JPH0778913A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0778913A
JPH0778913A JP33074193A JP33074193A JPH0778913A JP H0778913 A JPH0778913 A JP H0778913A JP 33074193 A JP33074193 A JP 33074193A JP 33074193 A JP33074193 A JP 33074193A JP H0778913 A JPH0778913 A JP H0778913A
Authority
JP
Japan
Prior art keywords
epoxy resin
semiconductor device
chemical
formula
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33074193A
Other languages
Japanese (ja)
Other versions
JP3167853B2 (en
Inventor
Kazumasa Igarashi
一雅 五十嵐
Tsukasa Yoshida
司 吉田
Koji Takashi
孝司 高士
Toku Nagasawa
徳 長沢
Kazuhiro Ikemura
和弘 池村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP33074193A priority Critical patent/JP3167853B2/en
Publication of JPH0778913A publication Critical patent/JPH0778913A/en
Application granted granted Critical
Publication of JP3167853B2 publication Critical patent/JP3167853B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PURPOSE:To obtain a semiconductor device excellent in resistance to thermal shock, low stress property, resistance to humidity, and in general reliability, by sealing a semiconductor element by epoxy resin composition containing specific components. CONSTITUTION:Epoxy resin shown by formula I is compounded with phenol resin shown by formula II ((n) is an integer out of 0-5). Curing accelerator shown by formula III (R1 is hydrogen or a 1-4C alkyl group or a 1-4C alcoxyl group or a 5-7C cycloalkyl group) is compounded. Organopolysiloxane shown by equation TV (R2 is hydrogen or monovalent organic acid such as a l-4C alkyl group or phenyl group, R3 is a 3-4C bivalent hydrogen carbide group, R4 is a methyl group or a phenyl group or a 1-4C alkyl group, and (m) is an integer out of 1-200) is compounded with inorganic filler, and epoxy resin compound is obtained. A semiconductor element is sealed by using the above epoxy resin compound.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明はエポキシ樹脂組成物硬
化体で半導体素子が樹脂封止された樹脂封止型半導体装
置に関し、耐熱衝撃性、耐湿性、低応力性および離型性
に優れた信頼性を有する半導体装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resin-encapsulated semiconductor device in which a semiconductor element is resin-encapsulated with a cured product of an epoxy resin composition, which is excellent in thermal shock resistance, moisture resistance, low stress and releasability. The present invention relates to a reliable semiconductor device.

【0002】[0002]

【従来の技術】IC、LSI、VLSIおよびULSI
等の半導体素子は、セラミックやプラスチック等により
封止され半導体装置化されている。なかでもプラスチッ
クすなわち樹脂組成物硬化体を用いた樹脂封止が量産性
に優れ、かつ封止材料が安価であることから半導体素子
封止の主流となっている。
2. Description of the Related Art IC, LSI, VLSI and ULSI
A semiconductor element such as is sealed as a semiconductor device by being sealed with ceramic or plastic. Among them, resin encapsulation using a plastic, that is, a cured resin composition is excellent in mass productivity, and the encapsulating material is inexpensive, and thus has become the mainstream of semiconductor element encapsulation.

【0003】近年、電子機器の高機能化、高性能化の手
段として高密度実装に適した表面実装型の半導体装置が
市場の大きな位置を占めるに至り、年々その使用比率の
拡大が続いている。この種の表面実装型半導体装置は、
リ−ドピンが平面的に装置から取り出され、プリント配
線基板に直接接続できる構造となっており、実装容積の
軽減に寄与している。
In recent years, surface mounting type semiconductor devices suitable for high-density mounting have been occupying a large position in the market as a means of enhancing the functionality and performance of electronic equipment, and the usage rate thereof has been expanding year by year. . This type of surface mount semiconductor device
The lead pin is taken out of the device in a plane and can be directly connected to the printed wiring board, which contributes to reduction of the mounting volume.

【0004】[0004]

【発明が解決しようとする課題】ところが上記のような
表面実装型半導体装置において、プリント配線基板への
実装前に樹脂組成物硬化体が水分を吸湿している場合に
は、その半導体装置が半田実装時の高温にさらされるこ
とで半導体装置内の水分の蒸気圧によって硬化体にクラ
ックが生じる。
However, in the surface-mounting type semiconductor device as described above, when the cured resin composition absorbs moisture before being mounted on the printed wiring board, the semiconductor device is soldered. When the semiconductor device is exposed to the high temperature during mounting, vapor pressure of water in the semiconductor device causes cracks in the cured body.

【0005】すなわち、〔図1〕に示すような表面実装
型半導体装置3において、水分は矢印Aのように樹脂組
成物硬化体1を通って、表面実装型半導体装置3に侵入
し、主としてSiチップ7の表面やダイパッド4の裏面
に滞留する。そしてベ−パ−フェ−ズソルダリング等の
半田実装を行う際に、この表面実装型半導体装置3は高
温にさらされ、そのため上記滞留水分が半田実装におけ
る加熱により気化し、その蒸気圧により、図2に示すよ
うに、ダイパッド4の裏面の樹脂硬化体部分を下方へ押
しやり、そこに空隙5を作ると同時に樹脂硬化体3にク
ラック6を生じさせる。なお、〔図1〕および〔図2〕
において、8はワイヤ−、一般的に金線である。
That is, in the surface-mounting type semiconductor device 3 as shown in FIG. 1, moisture penetrates into the surface-mounting type semiconductor device 3 through the cured resin composition 1 as shown by an arrow A, and mainly Si. It stays on the front surface of the chip 7 and the back surface of the die pad 4. Then, when solder mounting such as vapor phase soldering is performed, the surface mount semiconductor device 3 is exposed to a high temperature, so that the accumulated water is vaporized by heating during solder mounting, and the vapor pressure thereof causes As shown in FIG. 3, the resin cured body portion on the back surface of the die pad 4 is pushed downward to form the voids 5 therein, and at the same time, the resin cured body 3 is cracked 6. Note that [Fig. 1] and [Fig. 2]
In, 8 is a wire, typically a gold wire.

【0006】この様なクラック発生という問題に対する
解決策として、半導体素子を樹脂組成物で封止した後、
得られる半導体装置全体を密封し、基板実装前に開封し
て使用する方法がある。また、基板実装前に例えば10
0℃で24時間乾燥することにより水分を除去し、その
後半田実装を行うという方法が提案され、すでに実施さ
れている。しかしながら、このような前処理方法によれ
ば、基板実装の工程が煩雑になるという欠点がある。
As a solution to the problem of such cracking, after sealing a semiconductor element with a resin composition,
There is a method in which the entire semiconductor device obtained is hermetically sealed and opened before mounting on a substrate. In addition, before mounting on the board, for example, 10
A method of removing moisture by drying at 0 ° C. for 24 hours and then performing solder mounting has been proposed and already implemented. However, according to such a pretreatment method, there is a drawback that the process of mounting the board becomes complicated.

【0007】一方、表面実装型半導体装置を構成する樹
脂組成物硬化体の吸水率を低下させ、クラックを防止す
る試みもなされている。しかし、このような低吸水性の
エポキシ樹脂組成物硬化体では、半導体素子の導体配線
部の腐食等の耐湿信頼性や高温での導体金属間化合物の
形成による導体抵抗の増大といった高温放置特性に劣っ
ている事が、その後の本発明者の検討により判明した。
すなわち上記低吸水性のエポキシ樹脂組成物においても
総合的に信頼性の改善が必要となったのである。
[0007] On the other hand, attempts have been made to reduce the water absorption of the cured resin composition constituting the surface mount semiconductor device and prevent cracks. However, in such a low water-absorbing epoxy resin composition cured product, moisture resistance reliability such as corrosion of the conductor wiring part of the semiconductor element and high temperature storage characteristics such as increase in conductor resistance due to formation of conductor intermetallic compound at high temperature The inferiority was revealed by the subsequent examination by the present inventor.
That is, even in the above low water-absorbing epoxy resin composition, it was necessary to comprehensively improve the reliability.

【0008】この発明は、このような事情に鑑みなされ
たもので、基板実装前の前処理をすることもなく、しか
も半田実装時において樹脂組成物硬化体にクラックが発
生し難いという耐熱衝撃性に優れ、さらに低応力性およ
び耐湿性、そして総合的に信頼性に優れる表面実装型半
導体装置を提供する事をその目的とする。
The present invention has been made in view of the above circumstances, and does not require pretreatment before mounting on a substrate, and moreover is resistant to thermal shock resistance that cracks are unlikely to occur in a cured resin composition during solder mounting. It is an object of the present invention to provide a surface mount type semiconductor device which is excellent in heat resistance, moisture resistance, and overall reliability.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
め、この発明の半導体装置は、下記の(A)〜(E)成
分を含有するエポキシ樹脂組成物により半導体素子を封
止してなるという構成をとる。 (A)下記の構造式〔化6〕で表されるエポキシ樹脂。
In order to achieve the above object, the semiconductor device of the present invention is obtained by encapsulating a semiconductor element with an epoxy resin composition containing the following components (A) to (E). Take the configuration. (A) An epoxy resin represented by the following structural formula [Chemical Formula 6].

【化6】 (B)下記の構造式〔化7〕で表されるフェノ−ル樹
脂。
[Chemical 6] (B) A phenol resin represented by the following structural formula [Chemical formula 7].

【化7】 (C)下記の一般式〔化8〕で表される硬化促進剤。[Chemical 7] (C) A curing accelerator represented by the following general formula [Chemical formula 8].

【化8】 (D)下記の一般式〔化9〕で表されるオルガノポリシ
ロキサン。
[Chemical 8] (D) An organopolysiloxane represented by the following general formula [Chem. 9].

【化9】 (E)無機質充填剤。[Chemical 9] (E) Inorganic filler.

【0010】樹脂組成物硬化体のクラックの発生を防止
するには一般的に樹脂組成物硬化体に対する水分の吸
湿を抑制する。ダイパッドの裏面およびSiチップ
(半導体素子)の表面と樹脂組成物硬化体との間の接着
力を高める。半田実装時における高温での樹脂組成物
硬化体の強度を高める。半田実装時における高温での
樹脂組成物硬化体の弾性率を低下させる等を考慮すれば
良いと考えられる。
In order to prevent the occurrence of cracks in the cured resin composition, moisture absorption of the cured resin composition is generally suppressed. The adhesive force between the back surface of the die pad and the front surface of the Si chip (semiconductor element) and the cured resin composition is increased. The strength of the cured resin composition at high temperature during solder mounting is increased. It may be considered that the elastic modulus of the cured resin composition at a high temperature during solder mounting is lowered.

【0011】この発明では、上記の事柄を考慮しつつ、
上記構成とすることで、半田実装時の耐クラック性の向
上および低応力性が同時に達成された。また総合的に信
頼性に優れることが判明し、この発明に到達した。
In the present invention, considering the above matters,
With the above structure, improvement in crack resistance during solder mounting and low stress resistance were achieved at the same time. Further, it was found that the reliability was comprehensively excellent, and the present invention was reached.

【0012】エポキシ樹脂(A)成分は上記構造式〔化
6〕で表されるエポキシ樹脂が用いられるが、半田実装
時の樹脂組成物硬化体の耐クラック性を低下させない範
囲で従来公知のビスフェノ−ルA型エポキシ樹脂、ビス
フェノ−ルF型エポキシ樹脂、フェノ−ルノボラック型
エポキシ樹脂、クレゾ−ルノボラック型エポキシ樹脂等
のグリシジルエ−テル型エポキシ樹脂、グリシジルエス
テル型エポキシ樹脂、グリシジルアミン型エポキシ樹
脂、脂肪族エポキシ樹脂、脂環式エポキシ樹脂、複素環
式エポキシ樹脂等の一分子中に二個以上のエポキシ基を
有するエポキシ樹脂を併用できる。この場合、構造式
〔化6〕のエポキシ樹脂の含有量は全エポキシ樹脂の5
0重量%以上とされる。上記エポキシ樹脂の中でも表面
実装型半導体装置の樹脂としては、ビフェニル骨格を有
するものが好ましい。
As the epoxy resin (A) component, an epoxy resin represented by the above-mentioned structural formula [Chemical Formula 6] is used, but it is a conventionally known bisphenol as long as the crack resistance of the cured resin composition upon solder mounting is not deteriorated. -Glycidyl ether type epoxy resin, glycidyl ester type epoxy resin, glycidyl amine type epoxy resin, fat An epoxy resin having two or more epoxy groups in one molecule such as a group epoxy resin, an alicyclic epoxy resin, or a heterocyclic epoxy resin can be used in combination. In this case, the content of the epoxy resin represented by the structural formula [Chemical Formula 6] is 5% of the total epoxy resin.
It is set to 0% by weight or more. Among the above epoxy resins, those having a biphenyl skeleton are preferable as the resin for the surface mount semiconductor device.

【0013】上記特定のフェノ−ル樹脂(B)成分は、
構造式〔化7〕で表され、上記エポキシ樹脂の硬化剤成
分として作用するものである。〔化7〕のような骨格構
造を有するものを用いる事により樹脂組成物硬化体の低
吸湿化が図れる。
The specific phenol resin (B) component is
It is represented by the structural formula [Chemical Formula 7] and acts as a curing agent component of the epoxy resin. By using a resin having a skeleton structure such as [Chemical Formula 7], the moisture absorption of the cured resin composition can be reduced.

【0014】この〔化7〕で示される特殊なフェノ−ル
樹脂としては、水酸基当量120〜190、軟化点80
〜130℃のものを用いるのが好ましい。そして、上記
特定のフェノ−ル樹脂は、それ自体で硬化剤成分を構成
してもよいし、それ以外の通常用いられるフェノ−ル樹
脂と併用しても差し支えない。
The special phenolic resin represented by the chemical formula 7 has a hydroxyl equivalent of 120 to 190 and a softening point of 80.
It is preferable to use one having a temperature of up to 130 ° C. The specific phenol resin may itself constitute the curing agent component, or may be used in combination with any other commonly used phenol resin.

【0015】前者の場合には、硬化剤成分の全部が上記
構造式〔化7〕で表される特定のフェノ−ル樹脂で構成
され、後者の場合は硬化剤成分の一部が〔化7〕の特定
のフェノ−ル樹脂で構成される事となる。
In the former case, the entire curing agent component is composed of the specific phenol resin represented by the above structural formula [Chemical formula 7], and in the latter case, a part of the curing agent component is represented by [Chemical formula 7]. ] Specific phenol resin

【0016】上記通常用いられるノボラック型フェノ−
ル樹脂としては、水酸基当量70〜150、軟化点50
〜110℃のものを用いるのが好ましい。上記構造式
〔化7〕で表される特定のフェノ−ル樹脂と、このよう
な通常用いられるフェノ−ル樹脂とを併用する場合に
は、上記特定のフェノ−ル樹脂を硬化剤成分全体の50
重量%以上に設定する事が好ましく、特に好ましくは7
0重量%以上である。
The above-mentioned commonly used novolac type phenol
The resin has a hydroxyl equivalent of 70 to 150 and a softening point of 50.
It is preferable to use one having a temperature of up to 110 ° C. When the specific phenol resin represented by the structural formula [Chemical Formula 7] is used in combination with such a commonly used phenol resin, the specific phenol resin is used in the entire curing agent component. Fifty
It is preferable to set the content to be not less than wt%, particularly preferably 7
It is 0% by weight or more.

【0017】上記エポキシ樹脂とフェノ−ル樹脂との配
合比はエポキシ基1当量あたりフェノ−ル樹脂中の水酸
基が0.8〜1.2当量となるように配合するのが好ま
しい。
The mixing ratio of the epoxy resin and the phenol resin is preferably such that the hydroxyl group in the phenol resin is 0.8 to 1.2 equivalents per equivalent of the epoxy group.

【0018】上記エポキシ樹脂および上記フェノ−ル樹
脂とともに用いられる硬化促進剤(C)成分は、上記の
一般式〔化8〕で表される有機ホスフィン化合物であ
る。
The curing accelerator (C) component used together with the epoxy resin and the phenol resin is an organic phosphine compound represented by the above general formula [Chemical formula 8].

【0019】特に、表面実装型半導体装置を構成する樹
脂組成物硬化体の半田耐熱性(半田実装時にクラックを
発生させない)においては、R1 は水素、メチル基また
はメトキシ基であることが好ましい。そして、上記〔化
8〕で表される硬化促進剤の配合量は、エポキシ樹脂お
よびフェノ−ル樹脂の総量100重量部に対して0.1
〜20重量部の割合に設定することが好ましい。好適に
は0.5〜10重量部である。すなわち、0.1重量部
未満では所望の樹脂組成物硬化体に対する半田耐熱性が
得られがたく、逆に20重量部を超えると高温時の電気
特性が低下する事によって耐湿信頼性が低下する傾向が
見られるからである。
In particular, R 1 is preferably hydrogen, a methyl group or a methoxy group in terms of soldering heat resistance (a crack does not occur during solder mounting) of the cured resin composition constituting the surface mounting type semiconductor device. The compounding amount of the curing accelerator represented by the above [Chemical formula 8] is 0.1 with respect to 100 parts by weight of the total amount of the epoxy resin and the phenol resin.
It is preferable to set the ratio to ˜20 parts by weight. It is preferably 0.5 to 10 parts by weight. That is, if it is less than 0.1 parts by weight, it is difficult to obtain solder heat resistance to a desired cured product of the resin composition, and conversely, if it exceeds 20 parts by weight, the electrical characteristics at a high temperature are deteriorated and the moisture resistance reliability is deteriorated. This is because there is a tendency.

【0020】また、この発明では半導体装置の高温吸湿
での電気絶縁性向上を目的に上記の一般式〔化9〕で表
されるオルガノポリシロキサン(D)を含有する。
Further, in the present invention, the organopolysiloxane (D) represented by the above general formula [Chemical Formula 9] is contained for the purpose of improving the electric insulating property of the semiconductor device under high temperature moisture absorption.

【0021】この〔化9〕で表されるオルガノポリシロ
キサンの配合量は、無機質充填剤の総量100重量部に
対して0.01重量部〜1.0重量部の割合に設定する
事が好ましく、特に0.5重量部以下に設定することが
好結果をもたらす。すなわち、1.0重量部以上になる
と電気絶縁性以外の諸特性に悪影響を与える可能性があ
るからである。
The amount of the organopolysiloxane represented by the formula [Chem. 9] is preferably 0.01 part by weight to 1.0 part by weight based on 100 parts by weight of the total amount of the inorganic filler. Especially, setting to 0.5 parts by weight or less gives good results. That is, when the amount is 1.0 parts by weight or more, various properties other than electrical insulation may be adversely affected.

【0022】上記無機質充填剤(E)としては、溶融シ
リカ粉末または結晶性シリカ粉末を用いる事が好適であ
り、粒度200メッシュ以上の粗粉を除いたものを用い
る事が好ましい。そして、上記充填剤の形状としては球
状および破砕により得られる角状のもの等必要に応じて
適宜選択することができる。また、充填剤中に含まれる
ウラン、トリウム等の放射性元素、アルカリ金属、アル
カリ土類金属およびそれらのイオン、さらにはハロゲン
イオンを含むアニオンの含有量はできるだけ少ない方が
好ましく、その許容量は各種半導体装置の種類によって
決定される。
As the above-mentioned inorganic filler (E), it is preferable to use fused silica powder or crystalline silica powder, and it is preferable to use one excluding coarse powder having a particle size of 200 mesh or more. The shape of the above-mentioned filler can be appropriately selected as needed, such as spherical shape and angular shape obtained by crushing. Further, the content of radioactive elements such as uranium and thorium contained in the filler, alkali metals, alkaline earth metals and their ions, and further, the content of anions including halogen ions is preferably as small as possible, and the permissible amount is various. It is determined by the type of semiconductor device.

【0023】上記無機質充填剤の配合量は、エポキシ樹
脂組成物全体の65〜95重量%の範囲に設定する事が
好ましく、特に好ましくは75〜92重量%の範囲であ
る。すなわち、無機質充填剤の配合量が65重量%未満
では、樹脂組成物硬化体の吸湿量が増大し、また高温で
の強度が低下するため半田実装時の耐クラック性に劣り
易く、逆に、95重量%を超えるとトランスファ−成形
時に樹脂組成物の溶融粘度が増大する傾向があり、キャ
ビティ−内で未充填やワイヤ−流れ等の成形不良が発生
する傾向が見られるからである。
The content of the above-mentioned inorganic filler is preferably set in the range of 65 to 95% by weight, particularly preferably 75 to 92% by weight, based on the whole epoxy resin composition. That is, when the blending amount of the inorganic filler is less than 65% by weight, the moisture absorption amount of the cured resin composition increases, and the strength at high temperature decreases, so that the crack resistance during solder mounting tends to be poor, and conversely, This is because if it exceeds 95% by weight, the melt viscosity of the resin composition tends to increase during transfer molding, and molding defects such as unfilling and wire flow in the cavity tend to occur.

【0024】また、本発明においては、離型剤として、
従来公知のステアリン酸、ベヘニン酸およびモンタン酸
等の長鎖カルボン酸、これを原料とする亜鉛、アルミニ
ウム、カルシウム等の金属塩、エステル類、アミド類ま
たはポリオレフィン系離型剤等が挙げられ、単独でもし
くは併せて用いることができる。そのような離型剤の配
合割合は、エポキシ樹脂組成物全体に対して、0.1〜
3.0重量%が好ましい。さらに好ましくは、0.5〜
2.0重量%である。すなわち、0.1重量%未満では
所望の離型性が得られ難い。逆に、3.0重量%を超え
ると耐半田クラック性が低下する傾向が見られるからで
ある。
Further, in the present invention, as the release agent,
Conventionally known stearic acid, long-chain carboxylic acids such as behenic acid and montanic acid, and metal salts such as zinc, aluminum, calcium, etc., esters, amides or polyolefin-based mold release agents, etc., which are used as the starting materials, and are independent. Or together. The compounding ratio of such a release agent is 0.1 to the whole epoxy resin composition.
3.0% by weight is preferred. More preferably,
It is 2.0% by weight. That is, if it is less than 0.1% by weight, it is difficult to obtain the desired releasability. On the contrary, if it exceeds 3.0% by weight, the solder crack resistance tends to decrease.

【0025】また、上記ポリオレフィン系離型剤の中で
も特に好ましい離型剤は、酸化ポリエチレンワックス
(F)である。この酸化ポリエチレンワックスは、他の
汎用の離型剤に較べて連続成形性に優れるという特徴を
持つ。この酸化ポリエチレンワックスは、たとえば、低
級ポリエチレンワックスを部分酸化して合成されるもの
である。そして、上記酸化ポリエチレンワックスにおい
て、酸価が13〜30で滴点(溶融して液滴状になる温
度)が90〜130℃、さらにDGF−M−IV2〔D
IN53401またはASTM D1387〕で測定し
たケン化価が20〜120のものを用いるのが好まし
い。
A particularly preferable release agent among the above polyolefin-based release agents is an oxidized polyethylene wax (F). This oxidized polyethylene wax is characterized by being superior in continuous moldability as compared with other general-purpose mold release agents. The oxidized polyethylene wax is synthesized, for example, by partially oxidizing lower polyethylene wax. In the above oxidized polyethylene wax, the acid value is 13 to 30, the dropping point (the temperature at which it melts to form a droplet) is 90 to 130 ° C., and DGF-M-IV2 [D
It is preferable to use one having a saponification value of 20 to 120 measured according to IN53401 or ASTM D1387].

【0026】この酸化ポリエチレンワックスの配合割合
は、上記他の離型剤と同様にエポキシ樹脂組成物全体に
対して、0.1〜3.0重量%が好ましい。さらに好ま
しくは、0.5〜2.0重量%である。すなわち、0.
1重量%未満では所望の離型性が得られ難く、その結
果、生産性が低下する恐れがある。逆に、3.0重量%
を超えると生産性は向上するものの、耐半田クラック性
が低下する傾向が見られるからである。
The mixing ratio of the oxidized polyethylene wax is preferably 0.1 to 3.0% by weight with respect to the entire epoxy resin composition as in the case of the above-mentioned other releasing agents. More preferably, it is 0.5 to 2.0% by weight. That is, 0.
If it is less than 1% by weight, it is difficult to obtain the desired mold releasability, and as a result, the productivity may decrease. Conversely, 3.0% by weight
If it exceeds, the productivity is improved, but the solder crack resistance tends to decrease.

【0027】本発明には、さらに上記構造式〔化7〕で
表される特定のフェノ−ル樹脂を用いる際には、予め下
記の一般式〔化10〕で表されるオルガノファンクショ
ナルシラン化合物との反応物としておくこともできる
し、一括配合すなわち別々に用いることもできる。すな
わち、下記の一般式〔化10〕で表されるオルガノファ
ンクショナルシラン化合物を適宜選択使用し、上記特定
のフェノ−ル樹脂の一部または全部と反応させることに
より、半田実装時において樹脂組成物硬化体の高温強度
を増大させたり、半導体素子表面との接着力を向上させ
たりすることが可能となる。すなわち、耐熱衝撃信頼性
の向上が一層顕著になるといった効果が図れる。
In the present invention, when the specific phenolic resin represented by the above structural formula [Chemical formula 7] is used, the organofunctional silane compound represented by the following general formula [Chemical formula 10] is previously used. It can also be used as a reaction product with the above, or can be compounded at once, that is, can be used separately. That is, an organofunctional silane compound represented by the following general formula [Chemical Formula 10] is appropriately selected and used, and by reacting with a part or all of the above specific phenol resin, a resin composition at the time of solder mounting It is possible to increase the high temperature strength of the cured product and improve the adhesive force with the surface of the semiconductor element. That is, the effect of further improving the thermal shock resistance reliability can be achieved.

【化10】 [Chemical 10]

【0028】オルガノファンクショナルシラン化合物と
上記特定のフェノ−ル樹脂との反応は、この特定のフェ
ノ−ル樹脂の溶融温度以上で反応脱離成分、すなわちメ
タノ−ルやエタノ−ルというアルコ−ル成分が反応系か
ら除去できるまで行えばよい。通常、150℃から19
0℃の温度で15分から300分、好ましくは170℃
から180℃で20分から90分の間反応を行う。この
反応では反応触媒として一般式〔化8〕で表される有機
ホスフィン化合物を用いても良い。
The reaction between the organofunctional silane compound and the above-mentioned specific phenol resin is carried out by a reaction elimination component, that is, an alcohol such as methanol or ethanol, at a temperature higher than the melting temperature of the specific phenol resin. It may be performed until the components can be removed from the reaction system. Usually from 150 ° C to 19
15 to 300 minutes at a temperature of 0 ° C, preferably 170 ° C
The reaction is carried out at 20 to 180 ° C. for 20 to 90 minutes. In this reaction, an organic phosphine compound represented by the general formula [Chem. 8] may be used as a reaction catalyst.

【0029】オルガノファンクショナルシラン化合物と
上記特定のフェノ−ル樹脂との反応物を製造する場合、
一般式〔化10〕で表されるオルガノファンクショナル
シラン化合物の配合量は、特定のフェノ−ル樹脂100
重量部に対して0.1〜10重量部の割合に設定するこ
とが好ましい。すなわち、0.1重量部未満では得られ
る樹脂組成物硬化体の耐熱衝撃信頼性が得られがたく、
逆に10重量部をこえるとオルガノファンクショナルシ
ラン化合物と上記特定のフェノ−ル樹脂との反応中にゲ
ル化する危険性が高くなるからである。
When producing a reaction product of an organofunctional silane compound and the above-mentioned specific phenol resin,
The blending amount of the organofunctional silane compound represented by the general formula [Chemical Formula 10] is such that the specific phenol resin 100
It is preferable to set 0.1 to 10 parts by weight to parts by weight. That is, when the amount is less than 0.1 parts by weight, it is difficult to obtain the thermal shock resistance of the obtained cured resin composition,
On the contrary, if it exceeds 10 parts by weight, the risk of gelation during the reaction between the organofunctional silane compound and the specific phenol resin increases.

【0030】この発明では、耐湿信頼性や高温放置特性
の向上を目的としてハイドロタルサイト類化合物や五酸
化アンチモン等のイオントラップ剤を用いることができ
る。
In the present invention, an ion trap agent such as a hydrotalcite compound or antimony pentoxide can be used for the purpose of improving the moisture resistance reliability and the high temperature storage property.

【0031】このようなハイドロタルサイト類化合物
は、例えば、下記の一般式〔化11〕で表される。
Such a hydrotalcite compound is represented by, for example, the following general formula [Chemical formula 11].

【化11】 [Chemical 11]

【0032】一方、五酸化アンチモンはSb2 5 で表
されるものであり、無水物でも結晶水を含む含水物でも
よい。
On the other hand, antimony pentoxide is represented by Sb 2 O 5 , and may be an anhydride or a hydrate containing water of crystallization.

【0033】上記ハイドロタルサイト類化合物や五酸化
アンチモンはそのまま配合に供してもよく、別途シラン
カップリング剤で表面被覆処理したものを用いてもよ
い。また、予め、本発明の有機成分の一部に熱ロ−ル等
を用いて予備分散したものを用いても良い。
The above-mentioned hydrotalcite compounds and antimony pentoxide may be used as they are, or may be separately surface-coated with a silane coupling agent. Alternatively, a part of the organic component of the present invention may be preliminarily dispersed by using a heat roll or the like.

【0034】このハイドロタルサイト類化合物や五酸化
アンチモンの配合量は、エポキシ樹脂およびフェノ−ル
樹脂の総量100重量部に対して0.5重量部から15
重量部の割合に設定することが好ましく、特に10重量
部以下に設定することが好結果をもたらす。すなわち、
15重量部以上であると耐湿信頼性や高温放置特性以外
の諸特性に悪影響が見られるからである。
The compounding amount of the hydrotalcite compound or antimony pentoxide is 0.5 to 15 parts by weight based on 100 parts by weight of the total amount of the epoxy resin and the phenol resin.
It is preferable to set it in a ratio of parts by weight, and particularly it is preferable to set it to 10 parts by weight or less. That is,
This is because when the amount is 15 parts by weight or more, various properties other than the humidity resistance reliability and the high temperature storage property are adversely affected.

【0035】この発明に用いられるエポキシ樹脂組成物
は、上記(A)〜(E)成分、および場合により(F)
成分に、さらに添加剤を配合しておくこともできる。添
加剤としては、離型剤、ハイドロタルサイト類化合物、
五酸化アンチモン、難燃剤、難燃助剤、カップリング剤
および着色剤等がある。
The epoxy resin composition used in the present invention comprises the above-mentioned components (A) to (E), and optionally (F).
Additives may be further added to the components. As the additive, a release agent, a hydrotalcite compound,
Antimony pentoxide, flame retardants, flame retardant aids, coupling agents, colorants and the like.

【0036】上記難燃剤および難燃助剤としては、ノボ
ラック型臭素化エポキシ樹脂またはビスフェノ−ルA型
臭素化エポキシ樹脂、三酸化アンチモン等の化合物を適
宜に単独でもしくは併せて用いる事ができる。
As the above flame retardant and flame retardant aid, compounds such as novolac type brominated epoxy resin or bisphenol A type brominated epoxy resin and antimony trioxide can be appropriately used alone or in combination.

【0037】上記カップリング剤としては、シランカッ
プリング剤等が挙げられる。
Examples of the coupling agent include silane coupling agents and the like.

【0038】さらに、本発明には、上記各成分以外にシ
リコ−ンゴムや合成ゴム等各種エラストマ−を配合して
低応力化を図る事もできる。
Further, in the present invention, in addition to the above components, various elastomers such as silicone rubber and synthetic rubber can be compounded to reduce the stress.

【0039】この発明に用いるエポキシ樹脂組成物は、
例えば次のようにして製造することができる。すなわ
ち、上記エポキシ樹脂成分、フェノ−ル樹脂成分(一部
がオルガノファンクショナルシラン化合物と反応したも
のや全部がオルガノファンクショナルシランと反応した
ものも含む)、硬化促進剤成分および無機質充填剤の主
成分や、その他離型剤等の添加剤を適宜配合した後、こ
の配合物を温度80℃から120℃でロ−ル機またはニ
−ダ等により半硬化状まで混練する。つぎに、公知の手
段によって粉砕し、必要に応じて打錠するという一連の
工程により目的とするエポキシ樹脂組成物を製造する事
ができる。なお、上記混練に先立って、原料中の固形物
の粉砕や全成分のドライブレンドを行う事が好ましい。
The epoxy resin composition used in the present invention is
For example, it can be manufactured as follows. That is, the epoxy resin component, the phenol resin component (including those partially reacted with the organofunctional silane compound and those wholly reacted with the organofunctional silane), the curing accelerator component and the main inorganic filler After properly blending the components and other additives such as a release agent, the mixture is kneaded to a semi-cured state at a temperature of 80 to 120 ° C. by a roll machine or a kneader. Next, the desired epoxy resin composition can be produced by a series of steps of crushing by known means and tableting if necessary. Prior to the above kneading, it is preferable to pulverize solids in the raw materials and dry blend all components.

【0040】このようなエポキシ樹脂組成物を用いて半
導体素子を封止し、本発明の半導体装置を得るには、特
に限定するものでは無く、通常のトランスファ−成形等
の従来公知のモ−ルド成形により行う事ができる。
The semiconductor device of the present invention can be obtained by encapsulating a semiconductor element using such an epoxy resin composition, and the method is not particularly limited, and a conventionally known mold such as ordinary transfer molding is used. It can be done by molding.

【0041】[0041]

【発明の効果】このようにして本発明で得られる半導体
装置は、電子機器への実装に際して前処理することもな
く、しかも半田実装時に樹脂組成物硬化体にクラックが
発生しないという耐熱衝撃信頼性に優れ、さらに低応力
性および耐湿信頼性、そして総合的に信頼性に優れるも
のである。また、離型剤として酸化ポリエチレンワック
スを使用した場合には、連続成形性が優れるため、生産
性の向上が計れる。
As described above, the semiconductor device obtained according to the present invention has no thermal shock resistance such that no pretreatment is required for mounting on an electronic device and cracks do not occur in a cured resin composition during solder mounting. It has excellent stress resistance, moisture resistance reliability, and overall reliability. Further, when the oxidized polyethylene wax is used as the release agent, the continuous moldability is excellent, so that the productivity can be improved.

【0042】まず、実施例に先立って下記に示す各成分
を準備した。 「エポキシ樹脂A」下記の構造式〔化12〕で示される
エポキシ樹脂であり、エポキシ当量200、軟化点73
℃である。
First, the following components were prepared prior to the examples. "Epoxy resin A" An epoxy resin represented by the following structural formula [Chemical Formula 12], having an epoxy equivalent of 200 and a softening point of 73.
℃.

【化12】 「エポキシ樹脂B」下記の構造式〔化13〕で示される
エポキシ樹脂であり、エポキシ当量200、軟化点10
0℃である。
[Chemical 12] "Epoxy resin B" An epoxy resin represented by the following structural formula [Chemical Formula 13], having an epoxy equivalent of 200 and a softening point of 10
It is 0 ° C.

【化13】 [Chemical 13]

【0043】「フェノ−ル樹脂C」下記の構造式〔化1
4〕で示されるフェノ−ル樹脂であり、水酸基当量18
0、軟化点120℃である。
"Phenol resin C" The following structural formula [Chemical formula 1
4] and a hydroxyl group equivalent of 18
0, softening point 120 ° C.

【化14】 「フェノ−ル樹脂D」下記の構造式〔化15〕で示され
るフェノ−ル樹脂であり、水酸基当量110、軟化点8
2℃である。
[Chemical 14] "Phenol resin D" A phenol resin represented by the following structural formula [Chemical Formula 15], having a hydroxyl equivalent of 110 and a softening point of 8
2 ° C.

【化15】 [Chemical 15]

【0044】「硬化促進剤」有機ホスフィン化合物a
は、〔化8〕のR1 が水素であるトリフェニルホスフィ
ンである。有機ホスフィン化合物bは、〔化8〕のR1
がメチル基である。DBUは、下記の構造式〔化16〕
で示される1,8−ジアザビシクロ(5,4,0)ウン
デセン−7である。
"Curing accelerator" organic phosphine compound a
Is triphenylphosphine in which R 1 of [Formula 8] is hydrogen. The organic phosphine compound b is R 1 of
Is a methyl group. DBU has the following structural formula
Is 1,8-diazabicyclo (5,4,0) undecene-7.

【化16】 「オルガノポリシロキサン」下記の構造式〔化17〕で
示されるオルガノポリシロキサンであり、アミン当量4
50、平均分子量900である。
[Chemical 16] “Organopolysiloxane” An organopolysiloxane represented by the following structural formula [Chemical Formula 17] and having an amine equivalent of 4
50 and an average molecular weight of 900.

【化17】 [Chemical 17]

【0045】「オルガノファンクショナルシランE」下
記の構造式〔化18〕で示されるオルガノファンクショ
ナルシランE。
"Organofunctional Silane E" An organofunctional silane E represented by the following structural formula [Chemical Formula 18].

【化18】 「オルガノファンクショナルシランF」下記の構造式
〔化19〕で示されるオルガノファンクショナルシラン
F。
[Chemical 18] "Organofunctional Silane F" An organofunctional silane F represented by the following structural formula [Chemical Formula 19].

【化19】 [Chemical 19]

【0046】「オルガノファンクショナルシランEとフ
ェノ−ル樹脂Cとの反応生成物」175℃に加熱溶融し
たフェノ−ル樹脂C100重量部に対してオルガノファ
ンクショナルシランE0.15重量部を加え、175℃
で1時間加熱溶融で攪拌後、室温まで冷却して使用し
た。 「オルガノファンクショナルシランFとフェノ−ル樹脂
Cとの反応生成物」175℃に加熱溶融したフェノ−ル
樹脂C100重量部に対してオルガノファンクショナル
シランF0.15重量部を加え、175℃で1時間加熱
溶融で攪拌後、室温まで冷却して使用した。
"Reaction product of organofunctional silane E and phenolic resin C" 0.15 parts by weight of organofunctional silane E was added to 100 parts by weight of phenolic resin C heated and melted at 175 ° C. ℃
After heating and melting for 1 hour with stirring, the mixture was cooled to room temperature and used. "Reaction product of organofunctional silane F and phenolic resin C" 0.15 parts by weight of organofunctional silane F was added to 100 parts by weight of phenolic resin C heated and melted at 175 ° C, and 175 ° C was added. After stirring by heating and melting for an hour, it was cooled to room temperature before use.

【0047】「酸化ポリエチレンワックス」ヘキスト社
製PED−521(酸価15、滴点105℃)を用い
た。 「離型剤a」ヘキストワックスOP(酸価12、滴点1
00℃)を用いた。 「離型剤b」カルナバワックス(酸価5、滴点83℃)
を用いた。
"Oxidized polyethylene wax" PED-521 (acid value 15, dropping point 105 ° C) manufactured by Hoechst Co. was used. "Release agent a" Hoechst wax OP (acid value 12, drop point 1
00 ° C) was used. "Release agent b" carnauba wax (acid value 5, dropping point 83 ° C)
Was used.

【0048】[0048]

【実施例】以下、実施例を用いて本発明を説明する。 実施例1〜13および比較例1〜5 下記の〔表1〕、〔表2〕および〔表3〕に示す各成分
を同表に示す割合で配合し、ミキシングロ−ル(温度1
00℃)で10分間混練し、冷却固化後、粉砕を行うこ
とにより目的とするエポキシ樹脂組成物を得た。
EXAMPLES The present invention will be described below with reference to examples. Examples 1 to 13 and Comparative Examples 1 to 5 The respective components shown in the following [Table 1], [Table 2] and [Table 3] were blended in the proportions shown in the same table, and mixed with a mixture (temperature 1
The mixture was kneaded at 00 ° C.) for 10 minutes, cooled and solidified, and then pulverized to obtain an intended epoxy resin composition.

【表1】 [Table 1]

【表2】 [Table 2]

【表3】 [Table 3]

【0049】このようにして得られた粉末状のエポキシ
樹脂組成物を用いて半導体素子をトランスファ−成形で
モ−ルドすることにより半導体装置を得た。この半導体
装置は80ピン四方向フラットパッケ−ジ(QFP)
〔サイズ:20mm×14mm×厚み2.5mm〕で、
7mm×7mmのダイパッド、6.5mm×6.5mm
のSiチップを有するものである。
A semiconductor device was obtained by molding a semiconductor element by transfer molding using the powdery epoxy resin composition thus obtained. This semiconductor device is an 80-pin 4-way flat package (QFP).
[Size: 20 mm × 14 mm × thickness 2.5 mm],
7mm x 7mm die pad, 6.5mm x 6.5mm
It has a Si chip.

【0050】このようにして得られた半導体装置につい
て、260℃×10秒間の半田浸漬を行い樹脂組成物硬
化体のクラックが発生するまでの85℃/85%RHで
の限界吸湿時間を測定した。また、上記実施例および比
較例で得られたエポキシ樹脂組成物を用いて、厚み1m
m×直径50mmの円板状の硬化体を作成し(硬化条
件:180℃×5時間)、この円板状の硬化体について
85℃/85%RH下で500時間吸湿させて飽和吸水
率を測定した。
The semiconductor device thus obtained was immersed in solder at 260 ° C. for 10 seconds, and the limit moisture absorption time at 85 ° C./85% RH until cracks in the cured resin composition was generated was measured. . In addition, using the epoxy resin compositions obtained in the above Examples and Comparative Examples, a thickness of 1 m
A disk-shaped cured product having a diameter of m × 50 mm was prepared (curing condition: 180 ° C. × 5 hours), and the disk-shaped cured product was allowed to absorb moisture at 85 ° C./85% RH for 500 hours to obtain a saturated water absorption rate. It was measured.

【0051】さらに、硬化体の曲げ強度および曲げ弾性
率をJIS K−6911 5.17に準じて室温およ
び260℃下で測定した。
Further, the flexural strength and flexural modulus of the cured product were measured at room temperature and at 260 ° C. according to JIS K-6911 5.17.

【0052】さらに上記実施例および比較例で得られた
エポキシ樹脂組成物を用い上記と同様にして得られた半
導体装置を85℃/85%RH下で72時間吸湿させた
後、260℃×10秒間の半田浸漬を行った。これを1
21℃×100%RH下に放置(以下、「SDPCT試
験」と称する。)して、半導体素子表面のアルミパタ−
ン部の腐食による50%の不良に発生した耐湿性劣化時
間を測定した。
Furthermore, the semiconductor devices obtained by using the epoxy resin compositions obtained in the above Examples and Comparative Examples in the same manner as above were allowed to absorb moisture at 85 ° C./85% RH for 72 hours, and then at 260 ° C. × 10. The solder immersion for 2 seconds was performed. This one
The aluminum pattern on the surface of the semiconductor element is left as it is at 21 ° C. × 100% RH (hereinafter referred to as “SDPCT test”).
Moisture resistance deterioration time which occurred in 50% of defects due to corrosion of the inner part was measured.

【0053】また、上記と同様にして得られた半導体装
置を131℃×85%RH下に電圧30ボルトを印加し
ながら放置(以下、「バイアス印加試験」と称する)し
て、半導体素子表面のアルミパタ−ン部の腐食による配
線抵抗値が3倍以上になる耐湿性劣化時間を測定した。
The semiconductor device obtained in the same manner as above was left at 131 ° C. and 85% RH while applying a voltage of 30 V (hereinafter, referred to as “bias application test”), and the semiconductor element surface was exposed. The moisture resistance deterioration time at which the wiring resistance value becomes 3 times or more due to corrosion of the aluminum pattern part was measured.

【0054】つぎに、上記と同様にして得られた半導体
装置を150℃/5分間〜−60℃/5分間の温度サイ
クルテスト(以下、「TCT試験」と称する)で300
サイクルを行い、樹脂組成物硬化体から受ける熱応力に
よる半導体素子表面のアルミパタ−ン部の変形量を測定
した。
Next, the semiconductor device obtained in the same manner as above was subjected to a temperature cycle test (hereinafter referred to as "TCT test") of 150 ° C / 5 minutes to -60 ° C / 5 minutes for 300 times.
By cycling, the amount of deformation of the aluminum pattern portion on the surface of the semiconductor element due to the thermal stress received from the cured resin composition was measured.

【0055】つぎに、上記と同様にして得られた半導体
装置を225℃に放置して半導体素子表面のアルミパタ
−ン部の抵抗変化率を測定し、配線抵抗値が3倍以上に
なる高温放置劣化時間を測定した。
Next, the semiconductor device obtained in the same manner as described above is left at 225 ° C., the resistance change rate of the aluminum pattern portion on the surface of the semiconductor element is measured, and it is left at a high temperature where the wiring resistance value becomes three times or more. The deterioration time was measured.

【0056】つぎに、実施例および比較例のエポキシ樹
脂組成物について、その硬化体の離型性を評価した。離
型性の評価方法は次のようにして行った。すなわち、
〔図3〕に示すような三層構造(上型10、中型11、
下型12)の成形型を用いて、10ショットの成形を行
った。そして、10ショット目の樹脂組成物硬化体にお
ける離型時の荷重を測定した。〔図3〕において、13
はカル、14はスプル−、15はランナ−、16はキャ
ビティ−である。離型時の荷重の測定は、〔図4〕に示
すように、成形型の中型11を支持台17上に載置し、
プッシュプルゲ−ジ18を用いて上方から中型11内の
樹脂組成物硬化体19を脱型した。このときの荷重値、
すなわち離型荷重を測定した。そして、その値から連続
成形性について評価した。連続成形性が、非常に優れて
いる場合は◎、優れている場合○とした。
Next, the releasability of the cured products of the epoxy resin compositions of Examples and Comparative Examples was evaluated. The releasability was evaluated as follows. That is,
As shown in FIG. 3, a three-layer structure (upper mold 10, middle mold 11,
Molding was performed for 10 shots using the lower mold 12). And the load at the time of mold release in the cured resin composition of the 10th shot was measured. In FIG. 3, 13
Is a cull, 14 is a sprue, 15 is a runner, and 16 is a cavity. The measurement of the load at the time of mold release is performed by placing the middle mold 11 of the mold on the support base 17 as shown in FIG.
Using the push-pull gauge 18, the cured resin composition body 19 in the middle mold 11 was demolded from above. Load value at this time,
That is, the mold release load was measured. Then, the continuous moldability was evaluated from the value. When the continuous moldability was extremely excellent, it was marked with ⊚, and when it was excellent, it was marked with ◯.

【0057】これらの結果を〔表4〕、〔表5〕、〔表
6〕および〔表7〕に示した。
The results are shown in [Table 4], [Table 5], [Table 6] and [Table 7].

【表4】 [Table 4]

【表5】 [Table 5]

【表6】 [Table 6]

【表7】 [Table 7]

【0058】上記〔表4〕〜〔表7〕の結果から、実施
例品は比較例品に較べて飽和吸水率が低く、硬化体特性
に優れている。しかも、実施例品の樹脂組成物硬化体の
クラック発生の限界吸湿時間および50%不良発生時間
が比較例品に較べて長時間であり、配線変形量も小さ
い。。このことから、実施例品は耐熱衝撃信頼性、耐湿
信頼性および硬化体の低応力性に優れている事がわか
る。また、酸化ポリエチレンワックスを使用した場合
は、離型性、すなわち連続成形性に優れることがわか
る。
From the results of [Table 4] to [Table 7] described above, the product of Example has a lower saturated water absorption rate than the product of Comparative Example and is excellent in the characteristics of the cured product. In addition, the critical moisture absorption time for crack generation and the 50% failure occurrence time for the cured resin composition of the example product are longer than those of the comparative product, and the amount of wiring deformation is small. . From this, it can be seen that the example products are excellent in thermal shock resistance, moisture resistance reliability and low stress of the cured product. Further, it is found that when the oxidized polyethylene wax is used, the mold releasability, that is, the continuous moldability is excellent.

【0059】[0059]

【図面の簡単な説明】[Brief description of drawings]

【図1】表面実装型半導体装置の樹脂組成物硬化体のク
ラック発生状況を説明する縦断面図である。
FIG. 1 is a vertical cross-sectional view for explaining a crack occurrence situation of a resin composition cured body of a surface mount semiconductor device.

【図2】表面実装型半導体装置の樹脂組成物硬化体のク
ラック発生状況を説明する縦断面図である。
FIG. 2 is a vertical cross-sectional view for explaining a crack occurrence situation of a resin composition cured body of a surface mount semiconductor device.

【図3】樹脂組成物硬化体の離型荷重試験片を作製する
成形型の縦断面図である。
FIG. 3 is a vertical cross-sectional view of a mold for producing a mold release load test piece of a cured resin composition.

【図4】樹脂組成物硬化体の離型荷重試験を説明する縦
断面図である。
FIG. 4 is a vertical cross-sectional view illustrating a mold release load test of a cured resin composition.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 長沢 徳 大阪府茨木市下穂積1丁目1番2号 日東 電工株式会社内 (72)発明者 池村 和弘 大阪府茨木市下穂積1丁目1番2号 日東 電工株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tokunaga Nagasawa 1-2 1-2 Shimohozumi, Ibaraki-shi, Osaka Within Nitto Denko Corporation (72) Inventor Kazuhiro Ikemura 1-2 1-2 Shimohozumi, Ibaraki-shi, Osaka Nitto Denko Corporation

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 下記の(A)〜(E)成分を含有するエ
ポキシ樹脂組成物を用いて半導体素子を封止してなる半
導体装置。 (A)下記の構造式〔化1〕で表されるエポキシ樹脂。 【化1】 (B)下記の構造式〔化2〕で表されるフェノ−ル樹
脂。 【化2】 (C)下記の一般式〔化3〕で表される硬化促進剤。 【化3】 (D)下記の一般式〔化4〕で表されるオルガノポリシ
ロキサン。 【化4】 (E)無機質充填剤。
1. A semiconductor device obtained by encapsulating a semiconductor element with an epoxy resin composition containing the following components (A) to (E). (A) An epoxy resin represented by the following structural formula [Formula 1]. [Chemical 1] (B) A phenol resin represented by the following structural formula [Chemical formula 2]. [Chemical 2] (C) A curing accelerator represented by the following general formula [Chemical Formula 3]. [Chemical 3] (D) An organopolysiloxane represented by the following general formula [Chemical Formula 4]. [Chemical 4] (E) Inorganic filler.
【請求項2】 請求項1記載の(A)〜(E)成分と酸
化ポリエチレンワックス(F)成分を含有するエポキシ
樹脂組成物を用いて半導体素子を封止してなる半導体装
置。
2. A semiconductor device obtained by encapsulating a semiconductor element using the epoxy resin composition containing the components (A) to (E) according to claim 1 and an oxidized polyethylene wax (F) component.
【請求項3】 フェノ−ル樹脂の一部または全部が下記
の一般式〔化5〕で表されるオルガノファンクショナル
シラン化合物との反応物である請求項1あるいは請求項
2いづれか記載の半導体装置。 【化5】
3. The semiconductor device according to claim 1, wherein a part or all of the phenol resin is a reaction product with an organofunctional silane compound represented by the following general formula [Chem. 5]. . [Chemical 5]
【請求項4】 イオントラップ剤としてハイドロタルサ
イト類化合物および五酸化アンチモンより選ばれる少な
くとも一種を含有してなる請求項1〜3のいずれか一項
に記載の半導体装置。
4. The semiconductor device according to claim 1, which contains at least one selected from hydrotalcite compounds and antimony pentoxide as an ion trap agent.
JP33074193A 1993-07-12 1993-12-27 Semiconductor device Expired - Fee Related JP3167853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33074193A JP3167853B2 (en) 1993-07-12 1993-12-27 Semiconductor device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP17157493 1993-07-12
JP5-171574 1993-07-12
JP33074193A JP3167853B2 (en) 1993-07-12 1993-12-27 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH0778913A true JPH0778913A (en) 1995-03-20
JP3167853B2 JP3167853B2 (en) 2001-05-21

Family

ID=26494261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33074193A Expired - Fee Related JP3167853B2 (en) 1993-07-12 1993-12-27 Semiconductor device

Country Status (1)

Country Link
JP (1) JP3167853B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192532A (en) * 2000-01-11 2001-07-17 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2003105174A (en) * 2001-09-28 2003-04-09 Toray Ind Inc Semiconductor sealing epoxy resin composition and semiconductor device
JP2005314565A (en) * 2004-04-28 2005-11-10 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JPWO2004065486A1 (en) * 2003-01-17 2006-05-18 住友ベークライト株式会社 Epoxy resin composition and semiconductor device using the same
JP2006182913A (en) * 2004-12-27 2006-07-13 Hitachi Chem Co Ltd Sealing epoxy resin molding material and electronic component device
JP2009222956A (en) * 2008-03-17 2009-10-01 Ricoh Co Ltd Method of manufacturing electrophotographic full-color toner
JP2013107960A (en) * 2011-11-18 2013-06-06 Nitto Denko Corp Epoxy resin composition for sealing semiconductor and semiconductor device using the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4692744B2 (en) 2004-08-02 2011-06-01 信越化学工業株式会社 Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP4784743B2 (en) 2005-02-14 2011-10-05 信越化学工業株式会社 Curable perfluoropolyether composition, rubber and gel product using the cured product
JP2009088115A (en) 2007-09-28 2009-04-23 Shin Etsu Chem Co Ltd In-vehicle electric and electronic parts

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192532A (en) * 2000-01-11 2001-07-17 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP4491884B2 (en) * 2000-01-11 2010-06-30 住友ベークライト株式会社 Epoxy resin composition and semiconductor device
JP2003105174A (en) * 2001-09-28 2003-04-09 Toray Ind Inc Semiconductor sealing epoxy resin composition and semiconductor device
JPWO2004065486A1 (en) * 2003-01-17 2006-05-18 住友ベークライト株式会社 Epoxy resin composition and semiconductor device using the same
JP4654912B2 (en) * 2003-01-17 2011-03-23 住友ベークライト株式会社 Epoxy resin composition and semiconductor device using the same
JP2005314565A (en) * 2004-04-28 2005-11-10 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2006182913A (en) * 2004-12-27 2006-07-13 Hitachi Chem Co Ltd Sealing epoxy resin molding material and electronic component device
JP2009222956A (en) * 2008-03-17 2009-10-01 Ricoh Co Ltd Method of manufacturing electrophotographic full-color toner
JP2013107960A (en) * 2011-11-18 2013-06-06 Nitto Denko Corp Epoxy resin composition for sealing semiconductor and semiconductor device using the same

Also Published As

Publication number Publication date
JP3167853B2 (en) 2001-05-21

Similar Documents

Publication Publication Date Title
JP4692885B2 (en) Epoxy resin composition and semiconductor device
JPH08188638A (en) Resin-sealed semiconductor device and its production
JP5164076B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
JP3167853B2 (en) Semiconductor device
JP4250987B2 (en) Epoxy resin composition and semiconductor device
JPH0597969A (en) Thermosetting resin composition and semiconductor device
JP2002012742A (en) Epoxy resin composition and semiconductor device
JPH08157696A (en) Epoxy resin composition and semiconductor device
JPH10324795A (en) Epoxy resin composition for sealing semiconductor and semiconductor apparatus
JP5098125B2 (en) Epoxy resin composition and semiconductor device
JP3014857B2 (en) Semiconductor device
JP2002080694A (en) Epoxy resin composition and semiconductor device
JP2008156403A (en) Epoxy resin composition for sealing semiconductor, and semiconductor device
JPH0567703A (en) Semiconductor device and manufacture thereof
JP5055778B2 (en) Epoxy resin composition, epoxy resin molding material and semiconductor device
JP3008981B2 (en) Epoxy resin composition
JP2000273285A (en) Epoxy resin composition and semiconductor device
JPH05166974A (en) Epoxy resin composition
JPH11100491A (en) Epoxy resin composition and semiconductor device
JP2001214036A (en) Epoxy resin composition and semiconductor device
JPH10147628A (en) Epoxy resin composition for sealing semiconductor
JPH09129786A (en) Semiconductor device
JP2002249542A (en) Sealing epoxy resin composition and semiconductor device
JP4379977B2 (en) Epoxy resin composition and semiconductor device
JP2003238660A (en) Epoxy resin composition and semiconductor device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees