JPH0512724Y2 - - Google Patents

Info

Publication number
JPH0512724Y2
JPH0512724Y2 JP1987043033U JP4303387U JPH0512724Y2 JP H0512724 Y2 JPH0512724 Y2 JP H0512724Y2 JP 1987043033 U JP1987043033 U JP 1987043033U JP 4303387 U JP4303387 U JP 4303387U JP H0512724 Y2 JPH0512724 Y2 JP H0512724Y2
Authority
JP
Japan
Prior art keywords
needle
probe
sample
height
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1987043033U
Other languages
Japanese (ja)
Other versions
JPS63150305U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1987043033U priority Critical patent/JPH0512724Y2/ja
Publication of JPS63150305U publication Critical patent/JPS63150305U/ja
Application granted granted Critical
Publication of JPH0512724Y2 publication Critical patent/JPH0512724Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

【考案の詳細な説明】 〔概要〕 この考案は、試料表面の高さを検出する高さ測
定検出器において、導電性試料と、この試料に対
向して尖つた先端を持つ針状電極との間に電圧を
印加し、トンネル効果による電子流の大きさを検
出して試料表面の高さを測定する場合、非導電性
あるいは非導電性の物質が点在する試料表面の高
さを測定し得ないなどの問題を解決するため、試
料表面の凹凸に沿つて移動する針状探針を設け、
この針状探針の頭部の平坦部と、別途設けた針状
電極との間に流れるトンネル効果による電子流の
大きさを所定値に保持するよう圧電素子に負帰還
制御し、この負帰還量によつて試料表面の高さを
検出することにより、例え試料が非導電性であつ
ても試料表面の微小高さを正確に検出するように
している。
[Detailed explanation of the invention] [Summary] This invention is a height measurement detector that detects the height of the sample surface, which uses a conductive sample and a needle-like electrode with a sharp tip facing the sample. When measuring the height of a sample surface by applying a voltage between the two and detecting the magnitude of electron flow due to the tunneling effect, the height of the sample surface that is dotted with non-conductive or non-conductive materials is measured. In order to solve the problem of not being able to obtain a sample, we installed a needle-like probe that moves along the unevenness of the sample surface.
Negative feedback control is applied to the piezoelectric element so that the magnitude of the electron flow due to the tunnel effect flowing between the flat part of the head of the needle probe and a separately provided needle electrode is maintained at a predetermined value. By detecting the height of the sample surface based on the amount, the minute height of the sample surface can be accurately detected even if the sample is non-conductive.

〔産業上の利用分野〕[Industrial application field]

本考案は、試料表面の凹凸に沿つて移動する針
状探針を設け、この針状探針の平坦な頭部と、別
途設けた針状電極との間に流れるトンネル効果に
よる電子流の大きさを所定値に保持するよう電圧
素子に負帰還制御し、この負帰還量によつて試料
表面の高さを検出するよう構成した高さ測定検出
器に関するものである。
The present invention is equipped with a needle-like probe that moves along the unevenness of the sample surface, and the tunnel effect that flows between the flat head of the needle-like probe and a separately provided needle-like electrode increases the electron flow. The present invention relates to a height measuring detector configured to perform negative feedback control on a voltage element to maintain the height at a predetermined value, and to detect the height of a sample surface based on the amount of negative feedback.

〔従来の技術〕[Conventional technology]

従来、トンネル効果による電子流を測定して試
料表面の微小高さを例えば数Åないし数十Åの精
度で測定するものとして、例えば第2図に示すよ
うなトンネル顕微鏡を用いた高さ測定検出器があ
る。これは、高さを測定しようとする導線性の試
料17の表面に対向して、尖つた先端を持つ針状
電極12を配置し、この針状電極12と、導線性
の試料17との間にトンネル効果による電子流が
流れる程度の電界(108V/m程度の電界)をバ
イアス電圧Evによつて印加する。この時、導電
性の試料17と、針状電極12との間(例えば数
十Å離れた間)に流れるトンネル効果による電子
流の大きさを増幅器AMPによつて検出・増幅し
て導電性の試料17の高さを測定するものであつ
た。例えば第2図図中ハの位置では両者の距離が
小さいため、大きなトンネル効果による電子流が
流れ、図中ニに点線を用いて示す位置では両者の
距離が大きいため、小さなトンネル効果による電
子流しか流れない。この電子流の大きさと距離と
の関係を予め校正して求めておけば、この時の電
子流の値から試料17の高さを数Åないし数十Å
の程度の精度で測定することができる。
Conventionally, height measurement and detection using a tunneling microscope as shown in Fig. 2 has been used to measure the minute height of a sample surface with an accuracy of several angstroms to several tens of angstroms by measuring the electron flow caused by the tunnel effect. There is a vessel. In this method, a needle-shaped electrode 12 with a sharp tip is placed opposite the surface of the conductive sample 17 whose height is to be measured, and a gap between the needle-shaped electrode 12 and the conductive sample 17 is placed. An electric field (an electric field of about 10 8 V/m) that causes an electron flow due to the tunnel effect is applied to the substrate by means of a bias voltage Ev . At this time, the magnitude of the electron flow due to the tunnel effect flowing between the conductive sample 17 and the needle electrode 12 (for example, at a distance of several tens of angstroms) is detected and amplified by the amplifier AMP, and the conductive sample 17 is detected and amplified by the amplifier AMP. This was to measure the height of sample 17. For example, at the position C in Figure 2, the distance between the two is small, so a large electron flow occurs due to the tunnel effect, and at the position indicated by the dotted line D in the figure, the distance between the two is large, so the electron flow is caused by a small tunnel effect. Or it doesn't flow. If the relationship between the size of this electron flow and the distance is calibrated and determined in advance, the height of the sample 17 can be determined from several angstroms to several tens of angstroms from the value of the electron flow at this time.
It can be measured with an accuracy of about .

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

しかし、第2図に示す従来の高さ測定検出器
は、試料17と、針状電極12との間に流れるト
ンネル効果による電子流を直接に検出して高さを
測定していたため、例えば試料17が非導電性で
あつたり、試料17の一部に非導電性の物質が点
在したりなどする場合には、トンネル効果による
電子流が流れないため、試料17の微小高さを測
定し得ないという問題点があつた。
However, the conventional height measuring detector shown in FIG. 2 measures the height by directly detecting the electron flow caused by the tunnel effect flowing between the sample 17 and the needle electrode 12. If the sample 17 is non-conductive or if a part of the sample 17 is dotted with non-conductive substances, the electron flow due to the tunnel effect will not flow, so the minute height of the sample 17 cannot be measured. There was a problem that I couldn't get it.

〔問題点を解決するための手段〕[Means for solving problems]

本考案は、前記問題点を解決するため、高さを
測定しようとする試料表面の凹凸に沿つて移動す
る尖つた針状部を一端に持ち、かつ他端に平坦な
頭部を持つ針状探針1と、この針状探針1の平坦
な頭部に対向して尖つた先端を配置した針状電極
2と、この針状電極2の他端に配置し、かつこの
針状電極2の先端と、上記針状探針1の平坦な頭
部との間の距離を調整する圧電素子3とを設け、
上記針状電極2の先端から上記針状探針1の平坦
な頭部に向かつて流れるトンネル効果による電子
流を検出し、上記圧電素子3に負帰還して当該ト
ンネル効果による電子流を所定値に保持するよう
制御し、この負帰還量によつて試料の高さを検出
するようにしている。
In order to solve the above-mentioned problems, the present invention has a needle-like part that has a sharp needle-like part at one end that moves along the unevenness of the surface of the sample whose height is to be measured, and a flat head at the other end. A probe 1, a needle electrode 2 having a pointed tip facing the flat head of the needle probe 1, and a needle electrode 2 disposed at the other end of the needle electrode 2; and a piezoelectric element 3 for adjusting the distance between the tip of the needle probe 1 and the flat head of the needle probe 1,
The electron flow due to the tunnel effect flowing from the tip of the needle electrode 2 toward the flat head of the needle probe 1 is detected, and is negatively fed back to the piezoelectric element 3 to reduce the electron flow due to the tunnel effect to a predetermined value. The height of the sample is detected based on this amount of negative feedback.

〔作用〕[Effect]

第1図において、試料7を例えば左右方向に移
動させると、針状探針1の尖つた先端がこの試料
7の凹凸に沿つて上下方向に移動し、この針状探
針1の平坦な頭部も上下方向に移動する。この針
状探針1の平坦な頭部が上下方向に移動すると、
この平坦な頭部に対向して設けた針状電極2との
間に流れるトンネル効果による電子流の値が変化
しようとするが、これが増幅器AMP1および増幅
器AMP2によつて圧電素子3に負帰還され、針状
探針1の平坦な頭部と、針状電極1との尖つた先
端との距離が常に所定値に保持されるように制御
される。このため、増幅器AMP1から出力される
値がこの負帰還量となり、これが求める試料7の
表面の高さ検出信号となる。
In FIG. 1, when the sample 7 is moved, for example, in the horizontal direction, the sharp tip of the needle probe 1 moves vertically along the unevenness of the sample 7, and the flat head of the needle probe 1 moves in the vertical direction. The parts also move in the vertical direction. When the flat head of this needle probe 1 moves in the vertical direction,
The value of the electron flow due to the tunnel effect flowing between the flat head and the needle-shaped electrode 2 provided opposite to it is about to change, but this is caused by the amplifiers AMP 1 and AMP 2 to negatively affect the piezoelectric element 3. It is controlled so that the distance between the flat head of the needle probe 1 and the sharp tip of the needle electrode 1 is always maintained at a predetermined value. Therefore, the value output from the amplifier AMP 1 becomes this negative feedback amount, and this becomes the desired surface height detection signal of the sample 7.

以上のように、試料7の表面の凹凸に追従して
移動する針状探針1を設け、この針状探針1の平
坦な頭部と、別途設けた針状電極2との間に流れ
るトンネル効果による電子流を所定値に保持する
よう圧電素子3に負帰還制御することにより、試
料7が例え非導電性のものであつても、精度良好
に高さを検出することが可能となる。
As described above, the needle probe 1 that moves following the unevenness of the surface of the sample 7 is provided, and the flow between the flat head of the needle probe 1 and the needle electrode 2 provided separately. By controlling the piezoelectric element 3 with negative feedback to maintain the electron flow due to the tunnel effect at a predetermined value, it is possible to detect the height with good accuracy even if the sample 7 is non-conductive. .

〔実施例〕〔Example〕

次に、第1図を用いて本考案の1実施例の構成
および動作を詳細に説明する。
Next, the configuration and operation of one embodiment of the present invention will be explained in detail using FIG.

第1図において、針状探針1は、試料7を例え
ば左右方向に移動させた場合に、当該試料7の表
面の凹凸に追従して上下方向に移動するものであ
る。この針状探針1の先端は、極めて尖つた形状
例えば数十Åないし数百Å程度の曲率半径を持つ
ものであつて、電解研磨などによつて所望の曲率
半径のものを作成すればよい。先端の曲率半径を
小さくすればするほど、試料17の表面の横方向
の小さな形状変化を測定することができるが、一
方機械的な強度が弱くなるので、用途に応じて適
切なものを作成する。この針状探針1の材料は、
硬い金属の線例えばタングステン線などを電解研
磨して作成すればよい。また、ホイスカーなどを
電解研磨して所望の曲率半径のものを作成しても
よい。この針状探針1は、絶縁端子5によつて支
持されたバネ6によつて試料7の表面に軽く接触
するように保持されている。これにより、針状探
針1は、試料7が例えば左右方向に移動するに追
従して当該試料7の表面の凹凸に対応して上下方
向に移動するようになる。さらに、この針状探針
1の頭部は平坦に形成され、針状探針1との間に
トンネル効果による電子流が流れるようにされて
いる。
In FIG. 1, when the sample 7 is moved, for example, in the left-right direction, the needle probe 1 moves in the vertical direction following the unevenness of the surface of the sample 7. The tip of the needle-like probe 1 has an extremely sharp shape, for example, a radius of curvature of several tens of angstroms to several hundred angstroms, and may be formed into a desired radius of curvature by electropolishing or the like. . The smaller the radius of curvature of the tip, the smaller the lateral shape change on the surface of the sample 17 can be measured, but on the other hand, the mechanical strength becomes weaker, so create an appropriate one depending on the purpose. . The material of this needle probe 1 is
It can be made by electrolytically polishing a hard metal wire, such as a tungsten wire. Alternatively, a whisker or the like may be electrolytically polished to obtain a desired radius of curvature. This needle probe 1 is held by a spring 6 supported by an insulated terminal 5 so as to lightly contact the surface of a sample 7. Thereby, the needle probe 1 follows the movement of the sample 7, for example, in the horizontal direction, and moves in the vertical direction corresponding to the unevenness of the surface of the sample 7. Further, the head of the needle-like probe 1 is formed flat so that an electron flow due to a tunnel effect flows between the head and the needle-like probe 1.

針状電極2は、針状探針1と同様に、先端を極
めて尖らせたものである。この針状電極2は、針
状探針1の平坦な頭部との間で通常接触すること
はなく、トンネル効果による電子流が針状電極2
の尖つた先端から、針状探針1の平坦な頭部に向
かつて流れる。
The needle electrode 2, like the needle probe 1, has an extremely sharp tip. This needle-like electrode 2 does not normally come into contact with the flat head of the needle-like probe 1, and the electron flow due to the tunnel effect is caused by the needle-like electrode 2.
The liquid flows from the pointed tip of the needle toward the flat head of the needle probe 1.

圧電素子3は、針状電極2の尖つた先端と、針
状探針1の平坦な頭部との間に流れるトンネル効
果による電子流の大きさを所定値に保持するよう
に両者の間の距離を調整するものである。トンネ
ル効果による電子流は、針状電極2の尖つた先端
が、針状探針1の平坦な頭部に近づき、約108
V/m程度の電界になつた時、例えば数十Åの距
離に近づいた時に徐々に流れ出し、更に近づくに
従つて増大するものである。このトンネル効果に
よる電子流を用いれば、数Åの精度で高さを検出
することができる。
The piezoelectric element 3 is configured to maintain the magnitude of the electron flow between the sharp tip of the needle electrode 2 and the flat head of the needle probe 1 at a predetermined value due to the tunnel effect. This is to adjust the distance. The electron flow due to the tunnel effect occurs when the sharp tip of the needle-like electrode 2 approaches the flat head of the needle-like probe 1, and the electron flow reaches approximately 10 8
When the electric field becomes about V/m, for example, when the distance approaches several tens of angstroms, it gradually begins to flow, and increases as the distance approaches further. By using the electron flow caused by this tunnel effect, height can be detected with an accuracy of several angstroms.

保持体4は、試料7を左右方向に移動させる図
示外の試料移動機構と、極めて強固に固定された
ものである。この保持体4には、圧電素子3を介
して針状電極2が固定されると共に、絶縁端子5
に固定されているバネ6を介して針状探針1が保
持されている。これにより、試料7の表面に針状
探針1の尖つた先端が軽く接触し、更にこの針状
探針1の平坦な頭部と、針状電極2の尖つた先端
との間の距離が所定値に保持され、外部からの振
動によつて外乱を受けることがないようにされて
いる。
The holder 4 is extremely firmly fixed to a sample moving mechanism (not shown) that moves the sample 7 in the left-right direction. A needle electrode 2 is fixed to this holder 4 via a piezoelectric element 3, and an insulated terminal 5
The needle-like probe 1 is held via a spring 6 fixed to. As a result, the sharp tip of the needle probe 1 lightly contacts the surface of the sample 7, and the distance between the flat head of the needle probe 1 and the sharp tip of the needle electrode 2 increases. It is maintained at a predetermined value and is prevented from being disturbed by external vibrations.

Evは、トンネル効果による電子流を流すため
のバイアス電圧である。
E v is a bias voltage for causing an electron flow due to the tunnel effect.

AMP1は、トンネル効果による電子流を差動増
幅するものである。
AMP 1 differentially amplifies the electron flow caused by the tunnel effect.

AMP2は、AMP1によつて差動増幅された信号
を更に増幅して、圧電素子3に供給してこれを伸
張させ、針状電極2の先端から針状探針1の平坦
な頭部に向かつて流れるトンネル効果による電子
流の大きさを所定値に保持する(これは両者の距
離を一定に保持することを意味している)よう
に、負帰還制御するためのものである。
AMP 2 further amplifies the signal differentially amplified by AMP 1 , supplies it to piezoelectric element 3, stretches it, and connects the signal from the tip of needle electrode 2 to the flat head of needle probe 1. This is to perform negative feedback control so that the magnitude of the electron flow due to the tunnel effect flowing toward the electron beam is maintained at a predetermined value (this means that the distance between the two is maintained constant).

次に、試料7の表面の凹凸の高を測定する手順
を詳細に説明する。
Next, the procedure for measuring the height of the unevenness on the surface of the sample 7 will be explained in detail.

第1に、試料7を図示外の試料移動機構に装着
し、この試料7の表面に図示のように、針状探針
1の先端が軽く接触するようにセツトする。
First, the sample 7 is mounted on a sample moving mechanism (not shown), and the tip of the needle probe 1 is set so as to lightly touch the surface of the sample 7 as shown in the figure.

第2に、針状電極2を粗く上下方向に移動させ
る図示外の機械式のZ移動機構を用いてこの針状
電極2の尖つた先端が、針状探針1の平坦な頭部
に可及的に近づくようにセツトする。
Second, a mechanical Z-moving mechanism (not shown) that roughly moves the needle electrode 2 in the vertical direction is used to move the sharp tip of the needle electrode 2 onto the flat head of the needle probe 1. Set it so that it is as close as possible.

第3に、電圧を圧電素子3に徐々に供給して、
針状電極2の尖つた先端が、針状探針1の平坦な
頭部に近づくように制御し、トンネル効果による
所定値の電子流が流れる状態にセツトする。
Thirdly, gradually supplying voltage to the piezoelectric element 3,
The sharp tip of the needle-like electrode 2 is controlled to approach the flat head of the needle-like probe 1, and a state is set in which a predetermined amount of electron current flows due to the tunnel effect.

第4に、試料7を徐々に左右方向に移動させる
と、試料7の表面の凹凸に追従して針状探針1が
上下方向に移動し、これに伴い針状電極2の尖つ
た先端も針状探針1の平坦な頭部との間の距離を
所定値に保持するように追従する態様で、圧電素
子3によつて負帰還制御される。この時、APM1
によつて負帰還される電圧が高さ検出信号として
検出される。尚、2点間の高さを測定する場合、
針状電極2の尖つた先端が針状探針1の平坦な頭
部に接触して曲がつたりなどして破損することを
避けるために、保持体4を一端上方向に持ち上
げ、次の測定点で徐々に下方向に下げるようにし
てもよい。
Fourth, when the sample 7 is gradually moved in the horizontal direction, the needle probe 1 moves vertically following the unevenness of the surface of the sample 7, and the sharp tip of the needle electrode 2 also moves in the vertical direction. Negative feedback control is performed by the piezoelectric element 3 in such a manner that the distance between the needle probe 1 and the flat head thereof is maintained at a predetermined value. At this time, APM 1
The voltage that is negatively fed back is detected as a height detection signal. In addition, when measuring the height between two points,
In order to prevent the sharp tip of the needle electrode 2 from coming into contact with the flat head of the needle probe 1 and causing damage such as bending, lift the holder 4 upward at one end, and then The measurement point may be gradually lowered downward.

〔考案の効果〕[Effect of idea]

以上説明したように、本考案によれば、試料表
面の凹凸に沿つて移動する針状探針を設け、この
針状探針の頭部の平坦部と、別途設けた針状電極
との間に流れるトンネル効果による電子流の大き
さを所定値に保持するよう圧電素子に負帰還制御
し、この負帰還量によつて試料表面の高さを検出
する構成を採用しているため、例えば試料が非導
電性であつても試料表面の微小高さを正確に検出
して測定することができる。
As explained above, according to the present invention, a needle-like probe that moves along the unevenness of the sample surface is provided, and a gap between the flat part of the head of the needle-like probe and a separately provided needle-like electrode is provided. Negative feedback control is applied to the piezoelectric element to maintain the magnitude of the electron flow caused by the tunneling effect at a predetermined value, and the height of the sample surface is detected based on this amount of negative feedback. Even if the surface of the sample is non-conductive, minute heights on the sample surface can be accurately detected and measured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の1実施例構成図、第2図は従
来の高さ測定検出器の構成図を示す。 図中、1は針状探針、2は針状電極、3は圧電
素子、4は保持体、5は絶縁端子、6はバネ、7
は試料、AMP1,AMP2は増幅器、Evはバイアス
電圧を表す。
FIG. 1 is a block diagram of one embodiment of the present invention, and FIG. 2 is a block diagram of a conventional height measurement detector. In the figure, 1 is a needle probe, 2 is a needle electrode, 3 is a piezoelectric element, 4 is a holder, 5 is an insulated terminal, 6 is a spring, 7
is the sample, AMP 1 and AMP 2 are the amplifiers, and E v is the bias voltage.

Claims (1)

【実用新案登録請求の範囲】 試料表面の高さを検出して測定する高さ測定検
出器において、 高さを測定しようとする試料表面の凹凸に沿つ
て移動する尖つた針状部を一端に持ち、かつ他端
に平坦な頭部を持つ針状探針1と、 この針状探針1の平坦な頭部に対向して尖つた
先端を配置した針状電極2と、 この針状電極2の他端に配置し、かつこの針状
電極2の先端と、上記針状探針1の平坦な頭部と
の間の距離を調整する圧電素子3とを備え、 上記針状電極2の先端から上記針状探針1の平
坦な頭部に向かつて流れるトンネル効果による電
子流を検出し、上記圧電素子3に負帰還して当該
トンネル効果による電子流を所定値に保持するよ
う制御し、この負帰還量によつて試料の高さを検
出するように構成したことを特徴とする高さ測定
検出器。
[Claim for Utility Model Registration] In a height measuring detector that detects and measures the height of a sample surface, a sharp needle-like part that moves along the unevenness of the sample surface whose height is to be measured is attached to one end. a needle-like probe 1 with a flat head at the other end; a needle-like electrode 2 with a sharp tip disposed opposite to the flat head of the needle-like probe 1; a piezoelectric element 3 disposed at the other end of the needle electrode 2 and adjusting the distance between the tip of the needle electrode 2 and the flat head of the needle probe 1; The electron flow caused by the tunnel effect flowing from the tip toward the flat head of the needle probe 1 is detected, and the electron flow caused by the tunnel effect is controlled to be maintained at a predetermined value by negative feedback to the piezoelectric element 3. A height measurement detector characterized in that it is configured to detect the height of a sample based on the amount of negative feedback.
JP1987043033U 1987-03-24 1987-03-24 Expired - Lifetime JPH0512724Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1987043033U JPH0512724Y2 (en) 1987-03-24 1987-03-24

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1987043033U JPH0512724Y2 (en) 1987-03-24 1987-03-24

Publications (2)

Publication Number Publication Date
JPS63150305U JPS63150305U (en) 1988-10-04
JPH0512724Y2 true JPH0512724Y2 (en) 1993-04-02

Family

ID=30859512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1987043033U Expired - Lifetime JPH0512724Y2 (en) 1987-03-24 1987-03-24

Country Status (1)

Country Link
JP (1) JPH0512724Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH079363B2 (en) * 1988-01-29 1995-02-01 日本電信電話株式会社 Surface mechanical property measuring device

Also Published As

Publication number Publication date
JPS63150305U (en) 1988-10-04

Similar Documents

Publication Publication Date Title
CA1270132A (en) Method and atomic force microscope for imaging surfaces with atomic resolution
US4724318A (en) Atomic force microscope and method for imaging surfaces with atomic resolution
USRE33387E (en) Atomic force microscope and method for imaging surfaces with atomic resolution
US5193383A (en) Mechanical and surface force nanoprobe
US6267005B1 (en) Dual stage instrument for scanning a specimen
JP2915554B2 (en) Barrier height measurement device
US5253516A (en) Atomic force microscope for small samples having dual-mode operating capability
JPH06213910A (en) Method and interaction device for accurately measuring parameter of surface other than shape or for performing work associated with shape
US8631510B2 (en) Magnetic sensor and scanning microscope
JP2919119B2 (en) Scanning probe microscope and recording / reproducing device
JP2001124798A (en) Contacting type micro prober
JPH0512724Y2 (en)
JP2002156409A (en) Measuring sonde for detecting electrical signal in integrated circuit, method for using the measuring sonde, method for manufacturing the measuring sonde and measuring system by the measuring sonde
JPH0412547A (en) Film thickness distribution measuring device
JP2853585B2 (en) Scanning probe microscope
JP2900764B2 (en) Evaluation method of semiconductor surface thin film
JPH09251026A (en) Scanning probe microscope
JP2007147347A (en) Probe, cantilever beam, scanning probe microscope, and measuring method of scanning tunnel microscope
JPH079363B2 (en) Surface mechanical property measuring device
JP2789244B2 (en) Method of forming microprobe
JPH0622179Y2 (en) Micro load detector
JPH10232240A (en) Surface observing device
JPH0526612A (en) Scanning type tunnel microscope
JPH0850872A (en) Sample surface observation method, interatomic force microscope, fine working method, and fine working device
JP2700696B2 (en) Method and apparatus for measuring surface shape