JPH0778727A - Thin film capacitor - Google Patents

Thin film capacitor

Info

Publication number
JPH0778727A
JPH0778727A JP22411293A JP22411293A JPH0778727A JP H0778727 A JPH0778727 A JP H0778727A JP 22411293 A JP22411293 A JP 22411293A JP 22411293 A JP22411293 A JP 22411293A JP H0778727 A JPH0778727 A JP H0778727A
Authority
JP
Japan
Prior art keywords
thin film
group
film capacitor
capacitor
dielectric constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22411293A
Other languages
Japanese (ja)
Inventor
Shuichi Komatsu
周一 小松
Kazuhide Abe
和秀 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP22411293A priority Critical patent/JPH0778727A/en
Publication of JPH0778727A publication Critical patent/JPH0778727A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To constitute a thin film capacitor in such a structure that the capacitor is large in capacity and has good electrical characteristics, by a method wherein the capacitor is provided with a high-dielectric constant thin film and a pair of electrodes formed in opposition to each other holding the thin film between them and the electrode on at least one side of the one pair of the electrodes is formed of a boride consisting of at least one kind of the element selected from among a group 4a element, a group 5a element and a group 6a element. CONSTITUTION:TiB2, ZrB2, HfB2, MOB2 and the like are exemplified as borides consisting of a group 4a element, a group 5a element and a group 6a element. As these borides consisting of the group 4a element, the group 5a element and the group 6a element have an electric resistance of 10<-3>rcm or lower or thereabouts and in addition, have a good oxidation resistance, they can be used suitably for electrodes of a thin film capacitor. A dielectric material having a specific inductive capacity of 100 or higher is desirably used for a high- dielectric constant thin film and as such the dielectric material, crystalline oxides, such as a perovskite compound and a tungsten bronze compound, are exemplified.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高誘電率薄膜を使用し
た薄膜コンデンサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film capacitor using a high dielectric constant thin film.

【0002】[0002]

【従来の技術】近年の電子機器の小型化、高機能化に伴
い、DRAMのセルキャパシタのような薄膜コンデンサ
においては、従来の簡単なプレーナ構造からトレンチ構
造やスタック構造へと急速に高集積化が進んでいる。し
かしながら、誘電体材料としてこれまで通り比誘電率が
10以下であるSiO2 やSi34 を用いている限
り、さらに高集積化が進むと情報を記憶させるために必
要な一定の容量を確保することが困難になるものと予想
されている。このため最近では、より比誘電率の大きな
誘電体材料を用いることによって薄膜コンデンサの大容
量化を図ることが検討されており、例えば100以上の
比誘電率を有するペロブスカイト化合物からなる高誘電
率薄膜を使用した薄膜コンデンサの開発が活発に進めら
れている。
2. Description of the Related Art With the recent miniaturization and higher functionality of electronic equipment, thin film capacitors such as DRAM cell capacitors are rapidly becoming highly integrated from a conventional simple planar structure to a trench structure or a stack structure. Is progressing. However, as long as SiO 2 or Si 3 N 4 having a relative dielectric constant of 10 or less is used as the dielectric material, a certain capacity necessary for storing information will be secured as the degree of integration becomes higher. It is expected to be difficult to do. For this reason, recently, it has been studied to increase the capacity of a thin film capacitor by using a dielectric material having a higher relative dielectric constant, and for example, a high dielectric constant thin film made of a perovskite compound having a relative dielectric constant of 100 or more. The development of thin-film capacitors using is actively underway.

【0003】ところで、上述したような高誘電率薄膜を
使用した薄膜コンデンサにおいては、誘電体材料として
SiO2 やSi34 を用いる場合には一般的であった
シリコン電極を使用すると、高誘電率薄膜との界面でシ
リコン電極が酸化されてSiO2 からなる低誘電率層が
形成され、さほど大容量化を達成することができないと
いう不具合を生じる。また、特に誘電体材料としてペロ
ブスカイト化合物のような結晶性酸化物を用いたときに
は、高誘電率薄膜中でシリコン電極の酸化に消費された
酸素が欠乏することに起因し、リーク電流が増大するこ
とも考えられる。従って現在まで、シリコン電極のかわ
りに白金電極が多用されているが、白金電極は高価であ
るうえ、白金に対しては反応性イオンエッチング(RI
E)等汎用の微細加工技術を適用できないため、今後の
高集積化への対応は困難である。
By the way, in a thin film capacitor using a high dielectric constant thin film as described above, if a silicon electrode which is generally used when SiO 2 or Si 3 N 4 is used as a dielectric material, a high dielectric constant is obtained. The silicon electrode is oxidized at the interface with the thin film and a low dielectric constant layer made of SiO 2 is formed, which causes a problem that a large capacity cannot be achieved. Further, especially when a crystalline oxide such as a perovskite compound is used as the dielectric material, leakage current increases due to lack of oxygen consumed for oxidation of the silicon electrode in the high dielectric constant thin film. Can also be considered. Therefore, until now, platinum electrodes have been widely used instead of silicon electrodes, but platinum electrodes are expensive and reactive ion etching (RI) for platinum is used.
Since general-purpose fine processing technology such as E) cannot be applied, it is difficult to cope with high integration in the future.

【0004】さらに特開昭58−97818号には、微
細加工の容易なTiNからなる電極を使用した薄膜コン
デンサも提案されている。しかしながら、この場合もT
iNがシリコンほどではないものの比較的酸化されやす
い化合物であるため、界面でTiO2-x 等の酸化物が生
成して容量の低下を招くという問題点があった。
Further, Japanese Patent Application Laid-Open No. 58-97818 proposes a thin film capacitor using an electrode made of TiN, which can be easily microfabricated. However, in this case as well, T
Since iN is a compound that is relatively less oxidized than silicon but is easily oxidized, oxides such as TiO 2−x are generated at the interface, which causes a problem of reduction in capacity.

【0005】[0005]

【発明が解決しようとする課題】上述したように高誘電
率薄膜を使用した薄膜コンデンサは、大容量化の面で期
待は大きいものの、耐酸化性の低い電極を使用すると容
量低下等の問題があり、また耐酸化性に優れた白金電極
を使用した場合はその微細加工が困難であるため今後の
高集積化への対応が難しく、いまだ実用化には至ってい
ない。
As described above, the thin film capacitor using the high dielectric constant thin film is highly expected in terms of increasing the capacity, but when an electrode having low oxidation resistance is used, there is a problem such as capacity decrease. However, when a platinum electrode having excellent oxidation resistance is used, its fine processing is difficult, so it is difficult to cope with high integration in the future, and it has not yet been put to practical use.

【0006】本発明はこのような問題に鑑み、大容量で
良好な電気的特性を有するとともに、今後の高集積化に
も充分に対応が可能な薄膜コンデンサを提供することを
目的としている。
In view of the above problems, it is an object of the present invention to provide a thin film capacitor which has a large capacity and good electrical characteristics and which can sufficiently cope with future high integration.

【0007】[0007]

【課題を解決するための手段及び作用】本発明は、高誘
電率薄膜と、前記高誘電率薄膜を挟んで対向形成された
1対の電極とを備え、前記1対の電極の少なくとも一方
が4a族元素、5a族元素、6a族元素より選ばれた少
なくとも1種の硼化物からなる薄膜コンデンサである。
すなわち本発明の薄膜コンデンサは、4a族元素、5a
族元素、6a族元素の硼化物からなる電極を使用したこ
とを特徴とするものである。
The present invention is provided with a high dielectric constant thin film and a pair of electrodes opposed to each other with the high dielectric constant thin film interposed therebetween, and at least one of the pair of electrodes is provided. A thin film capacitor made of at least one boride selected from the 4a group elements, 5a group elements, and 6a group elements.
That is, the thin film capacitor of the present invention is composed of 4a group element, 5a
It is characterized in that an electrode made of a boride of Group 6 element and Group 6a element is used.

【0008】本発明で用いることのできる4a族元素、
5a族元素、6a族元素の硼化物としては、より具体的
にはTiB2 、ZrB2 、HfB2 、MoB2 、NbB
2 、TaB2 、CrB2 、VB2 等が挙げられる。すな
わちこれら4a族元素、5a族元素、6a族元素の硼化
物は、電気抵抗が10-3Ωcm以下程度であるうえ良好
な耐酸化性を有しているので、薄膜コンデンサの電極に
好適に用いることができる。なおこのような硼化物は、
1原子%程度まで酸素や窒素を含有していても構わな
い。また、4a族元素、5a族元素、6a族元素の硼化
物からなる電極は、厚さが500〜3000オングスト
ローム、さらには500〜1000オングストロームの
範囲内に設定されることが好ましい。これは、4a族元
素、5a族元素、6a族元素の硼化物からなる電極の厚
さが500オングストローム未満だと、得られる薄膜コ
ンデンサの電気的特性が不充分となるおそれがあり、逆
に3000オングストロームを越えると、高集積化への
対応が困難となるからである。
Group 4a elements that can be used in the present invention,
5a group element, as the borides 6a group element, TiB 2 and more specifically, ZrB 2, HfB 2, MoB 2, NbB
2 , TaB 2 , CrB 2 , VB 2 and the like. That is, these borides of the 4a group elements, 5a group elements, and 6a group elements have an electric resistance of about 10 −3 Ωcm or less and have good oxidation resistance, and thus are suitably used for electrodes of thin film capacitors. be able to. Note that such boride is
It may contain oxygen or nitrogen up to about 1 atom%. The thickness of the electrode made of a boride of a 4a group element, a 5a group element, or a 6a group element is preferably set in the range of 500 to 3000 angstroms, more preferably 500 to 1000 angstroms. This is because if the thickness of the electrode made of a boride of a 4a group element, a 5a group element, or a 6a group element is less than 500 angstroms, the electrical characteristics of the obtained thin film capacitor may be insufficient, and conversely 3000. This is because if the thickness exceeds Å, it will be difficult to deal with high integration.

【0009】さらに、本発明の薄膜コンデンサにおける
高誘電率薄膜には、比誘電率が100以上の誘電体材料
が好ましく用いられ、このような誘電体材料としては例
えばペロブスカイト化合物やタングステンブロンズ化合
物等の結晶性酸化物が挙げられる。本発明では、これら
のうち特にペロブスカイト化合物を用いることがより好
ましく、具体的にはチタン酸ストロンチウム(SrTi
3 )、チタン酸バリウム(BaTiO3 )、ジルコン
酸チタン酸鉛(Pb(Zr,Ti)O3 )等が例示され
る。また、高誘電率薄膜の膜厚は100〜3000オン
グストロームであることが好ましい。この理由は、高誘
電率薄膜の膜厚が100オングストローム未満に薄い
と、得られる薄膜コンデンサで絶縁破壊が生じやすく、
高誘電率薄膜の膜厚が3000オングストロームを越え
て厚いと、大容量の薄膜コンデンサが得られなくなるお
それがあるからである。
Further, a dielectric material having a relative dielectric constant of 100 or more is preferably used for the high dielectric constant thin film in the thin film capacitor of the present invention, and such a dielectric material is, for example, a perovskite compound or a tungsten bronze compound. A crystalline oxide may be used. In the present invention, it is more preferable to use a perovskite compound among them, and specifically, strontium titanate (SrTi) is used.
O 3 ), barium titanate (BaTiO 3 ), lead zirconate titanate (Pb (Zr, Ti) O 3 ) and the like are exemplified. Further, the film thickness of the high dielectric constant thin film is preferably 100 to 3000 angstrom. The reason for this is that if the thickness of the high dielectric constant thin film is less than 100 angstroms, dielectric breakdown is likely to occur in the resulting thin film capacitor,
This is because if the film thickness of the high dielectric constant thin film exceeds 3000 angstroms and is thick, it may not be possible to obtain a large-capacity thin film capacitor.

【0010】本発明においては、通常所定の基板上に下
部電極、高誘電率薄膜及び上部電極を順次形成すること
によって薄膜コンデンサが製造される。このとき、下部
電極、上部電極のいずれに4a族元素、5a族元素、6
a族元素の硼化物を用いてもよいが、少なくとも高誘電
率薄膜形成時に過酷な条件に晒される下部電極側を耐酸
化性に優れた4a族元素、5a族元素、6a族元素の硼
化物からなる電極とすることが好ましく、上部電極側に
はニッケル、アルミニウム等の金属を用いてもよい。ま
た基板は特に限定されないが、基板にシリコンやタング
ステン等の半導体や導体を用いてかつ下部電極に4a族
元素、5a族元素、6a族元素の硼化物を用いる場合
は、基板と下部電極との間にTiN等からなるバリア層
を形成して基板と下部電極との拡散を防止することが好
ましい。なおバリア層の好ましい厚さは、300〜15
00オングストローム、さらには500〜1000オン
グストロームであり、薄すぎると基板と下部電極との拡
散を充分に防止することができず、厚すぎると表面の凹
凸に起因して高誘電率薄膜でのリーク電流が増大するお
それが生じる。
In the present invention, a thin film capacitor is usually manufactured by sequentially forming a lower electrode, a high dielectric constant thin film and an upper electrode on a predetermined substrate. At this time, a 4a group element, a 5a group element, 6
A boride of an a-group element may be used, but a boride of a 4a-group element, a 5a-group element, or a 6a-group element having excellent oxidation resistance at least on the lower electrode side that is exposed to harsh conditions during formation of a high dielectric constant thin film. It is preferable to use an electrode made of, and a metal such as nickel or aluminum may be used on the upper electrode side. Although the substrate is not particularly limited, when a semiconductor or conductor such as silicon or tungsten is used for the substrate and a boride of a 4a group element, a 5a group element, or a 6a group element is used for the lower electrode, the substrate and the lower electrode are not It is preferable to form a barrier layer made of TiN or the like in between to prevent diffusion between the substrate and the lower electrode. The preferable thickness of the barrier layer is 300 to 15
00 angstroms, and further 500 to 1000 angstroms. If it is too thin, diffusion between the substrate and the lower electrode cannot be sufficiently prevented, and if it is too thick, the leakage current in the high dielectric constant thin film due to surface irregularities. May increase.

【0011】本発明の薄膜コンデンサは、例えばハロゲ
ン系ガスを用いた反応性イオンエッチング(RIE)に
よる微細加工が可能な4a族元素、5a族元素、6a族
元素の硼化物からなる電極を使用しているので、集積化
部品にも容易に適用できる。具体的には、DRAMや不
揮発性メモリのセルキャパシタ、GaAsICのバイパ
スキャパシタ、マルチチップモジュールのデカップリン
グキャパシタ等に好ましく用いられる。
The thin film capacitor of the present invention uses an electrode made of a boride of a group 4a element, a group 5a element, or a group 6a element, which can be finely processed by reactive ion etching (RIE) using a halogen-based gas, for example. Therefore, it can be easily applied to integrated parts. Specifically, it is preferably used as a cell capacitor of DRAM or a non-volatile memory, a bypass capacitor of GaAsIC, a decoupling capacitor of a multichip module, and the like.

【0012】[0012]

【実施例】以下、本発明の実施例について説明する。 実施例1 約500オングストロームの熱酸化膜を有するシリコン
基板上に、RFマグネトロンスパッタ法により下部電極
としてTiB2 を500オングストロームの膜厚で堆積
した。ただしこのときのスパッタ条件は、基板温度を2
00℃、雰囲気ガスをArガス、ターゲットをTiB2
焼結体、投入電力を300Wとした。次いで前記下部電
極上に、RFマグネトロンスパッタ法により高誘電率薄
膜としてSrTiO3 を1000オングストロームの膜
厚で堆積した。またこのときのスパッタ条件は、基板温
度を400℃、雰囲気ガスをAr/O2 =40sccm
/10sccmの混合ガス、ターゲットをSrTiO3
焼結体、投入電力を400Wとした。続いて、RFマグ
ネトロンスパッタ法によりNiを1000オングストロ
ームの膜厚で堆積した後、フォトリソグラフィー技術を
用いて100μm□に加工して上部電極を形成した。な
おこのときのスパッタ条件は、基板温度を350℃、雰
囲気ガスをArガス、ターゲットをニッケル、投入電力
を300Wとし、ニッケルを加工する際のエッチング液
としてはFeCl3 水溶液を用いた。
EXAMPLES Examples of the present invention will be described below. Example 1 TiB 2 having a film thickness of 500 Å was deposited as a lower electrode by a RF magnetron sputtering method on a silicon substrate having a thermal oxide film of about 500 Å. However, the sputtering condition at this time is that the substrate temperature is 2
00 ° C., Ar gas as atmosphere gas, TiB 2 as target
Sintered body, input power was 300W. Next, SrTiO 3 was deposited as a high dielectric constant thin film with a film thickness of 1000 angstrom on the lower electrode by RF magnetron sputtering method. The sputtering conditions at this time are as follows: the substrate temperature is 400 ° C., the atmospheric gas is Ar / O 2 = 40 sccm.
/ 10 sccm mixed gas, SrTiO 3 as a target
Sintered body, input power was 400W. Subsequently, Ni was deposited to a film thickness of 1000 Å by the RF magnetron sputtering method, and then processed to 100 μm □ using a photolithography technique to form an upper electrode. The sputtering conditions at this time were a substrate temperature of 350 ° C., an atmosphere gas of Ar gas, a target of nickel, an input power of 300 W, and an FeCl 3 aqueous solution was used as an etching solution for processing nickel.

【0013】また比較のため、TiB2 のかわりにP
t、TiN及びTiSi2 を下部電極に用いた以外は全
く同様の薄膜コンデンサを製造した。ただし、Pt、T
iN及びTiSi2 をRFマグネトロンスパッタ法によ
り堆積するときのスパッタ条件は、Ptの場合で基板温
度を400℃、雰囲気ガスをArガス(50scc
m)、ターゲットを白金、投入電力を300W、TiN
の場合で基板温度を500℃、雰囲気ガスをAr/N2
=10sccm/50sccmの混合ガス、ターゲット
をチタン、投入電力を300W、TiSi2 の場合で基
板温度を500℃、雰囲気ガスをArガス(50scc
m)、ターゲットをTiSi2 焼結体、投入電力を30
0Wとした。
For comparison, PB instead of TiB 2 is used.
Exactly the same thin film capacitor was manufactured except that t, TiN and TiSi 2 were used for the lower electrode. However, Pt, T
The sputtering conditions for depositing iN and TiSi 2 by the RF magnetron sputtering method are Pt, the substrate temperature is 400 ° C., and the atmosphere gas is Ar gas (50 scc).
m), target is platinum, input power is 300 W, TiN
In the case of, the substrate temperature is 500 ° C., the atmosphere gas is Ar / N 2
= 10 sccm / 50 sccm mixed gas, titanium as target, input power of 300 W, substrate temperature of 500 ° C. in case of TiSi 2 , and Ar gas (50 sccc) as atmosphere gas.
m), the target is TiSi 2 sintered body, and the input power is 30
It was set to 0W.

【0014】これらの薄膜コンデンサの各種特性を測定
した結果を、図1及び図2に示す。ここで、図1は薄膜
コンデンサのリーク電流特性を示す特性図、図2は薄膜
コンデンサの容量バイアス電圧依存性を示す特性図であ
り、図中実線1が下部電極にTiB2 を用いた薄膜コン
デンサの特性、破線2が下部電極にPtを用いた薄膜コ
ンデンサの特性、破線3が下部電極にTiNを用いた薄
膜コンデンサの特性、破線4が下部電極にTiSi2
用いた薄膜コンデンサの特性をそれぞれ表す。図1及び
図2から明らかなように、下部電極にTiN、TiSi
2 を用いた薄膜コンデンサでは、下部電極にPtを用い
た場合よりも容量が低下しているのに対し、下部電極に
TiB2 を用いた本発明の薄膜コンデンサにおいては、
下部電極にPtを用いた場合と同程度の容量を有し、か
つリーク電流特性も良好であることが確認された。 実施例2 スパッタターゲットをVB2 焼結体として、TiB2
かわりにVB2 を堆積した以外は実施例1と全く同様に
薄膜コンデンサを製造した。得られた薄膜コンデンサの
各種特性を測定した結果を、図3及び図4に示す。ここ
で、図3は薄膜コンデンサのリーク電流特性を示す特性
図、図4は薄膜コンデンサの容量バイアス電圧依存性を
示す特性図であり、図中実線1が下部電極がVB2 から
なる本実施例の薄膜コンデンサの特性、破線2が下部電
極がPtからなる比較のための薄膜コンデンサの特性を
それぞれ表す。図3及び図4から明らかなように、下部
電極がVB2 からなる本発明の薄膜コンデンサにおいて
は、下部電極がPtからなる場合と同程度の容量を有
し、かつリーク電流特性も良好であることが確認され
た。 実施例3 スパッタターゲットをMoB2 焼結体として、TiB2
のかわりにMoB2 を堆積した以外は実施例1と全く同
様に薄膜コンデンサを製造した。得られた薄膜コンデン
サの各種特性を測定した結果を、図5及び図6に示す。
ここで、図5は薄膜コンデンサのリーク電流特性を示す
特性図、図6は薄膜コンデンサの容量バイアス電圧依存
性を示す特性図であり、図中実線1が下部電極がMoB
2 からなる本実施例の薄膜コンデンサの特性、破線2が
下部電極がPtからなる比較のための薄膜コンデンサの
特性をそれぞれ表す。図5及び図6から明らかなよう
に、下部電極がMoB2 からなる本発明の薄膜コンデン
サにおいては、下部電極がPtからなる場合と同程度の
容量を有し、かつリーク電流特性も良好であることが確
認された。 実施例4 まず、タングステン基板上にRFマグネトロンスパッタ
法によりバリア層としてTiNを300オングストロー
ムの膜厚で堆積した。ただしこのときのスパッタ条件
は、基板温度を500℃、雰囲気ガスをAr/N2 =1
0sccm/50sccmの混合ガス、ターゲットをチ
タン、投入電力を300Wとした。以下、実施例1と全
く同様にして前記バリア層上に下部電極、高誘電率薄膜
及び上部電極を順次形成し、薄膜コンデンサを製造し
た。また比較のため、TiNからなるバリア層を形成し
なかった以外は全く同様の薄膜コンデンサを製造した。
The results of measuring various characteristics of these thin film capacitors are shown in FIGS. 1 and 2. Here, FIG. 1 is a characteristic diagram showing the leakage current characteristic of the thin film capacitor, and FIG. 2 is a characteristic diagram showing the capacity bias voltage dependency of the thin film capacitor. In the figure, the solid line 1 is a thin film capacitor using TiB 2 for the lower electrode. The broken line 2 shows the characteristics of a thin film capacitor using Pt for the lower electrode, the broken line 3 shows the characteristics of a thin film capacitor using TiN for the lower electrode, and the broken line 4 shows the characteristics of a thin film capacitor using TiSi 2 for the lower electrode. Represent As is apparent from FIGS. 1 and 2, TiN and TiSi are formed on the lower electrode.
While the thin film capacitor using 2 has a lower capacity than the case where Pt is used for the lower electrode, the thin film capacitor of the present invention using TiB 2 for the lower electrode is
It was confirmed that the capacitor has a capacity similar to that of the case where Pt is used for the lower electrode and that the leak current characteristic is also good. EXAMPLE 2 sputter target as VB 2 sintered body, except that the deposition of the VB 2 instead of TiB 2 was prepared a thin-film capacitor in exactly the same manner as in Example 1. The results of measuring various characteristics of the obtained thin film capacitor are shown in FIGS. 3 and 4. Here, FIG. 3 is a characteristic diagram showing the leakage current characteristic of the thin film capacitor, and FIG. 4 is a characteristic diagram showing the capacity bias voltage dependency of the thin film capacitor. In the figure, the solid line 1 is the lower electrode of VB 2 of this embodiment. Of the thin film capacitor, and the broken line 2 represents the property of the thin film capacitor for comparison in which the lower electrode is made of Pt. As is clear from FIGS. 3 and 4, the thin film capacitor of the present invention in which the lower electrode is made of VB 2 has a capacitance comparable to that in the case where the lower electrode is made of Pt and has a good leak current characteristic. It was confirmed. Example 3 Using a MoB 2 sintered body as the sputter target, TiB 2
A thin film capacitor was manufactured in exactly the same manner as in Example 1 except that MoB 2 was deposited instead. The results of measuring various characteristics of the obtained thin film capacitor are shown in FIGS. 5 and 6.
Here, FIG. 5 is a characteristic diagram showing the leakage current characteristic of the thin film capacitor, and FIG. 6 is a characteristic diagram showing the capacity bias voltage dependency of the thin film capacitor. In the figure, the solid line 1 indicates the lower electrode is MoB.
2 represents the characteristics of the thin film capacitor of the present embodiment, and broken line 2 represents the characteristics of a thin film capacitor for comparison in which the lower electrode is Pt. As is clear from FIGS. 5 and 6, the thin film capacitor of the present invention in which the lower electrode is made of MoB 2 has a capacitance comparable to that in the case where the lower electrode is made of Pt and has a good leak current characteristic. It was confirmed. Example 4 First, TiN having a film thickness of 300 Å was deposited as a barrier layer on a tungsten substrate by an RF magnetron sputtering method. However, the sputtering conditions at this time were that the substrate temperature was 500 ° C. and the atmosphere gas was Ar / N 2 = 1.
The mixed gas of 0 sccm / 50 sccm, the target was titanium, and the input power was 300 W. Then, a lower electrode, a high dielectric constant thin film and an upper electrode were sequentially formed on the barrier layer in the same manner as in Example 1 to manufacture a thin film capacitor. For comparison, a thin film capacitor was manufactured in exactly the same manner except that the barrier layer made of TiN was not formed.

【0015】これらの薄膜コンデンサの容量バイアス電
圧依存性を図7に示す。図中、実線1がバリア層を形成
した薄膜コンデンサの特性、破線2がバリア層を形成し
なかった薄膜コンデンサの特性をそれぞれ表す。図7か
ら明らかなように、本実施例ではバリア層を形成するこ
とで一段と容量の大きな薄膜コンデンサが得られること
が確認された。 実施例5 まず、ポリシリコン基板上にRFマグネトロンスパッタ
法によりバリア層としてTiNを300オングストロー
ムの膜厚で堆積した。ただしこのときのスパッタ条件
は、基板温度を500℃、雰囲気ガスをAr/N2 =1
0sccm/50sccmの混合ガス、ターゲットをチ
タン、投入電力を300Wとした。次いで前記バリア層
上に、RFマグネトロンスパッタ法により下部電極とし
てZrB2を500オングストロームの膜厚で堆積し
た。またこのときのスパッタ条件は、基板温度を200
℃、雰囲気ガスをArガス、ターゲットをZrB2 焼結
体、投入電力を300Wとした。以下、実施例1と全く
同様にしてこの下部電極上に高誘電率薄膜及び上部電極
を順次形成し、薄膜コンデンサを製造した。また比較の
ため、TiNからなるバリア層を形成しなかった以外は
全く同様の薄膜コンデンサを製造した。
FIG. 7 shows the capacitance bias voltage dependence of these thin film capacitors. In the figure, the solid line 1 represents the characteristics of the thin film capacitor with the barrier layer formed, and the broken line 2 represents the characteristics of the thin film capacitor without the barrier layer formed. As is clear from FIG. 7, it was confirmed that a thin film capacitor having a much larger capacitance can be obtained by forming the barrier layer in this example. Example 5 First, TiN having a film thickness of 300 Å was deposited as a barrier layer on a polysilicon substrate by an RF magnetron sputtering method. However, the sputtering conditions at this time were that the substrate temperature was 500 ° C. and the atmosphere gas was Ar / N 2 = 1.
The mixed gas of 0 sccm / 50 sccm, the target was titanium, and the input power was 300 W. Then, ZrB 2 having a film thickness of 500 Å was deposited as a lower electrode on the barrier layer by the RF magnetron sputtering method. The sputtering condition at this time is that the substrate temperature is 200
C., the atmosphere gas was Ar gas, the target was ZrB 2 sintered body, and the input power was 300 W. Thereafter, in the same manner as in Example 1, a high dielectric constant thin film and an upper electrode were sequentially formed on this lower electrode to manufacture a thin film capacitor. For comparison, a thin film capacitor was manufactured in exactly the same manner except that the barrier layer made of TiN was not formed.

【0016】これらの薄膜コンデンサの容量バイアス電
圧依存性を図8に示す。図中、実線1がバリア層を形成
した薄膜コンデンサの特性、破線2がバリア層を形成し
なかった薄膜コンデンサの特性をそれぞれ表す。図8か
ら明らかなように、本実施例ではバリア層を形成するこ
とで一段と容量の大きな薄膜コンデンサが得られること
が確認された。
FIG. 8 shows the capacitance bias voltage dependence of these thin film capacitors. In the figure, the solid line 1 represents the characteristics of the thin film capacitor with the barrier layer formed, and the broken line 2 represents the characteristics of the thin film capacitor without the barrier layer formed. As is clear from FIG. 8, in this example, it was confirmed that a thin film capacitor having a much larger capacitance can be obtained by forming the barrier layer.

【0017】[0017]

【発明の効果】以上詳述したように本発明の薄膜コンデ
ンサによれば、大容量で良好な電気的特性を有するとと
もに今後の高集積化にも充分に対応でき、その工業的価
値は大なるものがある。
As described in detail above, according to the thin film capacitor of the present invention, it has a large capacity, good electrical characteristics, and can sufficiently cope with future high integration, and its industrial value is great. There is something.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例1の薄膜コンデンサのリーク電流特性
を示す特性図である。
FIG. 1 is a characteristic diagram showing a leak current characteristic of a thin film capacitor of Example 1.

【図2】 実施例1の薄膜コンデンサの容量バイアス電
圧依存性を示す特性図である。
FIG. 2 is a characteristic diagram showing the capacitance bias voltage dependence of the thin film capacitor of Example 1.

【図3】 実施例2の薄膜コンデンサのリーク電流特性
を示す特性図である。
FIG. 3 is a characteristic diagram showing a leakage current characteristic of the thin film capacitor of Example 2.

【図4】 実施例2の薄膜コンデンサの容量バイアス電
圧依存性を示す特性図である。
FIG. 4 is a characteristic diagram showing the capacitance bias voltage dependence of the thin film capacitor of Example 2.

【図5】 実施例3の薄膜コンデンサのリーク電流特性
を示す特性図である。
5 is a characteristic diagram showing a leakage current characteristic of the thin film capacitor of Example 3. FIG.

【図6】 実施例3の薄膜コンデンサの容量バイアス電
圧依存性を示す特性図である。
FIG. 6 is a characteristic diagram showing the capacitance bias voltage dependence of the thin film capacitor of Example 3.

【図7】 実施例4の薄膜コンデンサの容量バイアス電
圧依存性を示す特性図である。
FIG. 7 is a characteristic diagram showing the capacitance bias voltage dependence of the thin film capacitor of Example 4.

【図8】 実施例5の薄膜コンデンサの容量バイアス電
圧依存性を示す特性図である。
FIG. 8 is a characteristic diagram showing the capacitance bias voltage dependence of the thin film capacitor of Example 5.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 高誘電率薄膜と、前記高誘電率薄膜を挟
んで対向形成された1対の電極とを備えた薄膜コンデン
サであって、前記1対の電極の少なくとも一方が4a族
元素、5a族元素、6a族元素より選ばれた少なくとも
1種の硼化物からなることを特徴とする薄膜コンデン
サ。
1. A thin film capacitor comprising a high dielectric constant thin film and a pair of electrodes opposed to each other with the high dielectric constant thin film sandwiched therebetween, wherein at least one of the pair of electrodes is a Group 4a element, A thin-film capacitor comprising at least one boride selected from Group 5a elements and Group 6a elements.
JP22411293A 1993-09-09 1993-09-09 Thin film capacitor Pending JPH0778727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22411293A JPH0778727A (en) 1993-09-09 1993-09-09 Thin film capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22411293A JPH0778727A (en) 1993-09-09 1993-09-09 Thin film capacitor

Publications (1)

Publication Number Publication Date
JPH0778727A true JPH0778727A (en) 1995-03-20

Family

ID=16808727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22411293A Pending JPH0778727A (en) 1993-09-09 1993-09-09 Thin film capacitor

Country Status (1)

Country Link
JP (1) JPH0778727A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100418738B1 (en) * 1999-01-04 2004-02-14 인터내셔널 비지네스 머신즈 코포레이션 IC semiconductor device
CN103979566A (en) * 2014-05-22 2014-08-13 安徽工业大学 Preparation method of vanadium diboride powder
EP4219786A3 (en) * 2016-02-09 2023-10-11 Wilsonart LLC Method for coating stainless steel press plates and coated press plates produced thereby

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100418738B1 (en) * 1999-01-04 2004-02-14 인터내셔널 비지네스 머신즈 코포레이션 IC semiconductor device
CN103979566A (en) * 2014-05-22 2014-08-13 安徽工业大学 Preparation method of vanadium diboride powder
EP4219786A3 (en) * 2016-02-09 2023-10-11 Wilsonart LLC Method for coating stainless steel press plates and coated press plates produced thereby

Similar Documents

Publication Publication Date Title
KR100371891B1 (en) Microelectronic Structures and Methods of Forming the Same
US7349195B2 (en) Thin film capacitor and method for manufacturing the same
EP0698918B1 (en) A conductive noble-metal-insulator-alloy barrier layer for high-dielectric-constant material electrodes
JP2722061B2 (en) Semiconductor memory cell capacitor structure and method of forming the same
JPH06350029A (en) Microelectronic circuit structure and its manufacture
JP3041596B2 (en) Semiconductor device capacitor and method of manufacturing the same
US7545625B2 (en) Electrode for thin film capacitor devices
US6670668B2 (en) Microelectronic structure, method for fabricating it and its use in a memory cell
JPH09246496A (en) Method of forming dielectric thin film and method of manufacturing semiconductor device using it
JPH0687493B2 (en) Thin film capacitors
JPH0687491B2 (en) Thin film capacitors
US7868420B2 (en) Semiconductor device which includes a capacitor and an interconnection film coupled to each other and a manufacturing method thereof
JPH0778727A (en) Thin film capacitor
JPH10214947A (en) Thin film dielectric element
JPH0687490B2 (en) Thin film capacitor and manufacturing method thereof
US6911689B2 (en) Versatile system for chromium based diffusion barriers in electrode structures
JP3120568B2 (en) Thin film capacitors
JPH0624222B2 (en) Method of manufacturing thin film capacitor
JP3171173B2 (en) Capacitor structure and method of manufacturing the same
JP2001189422A (en) Method of manufacturing thin-film capacitor
KR100277939B1 (en) bottom electrode of capacitor with ferroelectric
JPH05299584A (en) Thin film capacitor element and semiconductor memory device
JP3172665B2 (en) Dielectric thin film capacitor element and method of manufacturing the same
JPH09312381A (en) Semiconductor device and manufacture thereof
JP2004146615A (en) Capacitor circuit