゾ素子と、該ピエ
ゾ素子を前記弾性変位を一定に保つように前記検出され
た変位に対応して駆動する制御装置と、前記ピエゾ素子
を保持して前記試料表面を前記探針に近づけるための粗
動機構とを有することを特徴とする測定装置。 2.試料台に搭載される試料表面に対向する板材の一方
の面に設けられた探針と、前記板材の他方の面に照射さ
れる光を利用して前記探針と前記試料表面との間に作用
して前記探針に加わる力によって生じる前記板材の弾性
変位を検出する光てこ式の光学変位測定手段と、前記試
料を保持する試料台を移動させるピエゾ素子と、該ピエ
ゾ素子を前記弾性変位を一定に保つように前記検出され
た変位に対応して駆動する制御装置と、前記ピエゾ素子
を保持して前記試料表面を前記探針に近づけるための粗
動機構とを備える測定装置と、前記測定装置と結合した
計算機によるデータ処理により前記試料の試料表面像を
得ることを特徴とする試料表面像計測装置。
(57) [Claims] One of the plates facing the sample surface mounted on the sample stage
The probe provided on the surface of the plate and the other surface of the plate
Act between the probe and the sample surface using the light
Of the plate caused by the force applied to the probe
An optical lever type optical displacement measuring means for detecting displacement;
A piezo element for moving a sample stage holding a sample, and the piezo element
The element is detected so as to keep the elastic displacement constant.
Control device for driving in accordance with the displaced displacement, and the piezo element
Measuring apparatus characterized by a holding and a coarse feed mechanism for approximating the surface of the sample before Symbol probe. 2. One of the plates facing the sample surface mounted on the sample stage
The probe provided on the surface of the plate and the other surface of the plate
Act between the probe and the sample surface using the light
Of the plate caused by the force applied to the probe
An optical lever type optical displacement measuring means for detecting displacement;
A piezo element for moving a sample stage holding a sample, and the piezo element
The element is detected so as to keep the elastic displacement constant.
Control device for driving in accordance with the displaced displacement, and the piezo element
Be characterized and measuring apparatus and a coarse feed mechanism for approximating the surface of the sample before Symbol probe holding, that the data processing by the computer attached to the measuring device to obtain a sample surface image of the sample Sample surface image measurement device.
JP34806298A 1987-07-10 1998-12-08 measuring device Expired - Fee Related JP3272314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34806298A JP3272314B2 (en) 1987-07-10 1998-12-08 measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34806298A JP3272314B2 (en) 1987-07-10 1998-12-08 measuring device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP8191803A Division JP2925114B2 (en) 1996-07-22 1996-07-22 measuring device

Publications (2)

Publication Number Publication Date
JPH11237393A JPH11237393A (en) 1999-08-31
JP3272314B2 true JP3272314B2 (en) 2002-04-08

Family

ID=18394497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34806298A Expired - Fee Related JP3272314B2 (en) 1987-07-10 1998-12-08 measuring device

Country Status (1)

Country Link
JP (1) JP3272314B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1963816B1 (en) * 2005-11-28 2017-05-17 Vereniging voor Christelijk Hoger Onderwijs, Wetenschappelijk Onderzoek en Patiëntenzorg Optical device comprising a cantilever and method of fabrication and use thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Y.Martin ほか2名,"Atomic force microscope−force mapping and profiling on a sub Ioo−A Scale",Journal of Applied Physics,American institute of Physice,1987年5月15日 Vol.61 No.10 pp.4723〜4729
奈良治郎「工場測定講座『表面アラサ測定器』」日刊工業新聞社 pp.82

Also Published As

Publication number Publication date
JPH11237393A (en) 1999-08-31

Similar Documents

Publication Publication Date Title
EP0410131B1 (en) Near-field lorentz force microscopy
Jarvis et al. A novel force microscope and point contact probe
EP0868644B1 (en) Multi-dimensional capacitive transducer
JP2915554B2 (en) Barrier height measurement device
JP3075981B2 (en) Shape measuring device
Whitehouse Nanotechnology instrumentation
Fu et al. Long‐range scanning for scanning tunneling microscopy
Chetwynd et al. A controlled-force stylus displacement probe
JPH08233836A (en) Scanning probe microscope, standard device for calibrating height direction thereof and calibration method
JP3272314B2 (en) measuring device
Xu et al. A metrological scanning force microscope
Miller et al. X-ray calibrated tunneling system utilizing a dimensionally stable nanometer positioner
JP2006275826A (en) Surface shape measuring apparatus
JP2925114B2 (en) measuring device
Binggeli et al. Atomic-scale tribometer for friction studies in a controlled atmosphere
JP2533728B2 (en) Measuring device and measuring method
JP2533728C (en)
JPH0526662A (en) Scanning type interatomic force/magnetic force microscope and analogous device thereof
JPH0752102B2 (en) Micro-part force measuring method and device
JPH0746051B2 (en) Micro force measuring device
Badami et al. A portable three-dimensional stylus profile measuring instrument
JPH079363B2 (en) Surface mechanical property measuring device
JPH08226926A (en) Scanning probe microscope and measurement method by the microscope
JPH0989550A (en) High-accuracy surface configuration measuring method and device
JPH0387637A (en) Surface characteristic measuring instrument

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees