JPH0776365B2 - Method for producing ferromagnetic metal particles - Google Patents

Method for producing ferromagnetic metal particles

Info

Publication number
JPH0776365B2
JPH0776365B2 JP2232767A JP23276790A JPH0776365B2 JP H0776365 B2 JPH0776365 B2 JP H0776365B2 JP 2232767 A JP2232767 A JP 2232767A JP 23276790 A JP23276790 A JP 23276790A JP H0776365 B2 JPH0776365 B2 JP H0776365B2
Authority
JP
Japan
Prior art keywords
particles
aluminum
ferromagnetic metal
iron
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2232767A
Other languages
Japanese (ja)
Other versions
JPH04116110A (en
Inventor
悦男 中川
聡 谷岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP2232767A priority Critical patent/JPH0776365B2/en
Publication of JPH04116110A publication Critical patent/JPH04116110A/en
Publication of JPH0776365B2 publication Critical patent/JPH0776365B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は強磁性金属粒子の製造方法に関し、さらに詳し
くは分散性に優れ、高密度磁気記録媒体の原料として好
適な強磁性金属粒子の製造法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing ferromagnetic metal particles, and more specifically to the production of ferromagnetic metal particles having excellent dispersibility and suitable as a raw material for high-density magnetic recording media. It is about law.

〔従来の技術〕[Conventional technology]

従来、磁気記録媒体用磁性粉として、針状酸化鉄粒子が
主として使用されていたが、デジタル・オーディオテー
プ(DAT)、8ミリビデオテープ、高密度フロッピーデ
ィスク等の商品化に伴い、高保磁力(Hc)、高飽和磁化
量(σs)および高角型比(σr/σs)を有する強磁性
金属鉄粒子が用いられるようになった。該強磁性金属鉄
粒子は一般にα−オキシ水酸化鉄または酸化鉄を主体と
する針状微粒子を水素等の還元性ガス気流中で加熱還元
して得られるが、磁気記録の高密度化に対応するため、
強磁性金属鉄粒子は年々微粒子化が要請されている。し
かしながら、微粒子化すればするほど、加熱還元時に粒
子の焼結が起こり易く、磁性粉の磁気特性が低下すると
いう問題が生じる。また、磁性粉の表面に存在する異種
金属の種類や量によつて、塗料化時に用いられるバイン
ダーや潤滑剤との相性が異なつてくるため、保磁力(H
c)や飽和磁化量(σs)等の基本的磁気特性を維持し
ながら、かつ磁性粉の表面にある異種金属の種類や量を
コントロールする技術が求められている。
Conventionally, acicular iron oxide particles have been mainly used as magnetic powder for magnetic recording media, but with the commercialization of digital audio tape (DAT), 8 mm video tape, high-density floppy disk, etc., high coercive force ( Hc), high saturation magnetization (σs) and high squareness ratio (σr / σs) have been used for ferromagnetic metallic iron particles. The ferromagnetic metal iron particles are generally obtained by heating and reducing needle-shaped fine particles mainly composed of α-iron oxyhydroxide or iron oxide in a reducing gas stream such as hydrogen, which is suitable for high density magnetic recording. In order to
Ferromagnetic metal iron particles are required to be made finer year by year. However, the finer the particles, the more likely the particles to sinter during heating and reduction, and the magnetic properties of the magnetic powder deteriorate. Also, the compatibility with the binder and lubricant used during coating varies depending on the type and amount of dissimilar metals present on the surface of the magnetic powder.
There is a demand for a technique for controlling the type and amount of different metals on the surface of the magnetic powder while maintaining basic magnetic properties such as c) and saturation magnetization (σs).

これらの問題を解決するために、α−オキシ水酸化鉄に
アルミニウム等の金属を固溶させる方法、α−オキシ水
酸化鉄にアルミニウム、けい素等の異種金属を被着する
方法等が種々提案されている。
In order to solve these problems, various methods such as a method of solid-solving α-iron oxyhydroxide with a metal such as aluminum and a method of depositing α-iron oxyhydroxide with a dissimilar metal such as aluminum or silicon are proposed. Has been done.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

特公昭59−17161号公報には、FeOOHまたはFe2O3の少な
くとも一方を主成分とする鉄化合物にアルミニウム(A
l)化合物を固溶させた後、還元する方法が示されてい
る。この方法は、針状粒子に焼結防止剤を付着させるこ
となく、粒子間の焼結のない強磁性金属粒子を得るのに
効果があるとされている。しかしながら、固溶されるAl
化合物の量が少ないと焼結防止に対する効果が低下し、
還元の際に焼結を起こし、磁気特性を劣化させる。また
固溶させるAl化合物の量が多いとAlを固溶させたFeOOH
またはFe2O3粒子の針状性が崩れるという重大な欠点を
有する。すなわち、Al固溶量が、Alを固溶したα−オキ
シ水酸化鉄粒子の鉄原子に対し、Al原子として0.5〜3
重量%の範囲では針状性の崩れは顕著には見られない
が、この範囲ではAlの固溶量が少ないため、後の還元の
際の焼結防止効果が充分に得られず、還元して得られる
強磁性金属粒子の磁気特性、特に保磁力および角型比が
低下する。またAlの固溶量が3重量%を超えるとFeOOH
またはFe2O3の針状性が崩れるため、還元して得られる
強磁性金属粒子の針状比が維持できず、保磁力および角
型比が低下し、またAlの固溶量が多くなるため還元性が
抑制され、高い飽和磁化量が得にくいという欠点があ
る。
Japanese Patent Publication No. 59-17161 discloses that an iron compound containing at least one of FeOOH and Fe 2 O 3 as a main component is aluminum (A
l) A method of forming a solid solution of a compound and then reducing the compound is shown. This method is said to be effective for obtaining ferromagnetic metal particles without sintering between particles without adhering a sintering inhibitor to the acicular particles. However, the solid solution of Al
If the amount of the compound is small, the effect of preventing sintering decreases,
Sintering occurs during reduction, deteriorating magnetic properties. Also, if the amount of Al compound to be dissolved is large, FeOOH in which Al is dissolved
Alternatively, it has a serious drawback that the needle-like properties of Fe 2 O 3 particles are lost. That is, the amount of Al solid solution is 0.5 to 3 as Al atom with respect to the iron atom of α-iron oxyhydroxide particles in which Al is solid solution.
In the range of wt%, acicularity is not significantly broken, but in this range, the amount of solid solution of Al is small, so the effect of preventing sintering during the subsequent reduction cannot be sufficiently obtained, and the reduction The magnetic properties of the obtained ferromagnetic metal particles, especially the coercive force and the squareness ratio are deteriorated. If the solid solution amount of Al exceeds 3% by weight, FeOOH
Or, because the acicularity of Fe 2 O 3 collapses, the acicular ratio of the ferromagnetic metal particles obtained by reduction cannot be maintained, the coercive force and squareness ratio decrease, and the solid solution amount of Al increases. Therefore, there is a drawback that the reducibility is suppressed and it is difficult to obtain a high saturation magnetization amount.

特開昭59−19163号公報には、ニツケル(Ni)を固溶し
たα−オキシ水酸化鉄を作成し、還元処理を行う前にけ
い素化合物またはアルミニウム化合物もしくは両者を含
む溶液中に浸漬して焼結防止処理をした後、加熱還元す
る方法が示されている。この方法ではNiを固溶させる目
的は枝分かれ粒子の発生防止に効果があるとされてい
る。しかしながらNiを固溶させると、Niを固溶したα−
オキシ水酸化鉄の長軸が大きくなり、結果として針状比
の大きいα−オキシ水酸化鉄ができてしまう。したがつ
て続く還元処理において作られる強磁性金属粒子の保磁
力が大きくなり過ぎ、その調整が困難であるという欠点
を有する。また還元して得られる強磁性金属粒子の針状
比が大きいため、この強磁性金属粒子を用いてテープ化
を行うとき高分散が得にくいという欠点も有する。
In JP-A-59-19163, α-iron oxyhydroxide containing nickel (Ni) as a solid solution is prepared and immersed in a solution containing a silicon compound or an aluminum compound or both before reduction treatment. A method of performing heating reduction after sintering prevention treatment is disclosed. In this method, the purpose of forming a solid solution with Ni is said to be effective in preventing the formation of branched particles. However, when Ni is dissolved, α-
The major axis of iron oxyhydroxide becomes large, and as a result, α-iron oxyhydroxide having a large acicular ratio is produced. Therefore, the coercive force of the ferromagnetic metal particles produced in the subsequent reduction treatment becomes too large, and it is difficult to adjust the coercive force. Further, since the ferromagnetic metal particles obtained by the reduction have a large acicular ratio, there is a drawback that it is difficult to obtain a high dispersion when the ferromagnetic metal particles are used to form a tape.

特公昭59−19169号公報には、pH11以上に調整した水酸
化第1鉄のアルカリ性懸濁液中に亜鉛、アルミニウムお
よびけい素化合物の3種より選ばれる少なくとも1種の
化合物と水酸化ニツケルとを含有させ、酸素含有ガスを
導入してα−オキシ水酸化鉄を生成させ、続く加熱脱水
および加熱還元の少なくとも1つの工程の前処理として
前記α−オキシ水酸化鉄もしくは酸化鉄の粒子表面にけ
い素化合物を被着させる方法が示されている。この方法
では亜鉛、アルミニウムおよびけい素化合物はα−オキ
シ水酸化鉄が生成する過程でその粒子中にイオン状態で
捕捉されたり(固溶)あるいは粒子表面に強固に付着し
ているので加熱脱水および加熱還元において粒子間の焼
結や粒子の形崩れを大きく抑制する作用があるとされて
いる。しかしながらpH11以上のアルカリ性懸濁液中でα
−オキシ水酸化鉄を生成させるので、ニツケル以外の亜
鉛、アルミニウムおよびけい素化合物でα−オキシ水酸
化鉄粒子中にイオン状態で固溶したもの以外は懸濁液中
に溶解して存在し、続く過水洗によつてα−オキシ水
酸化鉄粒子から分離されてしまうために、新たにα−オ
キシ水酸化鉄粒子表面に焼結防止剤を被着することなし
に加熱脱水および加熱還元を行えば粒子間の焼結や粒子
の形崩れが起こり、還元して得られる強磁性金属粒子の
磁気特性が劣化するという欠点を有している。またこの
方法には加熱脱水および加熱還元の少なくとも1つの工
程の前処理として前記α−オキシ水酸化鉄もしくは酸化
鉄の粒子表面にけい素化合物を被着する方法が示されて
いる。けい素化合物を被着処理した粒子を加熱還元すれ
ば粒子間の焼結や形崩れが抑制され確かに保磁力等の基
本的磁気特性は向上する。しかしながら還元して得られ
る強磁性金属粒子は束状に凝集しやすく、また粒子表面
に主としてけい素化合物が存在しているのでテープ化の
際に一般的に添加される潤滑剤としての高級脂肪酸やバ
インダーを吸着しにくく、そのためテープ化時の高分散
が得られず、テープの磁気特性が劣化するという欠点を
有している。
JP-B-59-19169 discloses that at least one compound selected from three compounds of zinc, aluminum and silicon and nickel hydroxide in an alkaline suspension of ferrous hydroxide adjusted to pH 11 or above. On the particle surface of the α-iron oxyhydroxide or iron oxide as a pretreatment of at least one step of subsequent heat dehydration and heat reduction. A method of depositing a silicon compound is shown. In this method, zinc, aluminum and silicon compounds are trapped in an ionic state in the particles (solid solution) in the process of producing α-iron oxyhydroxide, or are firmly attached to the particle surface, so that heat dehydration and It is said that it has an effect of greatly suppressing sintering between particles and deformation of particles in the heating reduction. However, in an alkaline suspension of pH 11 or above, α
-Because it produces iron oxyhydroxide, zinc, aluminum and silicon compounds other than nickel are present dissolved in the suspension except those dissolved in the ionic state in α-iron oxyhydroxide particles, Since it is separated from the α-iron oxyhydroxide particles by subsequent washing with water, heat dehydration and reduction are performed without newly depositing a sintering inhibitor on the surface of the α-iron oxyhydroxide particles. For example, there is a drawback that sintering between particles and deformation of particles occur, and the magnetic properties of ferromagnetic metal particles obtained by reduction deteriorate. Further, this method shows a method of depositing a silicon compound on the surface of the particles of α-iron oxyhydroxide or iron oxide as a pretreatment of at least one step of heat dehydration and heat reduction. By heating and reducing particles coated with a silicon compound, sintering and deformation of particles are suppressed, and basic magnetic properties such as coercive force are certainly improved. However, the ferromagnetic metal particles obtained by reduction tend to aggregate into a bundle, and since the silicon compound is mainly present on the particle surface, higher fatty acids and lubricants generally added as lubricants when taped are used. It has a drawback that it is difficult to adsorb the binder, and therefore high dispersion at the time of forming a tape cannot be obtained, and the magnetic characteristics of the tape are deteriorated.

本発明の目的は、上記従来技術の欠点をなくし、優れた
分散性および磁気特性を有するとともに、その表面に存
在する異種金属の量をコントロールし、且つ高級脂肪酸
やバインダーの吸着力の優れた強磁性金属粒子の製造方
法を提供することにある。
The object of the present invention is to eliminate the above-mentioned drawbacks of the prior art, to have excellent dispersibility and magnetic properties, to control the amount of dissimilar metals present on the surface thereof, and to have an excellent strength of adsorption of higher fatty acids and binders. It is to provide a method for producing magnetic metal particles.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明は、(1)第一鉄塩、アルカリ化合物、ニツケル
化合物及びアルミニウム化合物を含む水懸濁液に酸素含
有ガスを通じて該懸濁液内で酸化反応を行、ニツケル及
びアルミニウムを固溶したα−オキシ水酸化鉄粒子を合
成し、これを過水洗した後、再び水に懸濁させて水懸
濁液とし、該懸濁中で前記ニツケル及びアルミニウムを
固溶したα−オキシ水酸化鉄粒子の表面にアルミナ水和
物を被着させ、またはけい素化合物およびアルミナ水和
物を被着させ、得られた粒子を別、乾燥し、その後非
還元性のガス雰囲気中で400℃以上で加熱焼成し、次い
で還元することを特徴とする強磁性金属粒子の製造方法
に関する。
The present invention provides (1) an aqueous suspension containing a ferrous salt, an alkali compound, a nickel compound and an aluminum compound which is subjected to an oxidation reaction by passing an oxygen-containing gas to the solid solution of nickel and aluminum. -Synthesized iron oxyhydroxide particles, washed with excess water, and then suspended again in water to form an aqueous suspension, and in the suspension, α-iron oxyhydroxide particles in which nickel and aluminum are solid-dissolved Alumina hydrate, or silicon compound and alumina hydrate is applied to the surface of, and the obtained particles are separated, dried, and then heated at 400 ° C or higher in a non-reducing gas atmosphere. The present invention relates to a method for producing ferromagnetic metal particles, which comprises firing and then reducing.

本発明の他の特徴を示せば下記のようである。Other features of the present invention are as follows.

(2) 前記ニツケル化合物が、ニツケルの無機塩、ニ
ツケルの有機酸塩等の第一ニツケル塩のうち少なくとも
1種であることを特徴とする(1)に記載の強磁性金属
粒子の製造方法。
(2) The method for producing ferromagnetic metal particles according to (1), wherein the nickel compound is at least one kind of first nickel salt such as inorganic salt of nickel and organic acid salt of nickel.

(3) 前記アルミニウム化合物が、アルミニウムの無
機塩、アルミニウムの有機酸塩及びアルミナゾルのうち
少なくとも1種であることを特徴とする(1)又は
(2)に記載の強磁性金属粒子の製造方法。
(3) The method for producing ferromagnetic metal particles according to (1) or (2), wherein the aluminum compound is at least one kind of an inorganic salt of aluminum, an organic acid salt of aluminum, and an alumina sol.

(4) 前記ニツケル化合物の固溶量が、前記ニツケル
及びアルミニウムを固溶したα−オキシ水酸化鉄粒子の
鉄原子に対し、ニツケル原子として0.2〜7重量%であ
ることを特徴とする(1)、(2)または(3)に記載
の強磁性金属粒子の製造方法。
(4) The solid solution amount of the nickel compound is 0.2 to 7% by weight as nickel atoms with respect to the iron atoms of the α-iron oxyhydroxide particles in which nickel and aluminum are solid solution (1) ), (2) or (3), the method for producing ferromagnetic metal particles.

(5) 前記アルミニウム化合物の固溶量が、前記ニツ
ケル及びアルミニウムを固溶したα−オキシ水酸化鉄粒
子の鉄原子に対し、アルミニウム原子として0.5〜3重
量%であることを特徴とする(1)、(2)、(3)ま
たは(4)に記載の強磁性金属粒子の製造方法。
(5) The solid solution amount of the aluminum compound is 0.5 to 3% by weight in terms of aluminum atom with respect to the iron atom of the α-iron oxyhydroxide particles in which nickel and aluminum are solid solution (1 ), (2), (3) or (4), the method for producing ferromagnetic metal particles.

(6) 前記ニツケル及びアルミニウムを固溶したα−
オキシ水酸化鉄粒子の表面にアルミナ水和物、またはけ
い素化合物およびアルミナ水和物を被着させるに当た
り、該粒子の水懸濁液に必要に応じて塩基性物質を加え
て該懸濁液のpHを7以上に保ちつつ、アルミニウム塩の
水溶液またはアルミナゾルを加える、又はけい酸もしく
はけい酸塩およびアルミニウムの塩の水溶液もしくはア
ルミナゾルを同時もしくは順次加えることを特徴とする
(1)〜(5)のいずれかに記載の強磁性金属粒子の製
造方法。
(6) α-containing the above nickel and aluminum as a solid solution
When depositing an alumina hydrate, or a silicon compound and an alumina hydrate on the surface of iron oxyhydroxide particles, a basic substance is added to the aqueous suspension of the particles if necessary, and the suspension is added. While maintaining the pH of 7 or more, an aqueous solution of an aluminum salt or an alumina sol is added, or an aqueous solution of a silicic acid or silicate and an aluminum salt or an alumina sol is added simultaneously or sequentially (1) to (5) 5. The method for producing ferromagnetic metal particles according to any one of 1.

(7) 前記けい酸またはけい酸塩の水溶液がオルトけ
い酸の水溶液、メタけい酸の水溶液、水溶液状シリカゲ
ル、アンモニアで安定化された水溶液状シリカゾル、ア
ルミニウムで変性された水溶液状シリカゾル及びけい酸
ナトリウム水溶液のうち少なくとも1種であることを特
徴とする(6)記載の強磁性金属粒子の製造方法。
(7) The aqueous solution of silicic acid or silicic acid is an aqueous solution of orthosilicic acid, an aqueous solution of metasilicic acid, an aqueous silica gel, an ammonia-stabilized aqueous silica sol, an aluminum-modified aqueous silica sol and silicic acid. The method for producing ferromagnetic metal particles according to (6), which is at least one kind of an aqueous sodium solution.

本発明に用いられるニツケル化合物としては、硫酸ニツ
ケル、硝酸ニツケル、塩化ニツケル、酢酸ニツケル、シ
ユウ酸ニツケル等の第一ニツケル塩を使用できるが、特
に硫酸ニツケルが好ましい。
As the nickel compound used in the present invention, the first nickel salt such as nickel sulfate, nickel nitrate, nickel chloride, nickel acetate, nickel oxalate and the like can be used, but nickel sulfate is particularly preferable.

前記ニツケルの固溶量は、ニツケル及びアルミニウムを
固溶したα−オキシ水酸化鉄粒子(以下Ni−Al固溶α−
オキシ水酸化鉄粒子と称する)の鉄原子に対し、Ni原子
として0.2〜7重量%とするのが好ましい。より好まし
くは0.5〜5重量%が好ましい。Ni固溶量が0.2重量%未
満ではNiの還元促進効果が十分に得られないため高い還
元温度が必要になり還元して得られる強磁性金属粒子に
焼結が生じやすく、また7重量%を超えるとNi−Al固溶
α−オキシ水酸化鉄粒子を合成する際、該Ni−Al固溶α
−オキシ水酸化鉄粒子の他に水酸化ニツケルの浮遊物が
生成し好ましくない。
The solid solution amount of the nickel is α-iron oxyhydroxide particles in which nickel and aluminum are solid-solved (hereinafter, Ni-Al solid solution α-
The amount of Ni atom is preferably 0.2 to 7% by weight based on the iron atom of the iron oxyhydroxide particles). It is more preferably 0.5 to 5% by weight. If the solid solution amount of Ni is less than 0.2% by weight, the effect of accelerating the reduction of Ni cannot be sufficiently obtained, so that a high reduction temperature is required and the ferromagnetic metal particles obtained by the reduction tend to sinter. When it exceeds the Ni-Al solid solution α-iron oxyhydroxide particles are synthesized, the Ni-Al solid solution α
-In addition to iron oxyhydroxide particles, suspended matter of nickel hydroxide is generated, which is not preferable.

本発明に用いられるアルミニウム化合物としては、硫酸
アルミニウム、塩化アルミニウム、硝酸アルミニウム、
リン酸アルミニウム、アルミン酸塩等のアルミニウムの
無機塩、乳酸アルミニウム等のアルミニウムの有機酸塩
およびアルミナゾルの少なくとも1種を用いることがで
きるが、これらのうち硫酸アルニウム及びアルミン酸ナ
トリウムが好ましい。
As the aluminum compound used in the present invention, aluminum sulfate, aluminum chloride, aluminum nitrate,
At least one of an inorganic salt of aluminum such as aluminum phosphate and aluminate, an organic acid salt of aluminum such as aluminum lactate, and alumina sol can be used, and among these, aluminum sulphate and sodium aluminate are preferable.

前記アルミニウムの固溶量は、Ni−Al固溶α−オキシ水
酸化鉄粒子の鉄原子に対し、Al原子として0.5〜3重量
%とするのが好ましい。Al固溶量が0.5重量%未満では
還元して得られる強磁性金属粒子にちぎれや焼結が生じ
ることがあり、また3重量%を超えると、Ni−Al固溶α
−オキシ水酸化鉄粒子の針状性が崩れるため、還元して
得られる強磁性金属粒子の針状比が維持できず、保磁力
が低下することがある。
The solid solution amount of aluminum is preferably 0.5 to 3% by weight as Al atom with respect to the iron atom of Ni-Al solid solution α-iron oxyhydroxide particles. If the amount of Al solid solution is less than 0.5% by weight, the ferromagnetic metal particles obtained by reduction may be cracked or sintered, and if it exceeds 3% by weight, Ni-Al solid solution α
Since the acicularity of the iron oxyhydroxide particles is lost, the acicularity ratio of the ferromagnetic metal particles obtained by reduction cannot be maintained, and the coercive force may decrease.

本発明でNiおよびAlを固溶させる目的はα−オキシ水酸
化鉄粒子の針状比調整を可能にすることである。強磁性
金属粒子の保磁力は形状異方性によつて発現するので、
その出発原料であるα−オキシ水酸化鉄粒子の形状、特
に針状比の調整は特に重要である。第1図に固溶させる
NiおよびAlを各々変化させたときのα−オキシ水酸化鉄
粒子の針状比の変化を示すが、Niは針状比を大きくする
効果があり、一方Alは針状比を小さくする効果があり、
両者の組み合せによつて針状比が調整できる。またNiに
は還元促進の効果があり、一方Alには還元の際の焼結防
止の効果もある程度である。
The purpose of solid solution of Ni and Al in the present invention is to enable adjustment of the acicular ratio of α-iron oxyhydroxide particles. Since the coercive force of ferromagnetic metal particles is expressed by shape anisotropy,
It is particularly important to adjust the shape of the α-iron oxyhydroxide particles as the starting material, especially the acicular ratio. Solid solution in Fig. 1
The changes in the acicular ratio of α-iron oxyhydroxide particles are shown when Ni and Al are changed.Ni has the effect of increasing the acicular ratio, while Al has the effect of decreasing the acicular ratio. Yes,
The needle ratio can be adjusted by combining the two. Further, Ni has an effect of promoting reduction, while Al has an effect of preventing sintering at the time of reduction to some extent.

本発明に用いられる第一鉄塩としては、例えば硫酸第一
鉄、塩化第一鉄などが挙げられる。
Examples of the ferrous salt used in the present invention include ferrous sulfate and ferrous chloride.

本発明に用いられるアルカリ化合物としては水酸化ナト
リウム、水酸化カリウムなどが挙げられる。該アルカリ
化合物の使用量は、第一鉄塩に対して1.5g当量以上が好
ましい。
Examples of the alkaline compound used in the present invention include sodium hydroxide and potassium hydroxide. The amount of the alkaline compound used is preferably 1.5 g equivalent or more with respect to the ferrous salt.

Ni−Al固溶α−オキシ水酸化鉄粒子を合成する際の反応
温度は5〜60℃が好ましい。また酸素含有ガスとしては
空気が好ましい。
The reaction temperature when synthesizing the Ni-Al solid solution α-iron oxyhydroxide particles is preferably 5 to 60 ° C. Air is preferable as the oxygen-containing gas.

本発明において、前記で得られたNi−Al固溶α−オキシ
水酸化鉄粒子へのアルミナ水和物の被着、またはけい素
化合物およびアルミナ水和物の被着は、例えば次のよう
にして行うことができる。
In the present invention, the deposition of the alumina hydrate, or the deposition of the silicon compound and the alumina hydrate on the Ni-Al solid solution α-iron oxyhydroxide particles obtained above is performed, for example, as follows. Can be done by

まず、前記合成で得られたNi−Al固溶α−オキシ水酸化
鉄粒子の水懸濁液のpHが10.0以下となるまで該粒子を水
洗する。水洗が不充分な場合、該粒子の表面に付着して
いるナトリウム等のイオンが加熱還元工程で焼結を助長
するため好ましくない。次に該水洗された粒子の水懸濁
液に有機酸、好ましくは酢酸等の水溶性カルボン酸を加
えるかまたは有機酸を加えた水に前記水洗された粒子を
加えてpH4.0以下、好ましくはpH2.0〜3.5の水懸濁液と
し、Ni−Al固溶α−オキシ水酸化鉄粒子を単一粒子まで
均一に分散させる。次にアンモニア、モノエタノールア
ミン等の塩基性物質を加えてpH7.0〜12.0、より好まし
くはpH8.0〜11.0に維持しながらアルミニウム塩の水溶
液またはアルミナゾルを徐々に加える、又はけい酸もし
くはけい酸塩の水溶液及びアルミニウム塩の水溶液もし
くはアルミナゾルを徐々に加える。けい素化合物及びア
ルミナ水和物を被着させる場合は、けい素化合物源を先
に加えても、アルミナ水和物源を先に加えても、あるい
は両者を同時に加えても良い。その後熟成させるが、熟
成時間は1〜2時間が好ましい。
First, the Ni-Al solid solution α-iron oxyhydroxide particles obtained by the above-mentioned synthesis are washed with water until the pH of the aqueous suspension becomes 10.0 or less. Insufficient washing with water is not preferable because ions such as sodium adhering to the surface of the particles promote sintering in the heating reduction step. Next, an organic acid, preferably a water-soluble carboxylic acid such as acetic acid is added to the water suspension of the washed particles, or the washed particles are added to water containing an organic acid to have a pH of 4.0 or less, preferably Is an aqueous suspension having a pH of 2.0 to 3.5, and Ni-Al solid solution α-iron oxyhydroxide particles are uniformly dispersed up to a single particle. Next, ammonia, a basic substance such as monoethanolamine is added to slowly add an aqueous solution of an aluminum salt or an alumina sol while maintaining pH 7.0 to 12.0, more preferably pH 8.0 to 11.0, or silicic acid or silicic acid. An aqueous solution of salt and an aqueous solution of aluminum salt or alumina sol is gradually added. When depositing the silicon compound and the alumina hydrate, the silicon compound source may be added first, the alumina hydrate source may be added first, or both may be added simultaneously. After that, aging is performed, but the aging time is preferably 1 to 2 hours.

上記けい酸またはけい酸塩の水溶液として、オルトけい
酸、メタケイ酸等の各種けい酸水溶液、シリカゾル、ア
ンモニアで安定化されたシリカゾル、アルミニウムで変
性されたシリカゾル、けい酸塩水溶液等が用いらる。こ
れらの水溶液またはゾルからのけい素の被着量は、けい
素原子としてNi−Al固溶α−オキシ水酸化鉄粒子の鉄原
子に対し、7重量%以内が好ましい。7重量%を超える
と還元が抑制され、所望の高飽和磁化量が得られないこ
とがある。
As the aqueous solution of silicic acid or silicate, various silicic acid aqueous solutions such as orthosilicic acid and metasilicic acid, silica sol, ammonia-stabilized silica sol, aluminum-modified silica sol, and silicate aqueous solution are used. . The amount of silicon deposited from these aqueous solutions or sols is preferably within 7% by weight with respect to the iron atoms of the Ni-Al solid solution α-iron oxyhydroxide particles as silicon atoms. If it exceeds 7% by weight, the reduction may be suppressed and the desired high saturation magnetization may not be obtained.

上記アルミニウム塩の水溶液としては、硫酸アルミニウ
ム、塩化アルミニウム、硝酸アルミニウム、リン酸アル
ミニウム、アルミン酸ナトリウム等の無機塩、ギ酸アル
ミニウム、酢酸アルミニウム、乳酸アルミニウム等の有
機酸塩等の水溶液が用いられる。これらの水溶液または
アルミナゾルからのアルミニウムの被着量は、Ni−Al固
溶α−オキシ水酸化鉄粒子の鉄原子に対し、アルミニウ
ム原子として0.5〜7重量%が好ましく、より好ましく
は1〜5重量%である。0.5重量%未満では還元して得
られる磁性粉粒子表面に存在するAlの量が少なすぎるた
め、焼結防止の効果があまり見られないし、高級脂肪酸
やバインダー吸着量の向上も見られない。また7重量%
を超えると還元が抑制され、所望の高飽和磁化量が得ら
れないことがある。
As the aqueous solution of the aluminum salt, an aqueous solution of an inorganic salt such as aluminum sulfate, aluminum chloride, aluminum nitrate, aluminum phosphate and sodium aluminate, or an organic acid salt such as aluminum formate, aluminum acetate and aluminum lactate is used. The amount of aluminum deposited from these aqueous solutions or alumina sols is preferably 0.5 to 7% by weight as aluminum atoms, more preferably 1 to 5% by weight, with respect to the iron atoms of Ni-Al solid solution α-iron oxyhydroxide particles. %. If the amount is less than 0.5% by weight, the amount of Al existing on the surface of the magnetic powder particles obtained by reduction is too small, so that the effect of preventing sintering is not seen so much, and the higher fatty acid and binder adsorption amount is not improved. 7% by weight
If it exceeds, reduction may be suppressed and a desired high saturation magnetization amount may not be obtained.

このようにして得られたアルミナ水和物が被着された、
又はけい素化合物およびアルミナ水和物が被着されたNi
−Al固溶α−オキシ水酸化鉄を含有する懸濁液は、過
等の方法で分別した後、必要に応じて水洗し、その後乾
燥して乾燥α−オキシ水酸化鉄とされる。このときの乾
燥温度は100〜180℃が好ましい。
The alumina hydrate thus obtained was deposited,
Or Ni coated with silicon compound and alumina hydrate
The suspension containing -Al solid solution α-iron oxyhydroxide is fractionated by an excessive method, washed with water as necessary, and then dried to obtain dry α-iron oxyhydroxide. The drying temperature at this time is preferably 100 to 180 ° C.

得られた乾燥α−オキシ水酸化鉄は加熱焼成して一旦針
状晶へマタイトとされた後、還元が施される。加熱焼成
は、通常アルゴン、窒素および空気等の非還元性ガス雰
囲気中、400℃以上、好ましくは400〜800℃の温度で行
う。また還元は通常水素気流中、300〜600℃の温度で行
う。これらの温度は、Ni−Al固溶α−オキシ水酸化鉄粒
子の大きさ、非表面積および各種金属の被着量等によつ
て適宜決定される。
The dried α-iron oxyhydroxide thus obtained is heated and calcined to once be made into acicular crystals, and then reduced. The heating and calcination is usually performed in a non-reducing gas atmosphere such as argon, nitrogen and air at a temperature of 400 ° C. or higher, preferably 400 to 800 ° C. The reduction is usually performed in a hydrogen stream at a temperature of 300 to 600 ° C. These temperatures are appropriately determined depending on the size of the Ni-Al solid solution α-iron oxyhydroxide particles, the non-surface area, the deposition amount of various metals, and the like.

〔実施例〕〔Example〕

以下、本発明を実施例により詳しく説明する。なお、下
記例中、%は特に断らない限り重量%を意味する。
Hereinafter, the present invention will be described in detail with reference to Examples. In the following examples,% means% by weight unless otherwise specified.

実施例1 27%水酸化ナトリウム水溶液5.6kgにアルミン酸ナトリ
ウム水溶液(Al濃度:10%)21.0gを混合した水溶液に、
硫酸ニツケル水溶液(Ni濃度:1.0%)630gを混合した5
%硫酸第一鉄水溶液11.4kgを添加した後、空気を20/
分の速度で吹き込みながら撹拌し、温度を30℃に保つて
Ni−Al固溶α−オキシ水酸化鉄粒子を合成した。Ni及び
Alの固溶量の目標値は、Ni−Al固溶α−オキシ水酸化鉄
粒子の鉄原子に対し、Ni原子として3.0%、Al原子とし
て1.0%であつたが、実際に測定した固溶量も目標どお
りであつた。
Example 1 An aqueous solution prepared by mixing 5.6 kg of 27% aqueous sodium hydroxide solution with 21.0 g of aqueous sodium aluminate solution (Al concentration: 10%) was used.
Mixing 630 g of nickel sulfate aqueous solution (Ni concentration: 1.0%) 5
% After adding 11.4 kg of ferrous sulfate aqueous solution, add 20 / air
Stir while blowing at a minute speed, and keep the temperature at 30 ° C.
Ni-Al solid solution α-iron oxyhydroxide particles were synthesized. Ni and
The target value of the solid solution amount of Al was 3.0% as Ni atom and 1.0% as Al atom with respect to the iron atom of Ni-Al solid solution α-iron oxyhydroxide particles, but the solid solution actually measured was The amount was on target.

得られたNi−Al固溶α−オキシ水酸化鉄の粒子を過
し、該粒子の水懸濁液のpHが9.0以下になるまで水洗し
た。該Ni−Al固溶α−オキシ水酸化鉄粒子を再び水に分
散させた懸濁液8000g(該粒子濃度:1.5%)に30%酢酸
水溶液を添加して水懸濁液のpHを3.0に調整して30分間
撹拌し、次いで28%アンモニア水を徐々に加え、水懸濁
液のpHを10.1に調整した。これを30分間撹拌した後、け
い酸ソーダ水溶液(Si濃度:1.0%)75.5gを徐々に加え
て30分間撹拌し、次に硫酸アルミニウム水溶液(Al濃
度:1.5%)201.3gを徐々に加えて60分間撹拌した。その
後、過、水洗し、けい素化合物およびアルミナ水和物
が被着されたα−オキシ水酸化鉄粒子のケーキを得た。
このケーキを130℃で一夜乾燥し、第1表に示す固溶量
および被着量を有する乾燥α−オキシ水酸化鉄粒子を得
た。
The obtained particles of Ni-Al solid solution α-iron oxyhydroxide were passed through and washed with water until the pH of the aqueous suspension of the particles became 9.0 or less. The pH of the aqueous suspension was adjusted to 3.0 by adding 30% acetic acid aqueous solution to a suspension (8000 g) of the Ni-Al solid solution α-iron oxyhydroxide particles dispersed again in water (the particle concentration: 1.5%). The mixture was adjusted and stirred for 30 minutes, and then 28% aqueous ammonia was gradually added to adjust the pH of the aqueous suspension to 10.1. After stirring this for 30 minutes, slowly add 75.5 g of sodium silicate aqueous solution (Si concentration: 1.0%) and stir for 30 minutes, then gradually add 201.3 g of aluminum sulfate aqueous solution (Al concentration: 1.5%). Stir for 60 minutes. Then, it was filtered and washed with water to obtain a cake of α-iron oxyhydroxide particles coated with a silicon compound and alumina hydrate.
The cake was dried overnight at 130 ° C. to obtain dry α-iron oxyhydroxide particles having the solid solution amount and the adhered amount shown in Table 1.

得られた乾燥α−オキシ水酸化鉄粒子100gを、N2雰囲気
下650℃で30分間加熱焼成した後、H2流量50/分、温
度500℃で4時間還元した。次いで20℃に冷却した後、
酸素濃度0.2%のN2と空気の混合ガスを10/分で吹き
込みながら24時間かけて徐々に表面を酸化させて安定化
した強磁性金属粉末を得た。この粉末のTEM(透過型電
子顕微鏡、30000倍)写真を第2図に示す。またこの粉
末の比表面積および10kOeの磁界での磁気特性を測定し
た。その結果を第1表に示す。
100 g of the obtained dried α-iron oxyhydroxide particles was heated and calcined in an N 2 atmosphere at 650 ° C. for 30 minutes, and then reduced at a H 2 flow rate of 50 / min and a temperature of 500 ° C. for 4 hours. Then after cooling to 20 ℃,
A stabilized ferromagnetic metal powder was obtained by gradually oxidizing the surface for 24 hours while blowing a mixed gas of N 2 and air having an oxygen concentration of 0.2% at 10 / min. A TEM (transmission electron microscope, 30,000 times) photograph of this powder is shown in FIG. The specific surface area of this powder and the magnetic characteristics in a magnetic field of 10 kOe were measured. The results are shown in Table 1.

次に50%メチルエチルケトン及び50%トルエンの混合溶
媒80g中に高級脂肪酸(ミリスチン酸)を0.5%の濃度に
なるように調整し、上記の強磁性粉末1.6gを入れてミリ
スチン酸を24時間かけて吸着させ、吸着前後のミリスチ
ン酸の濃度差から吸着量を測定した。またバインダー
(MR−110:日本ゼオン製)についても同様の方法で96時
間かけて吸着させて、その吸着量を測定した。その結果
を第1表に示す。
Next, adjust higher fatty acid (myristic acid) to a concentration of 0.5% in 80 g of a mixed solvent of 50% methyl ethyl ketone and 50% toluene, add 1.6 g of the above ferromagnetic powder, and use myristic acid for 24 hours. After adsorption, the amount of adsorption was measured from the difference in myristic acid concentration before and after adsorption. The binder (MR-110: manufactured by Nippon Zeon Co., Ltd.) was also adsorbed by the same method for 96 hours, and the adsorption amount was measured. The results are shown in Table 1.

さらに該粉末55gに塩化酢酸ビニルとポリウレタンから
なるバインダー12.4g、硬化剤0.7g、研磨剤3.8g、分散
剤2.8gおよびトルエン、メチルエチルケトン、メチルイ
ソブチルケトン、シクロヘキサノンからなる溶剤171gを
サンドミルに一括して仕込み、毎分1850回転で2時間撹
拌して塗料を得た。これをポリエステルフイルム上に、
磁場3000Gの中で配向し、テープを作成した。5kOeの磁
界でこのテープの磁気特性を測定した。その結果を第1
表に示す。
Further, 55 g of the powder, 12.4 g of binder made of vinyl chloride and polyurethane, 0.7 g of curing agent, 3.8 g of polishing agent, 2.8 g of dispersant and 171 g of solvent consisting of toluene, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone were put together in a sand mill. The mixture was charged and stirred at 1850 rpm for 2 hours to obtain a paint. Put this on the polyester film,
The tape was prepared by orienting in a magnetic field of 3000G. The magnetic properties of this tape were measured in a magnetic field of 5 kOe. The result is first
Shown in the table.

第1図および第1表から、得られた強磁性金属粒子は優
れた形状保持性、分散性および磁気特性を有し、また高
級脂肪酸やバインダーの吸着量が大きいことがわかる。
It can be seen from FIG. 1 and Table 1 that the obtained ferromagnetic metal particles have excellent shape retention, dispersibility and magnetic properties, and have a large adsorption amount of higher fatty acids and binders.

実施例2 実施例1の被着処理において、けい酸ソーダ水溶液(Si
濃度:1.0%)75.5gを加えることなしに硫酸アルミニウ
ム水溶液(Al濃度:1.5%)201.3g加えたこと、および還
元温度を460℃に変更したこと以外は実施例1と全く同
様の処理をして、強磁性金属粉末の磁気特性、吸着量、
テープの磁気特性等を測定した。その結果を第1表に示
す。
Example 2 In the deposition treatment of Example 1, a sodium silicate aqueous solution (Si
The same treatment as in Example 1 was performed except that 201.3 g of an aluminum sulfate aqueous solution (Al concentration: 1.5%) was added without adding 75.5 g (concentration: 1.0%) and the reduction temperature was changed to 460 ° C. The magnetic properties of the ferromagnetic metal powder, the amount of adsorption,
The magnetic properties of the tape were measured. The results are shown in Table 1.

第1表から、得られた強磁性金属粒子は優れた磁気特性
を有し、また高級脂肪酸やバインダーの吸着量が大きい
ことがわかる。
It can be seen from Table 1 that the obtained ferromagnetic metal particles have excellent magnetic properties and have a large adsorption amount of higher fatty acids and binders.

実施例3 実施例1で硫酸ニツケル水溶液(Ni濃度:1.0%)630gを
混合した5%硫酸第一鉄水溶液11.4kgを、硫酸ニツケル
水溶液(Ni濃度:1.0%)210gを混合した5%硫酸第一鉄
水溶液11.4gに変更したこと以外は実施例1と全く同様
の処理をして、強磁性金属粉末の磁気特性、吸着量、テ
ープの磁気特性等を測定した。その結果を第1表に示
す。
Example 3 11.4 kg of 5% ferrous sulfate aqueous solution mixed with 630 g of nickel sulfate aqueous solution (Ni concentration: 1.0%) in Example 1 was mixed with 210 g of nickel sulfate aqueous solution (Ni concentration: 1.0%) of 5% sulfuric acid solution. Except for changing to 11.4 g of an aqueous solution of iron, the same treatments as in Example 1 were carried out to measure the magnetic properties of the ferromagnetic metal powder, the adsorption amount, the magnetic properties of the tape, and the like. The results are shown in Table 1.

第1表から、得られた強磁性金属粒子は優れた磁気特性
を有し、また高級脂肪酸やバインダーの吸着量の大きい
ことがわかる。
It can be seen from Table 1 that the obtained ferromagnetic metal particles have excellent magnetic properties and have a large adsorption amount of higher fatty acids and binders.

比較例1 実施例1で合成したNi−Al固溶α−オキシ水酸化鉄粒子
を過、水洗した後、得られたケーキを被着処理するこ
となしに130℃で一夜乾燥し、乾燥α−オキシ水酸化鉄
粒子を得た。得られた乾燥α−オキシ水酸化鉄粒子100g
を、N2雰囲気下600℃で30分間加熱焼成した後、H2流量5
0/分、温度380℃で4時間還元した。次いで実施例1
と同様に表面酸化を行い、安定化した強磁性金属粉末を
得た。この粒子のTEM写真を第3図から明らかなよう
に、還元温度が低いにもかかわらず、この粉末は焼結し
ていた。この粉末を用いて実施例1と同様にして強磁性
金属粉末の磁気特性、吸着量、テープの磁気特性等を測
定した。その結果を第1表に示す。第1表から明らかな
ように、保磁力、角型比等の磁気特性が実施例よりはる
かに劣り、また高級脂肪酸及びバインダーの吸着量が小
さいことがわかる。この比較例1はNi−Al固溶α−オキ
シ水酸化鉄粒子を被着処理することなしに還元すれば、
焼結防止に何ら効果がないことを示している。
Comparative Example 1 After the Ni-Al solid solution α-iron oxyhydroxide particles synthesized in Example 1 were washed with water and dried, the cake thus obtained was dried overnight at 130 ° C. without any coating treatment, and dried α- Iron oxyhydroxide particles were obtained. 100 g of the obtained dried α-iron oxyhydroxide particles
Was heated and baked in an N 2 atmosphere at 600 ° C for 30 minutes, and then the H 2 flow rate of 5
Reduction was carried out at 0 / min and a temperature of 380 ° C. for 4 hours. Then Example 1
The surface was oxidized in the same manner as in 1. to obtain a stabilized ferromagnetic metal powder. As is clear from the TEM photograph of the particles in FIG. 3, the powder was sintered even though the reduction temperature was low. Using this powder, magnetic properties of the ferromagnetic metal powder, adsorption amount, magnetic properties of the tape and the like were measured in the same manner as in Example 1. The results are shown in Table 1. As is clear from Table 1, the magnetic properties such as coercive force and squareness ratio are much inferior to those of the examples, and the adsorption amount of higher fatty acid and binder is small. In this Comparative Example 1, if the Ni-Al solid solution α-iron oxyhydroxide particles were reduced without applying a deposition treatment,
It shows that there is no effect in preventing sintering.

比較例2 実施例1の被着処理において、けい酸ソーダ水溶液(Si
濃度:1.0%)75.5gを188.8gに変更したこと、および硫
酸アルミニウム水溶液(Al濃度:1.5%)201.3gを加えな
かつたこと以外は実施例1と全く同様の処理をして強磁
性金属粉末を得た。この粒子のTEM写真を第4図に示
す。第4図からこの粒子は束状に凝集していることがわ
かる。この強磁性金属粉末の磁気特性、吸着量、テープ
の磁気特性等を実施例1と同様にして測定した。その結
果を第1表に示す。第1表から明らかなようにこの粉末
の磁気特性は優れているが、高級脂肪酸およびバインダ
ーの吸着量が小さく、またテープの残留磁束密度、角型
比が実施例に比べて劣つていることが明らかである。こ
の比較例2は強磁性金属粉末の基本的磁気特性が優れて
いても、高級脂肪酸やバインダーとのマツチングが良好
でないと、テープ化した場合に特性が劣化することを示
している。
Comparative Example 2 In the deposition treatment of Example 1, a sodium silicate aqueous solution (Si
Concentration: 1.0%) 75.5 g was changed to 188.8 g, and the same treatment as in Example 1 was carried out except that 201.3 g of aluminum sulfate aqueous solution (Al concentration: 1.5%) was not added. Got A TEM photograph of these particles is shown in FIG. It can be seen from FIG. 4 that the particles are aggregated in a bundle. The magnetic properties, adsorption amount, magnetic properties of the tape, etc. of this ferromagnetic metal powder were measured in the same manner as in Example 1. The results are shown in Table 1. As is clear from Table 1, the magnetic properties of this powder are excellent, but the adsorption amount of higher fatty acid and binder is small, and the residual magnetic flux density and squareness ratio of the tape are inferior to those of the examples. it is obvious. This Comparative Example 2 shows that even if the basic magnetic characteristics of the ferromagnetic metal powder are excellent, the characteristics are deteriorated when formed into a tape unless the matching with the higher fatty acid or the binder is good.

比較例3 27%水酸化ナトリウム水溶液5.6kgにアルミン酸ナトリ
ウム水溶液(Al濃度:10%)21.0gを混合した水溶液に、
5%硫酸第一鉄11.4kgを添加した後、実施例1と同様の
方法で、Al固溶α−オキシ水酸化鉄粒子を合成した。こ
のAl固溶α−オキシ水酸化鉄粒子を過、水洗した後、
得られたケーキを被着処理することなしに130℃で一夜
乾燥し、乾燥α−オキシ水酸化鉄粒子を得た。得られた
乾燥α−オキシ水酸化鉄粒子100gをH2流量50/分、温
度400℃で4時間還元した。次いで実施例1と同様にし
て表面酸化を行い、安定化した強磁性金属粉末を得た。
この粒子のTEM写真を第5図に示す。第5図から明らか
なように、還元温度が低いにもかかわらず、この粉末は
焼結していた。この粉末を用いて実施例1と同様にして
強磁性金属粉末の磁気特性、吸着量、テープの磁気特性
等を測定した。その結果を第1表に示す。第1表から明
らかなように、この粉末は保磁力、角型比等の磁気特性
が実施例の粉末およびはるかに劣り、また高級脂肪酸及
びバインダーの吸着量が小さいことがわかる。この比較
例3はAl固溶α−オキシ水酸化鉄粒子を被着処理するこ
となしに還元すれば、焼結防止に何ら効果がないことを
示している。
Comparative Example 3 An aqueous solution prepared by mixing 21.0 g of an aqueous sodium aluminate solution (Al concentration: 10%) with 5.6 kg of a 27% aqueous sodium hydroxide solution,
After adding 11.4 kg of 5% ferrous sulfate, Al solid solution α-iron oxyhydroxide particles were synthesized in the same manner as in Example 1. After passing over the Al solid solution α-iron oxyhydroxide particles and washing with water,
The obtained cake was dried overnight at 130 ° C. without any coating treatment to obtain dried α-iron oxyhydroxide particles. 100 g of the obtained dry α-iron oxyhydroxide particles was reduced for 4 hours at a H 2 flow rate of 50 / min and a temperature of 400 ° C. Then, the surface was oxidized in the same manner as in Example 1 to obtain a stabilized ferromagnetic metal powder.
A TEM photograph of these particles is shown in FIG. As is clear from FIG. 5, the powder was sintered despite the low reduction temperature. Using this powder, magnetic properties of the ferromagnetic metal powder, adsorption amount, magnetic properties of the tape and the like were measured in the same manner as in Example 1. The results are shown in Table 1. As is clear from Table 1, this powder has much poorer magnetic properties such as coercive force and squareness than those of the powder of the example, and the adsorption amount of higher fatty acid and binder is small. This Comparative Example 3 shows that if the Al solid solution α-iron oxyhydroxide particles are reduced without being subjected to the coating treatment, there is no effect in preventing sintering.

比較例4 27%水酸化ナトリウム水溶液5.6kgに、硫酸ニツケル水
溶液(Ni濃度:1.0%)630gを混合した5%硫酸第一鉄1
1.4kgを添加した後、実施例1と同様の方法で、Ni固溶
α−オキシ水酸化鉄粒子を合成した。このNi固溶α−オ
キシ水酸化鉄粒子を用いて実施例1と全く同様の被着、
加熱焼成、還元、酸化安定化処理をして強磁性金属粒子
を得た。この粒子のTEM写真を第6図に示す。第6図か
らわかるように、この粉末は長軸が大きく、また束状に
凝集してTEM写真上の分散性が第1図に比べ劣つている
ことが明らかである。この粉末を用いて実施例1と同様
に強磁性金属粉末の磁気特性、吸着量、テープの磁気特
性等を測定した。その結果を第1表に示す。第1表から
明らかなように、この強磁性金属粉末は保磁力が実施例
に比べかなり大きく、また高級脂肪酸及びバインダーの
吸着量がかなり低い。またテープの角型比が劣つてい
る。この比較例4はNi固溶α−オキシ水酸化鉄粒子を合
成すると、粒子の針状比が大きくなるために、続く被
着、還元処理において作られる強磁性金属粒子の保磁力
が大きくなり、その調整が困難であること、また針状比
が大きくなるために、テープ化時の高分散が得られず、
角型比等の磁気特性が劣化することを示している。
Comparative Example 4 5.6 kg of 27% sodium hydroxide aqueous solution and 630 g of nickel sulfate aqueous solution (Ni concentration: 1.0%) were mixed to prepare 5% ferrous sulfate 1
After adding 1.4 kg, Ni solid solution α-iron oxyhydroxide particles were synthesized in the same manner as in Example 1. Using the Ni solid solution α-iron oxyhydroxide particles, the same deposition as in Example 1,
Ferromagnetic metal particles were obtained by heating, firing, reduction and oxidation stabilization treatment. A TEM photograph of these particles is shown in FIG. As can be seen from FIG. 6, it is clear that this powder has a large major axis and is aggregated in a bundle shape, and the dispersibility on a TEM photograph is inferior to that in FIG. Using this powder, magnetic properties of the ferromagnetic metal powder, adsorption amount, magnetic properties of the tape and the like were measured in the same manner as in Example 1. The results are shown in Table 1. As is clear from Table 1, this ferromagnetic metal powder has a considerably higher coercive force than the examples, and the adsorption amount of the higher fatty acid and the binder is considerably low. Also, the squareness of the tape is inferior. In this Comparative Example 4, when Ni solid solution α-iron oxyhydroxide particles were synthesized, the acicular ratio of the particles was increased, and thus the coercive force of the ferromagnetic metal particles produced in the subsequent deposition and reduction treatments was increased, Since the adjustment is difficult and the needle-like ratio is large, high dispersion at the time of tape formation cannot be obtained,
It shows that the magnetic characteristics such as the squareness ratio are deteriorated.

比較例5 27%水酸化ナトリウム水溶液5.6kgに5%硫酸第一鉄水
溶液11.4kgを添加した後、空気を20/分の速度で吹き
込みながら撹拌し、温度を30℃に保つてα−オキシ水酸
化鉄粒子を合成した。得られたα−オキシ水酸化鉄粒子
を用いて実施例1と同様の被着、加熱焼成、還元、酸化
安定化処理をして強磁性金属粒子を得た。この粉末を用
いて実施例1と同様にして強磁性金属粉末の磁気特性、
吸着量、テープの磁気特性等を測定した。その結果を第
1表に示す。この粉末は難還元性のために、飽和磁化量
が実施例に比べかなり小さく、また保磁力、残留磁束密
度および角型比が実施例に比べ劣つていた。この比較例
5はNi等の還元促進効果のある異種元素を添加しない限
り、特に還元処理において充分な特性を持つた強磁性金
属を得ることができないが、Niを添加するだけでは本発
明の目的は達せられないということを示している。
Comparative Example 5 After adding 11.4 kg of a 5% ferrous sulfate aqueous solution to 5.6 kg of a 27% aqueous sodium hydroxide solution, stirring was performed while blowing air at a rate of 20 / min, and the temperature was kept at 30 ° C. to obtain α-oxy water. Iron oxide particles were synthesized. The obtained α-iron oxyhydroxide particles were subjected to the same deposition, heating and firing, reduction and oxidation stabilization treatment as in Example 1 to obtain ferromagnetic metal particles. Using this powder in the same manner as in Example 1, the magnetic properties of the ferromagnetic metal powder,
The amount of adsorption and the magnetic properties of the tape were measured. The results are shown in Table 1. Due to the difficulty of reducing the powder, the saturation magnetization was considerably smaller than in the examples, and the coercive force, the residual magnetic flux density and the squareness ratio were inferior to the examples. In Comparative Example 5, a ferromagnetic metal having sufficient characteristics cannot be obtained particularly in the reduction treatment unless a heterogeneous element having a reduction promoting effect such as Ni is added. However, the addition of Ni is the only object of the present invention. Indicates that it cannot be reached.

比較例6 比較例5で合成したα−オキシ水酸化鉄を用いて、実施
例2と同様の被着、加熱焼成、還元、酸化安定化処理を
して強磁性金属粒子を得た。この粉末を用いて実施例1
と同様にして強磁性金属粉末の磁気特性、吸着量、テー
プの磁気特性等を測定した。その結果を第1表に示す。
この粉末も難還元性のために、飽和磁化量が実施例に比
べかなり小さく、また保磁力、残留磁束密度および角型
比並びに高級脂肪酸及びバインダーの吸着性が実施例の
粉末に比べ劣つている。
Comparative Example 6 Using the α-iron oxyhydroxide synthesized in Comparative Example 5, the same deposition, heating and calcination, reduction and oxidation stabilization treatment as in Example 2 were performed to obtain ferromagnetic metal particles. Example 1 using this powder
In the same manner as above, the magnetic properties of the ferromagnetic metal powder, the amount of adsorption, the magnetic properties of the tape, etc. were measured. The results are shown in Table 1.
Since this powder is also difficult to reduce, the saturation magnetization is considerably smaller than that in the examples, and the coercive force, the residual magnetic flux density, the squareness ratio, and the adsorptivity of higher fatty acids and binders are inferior to those of the examples. .

〔発明の効果〕 本発明によれば、α−オキシ水酸化鉄粒子に均一にNiお
よびAlを固溶させることによりα−オキシ水酸化粒子の
針状比調整を行え、また該Ni−Al固溶αオキシ水酸化鉄
粒子の表面にアルミナ水和物を被着させ、またはけい素
化合物及びアルミナ水和物を被着させ、焼成及び加熱還
元することにより、形状保持及び分散性が優れ、高級脂
肪酸やバインダーの吸着力が優れ、同時に優れた磁気特
性を有する強磁性金属鉄粒子が得られる。
[Effect of the Invention] According to the present invention, the acicular ratio of α-oxyhydroxide particles can be adjusted by uniformly dissolving Ni and Al in α-iron oxyhydroxide particles, and the Ni-Al solid By depositing alumina hydrate on the surface of molten α-iron oxyhydroxide particles, or by depositing silicon compound and alumina hydrate, and calcining and heating to reduce the shape retention and dispersibility, Ferromagnetic metal iron particles having excellent adsorption properties for fatty acids and binders and at the same time excellent magnetic properties can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図はNi及びAl固溶量を各々変化させたときのα−オ
キシ水酸化鉄粒子の平均針状比を示した図である。第2
図は実施例1で得られた強磁性金属粒子の構造のTEM
(透過型電子顕微鏡)写真図、第3図は比較例1で得ら
れた強磁性金属粒子の構造のTEM写真図、第4図は比較
例2で得られた強磁性金属粒子の構造のTEM写真図、第
5図は比較例3で得られた強磁性金属粒子の構造のTEM
写真図、第6図は比較例4で得られた強磁性金属粒子の
構造のTEM写真図である。
FIG. 1 is a view showing the average acicular ratio of α-iron oxyhydroxide particles when the solid solution amounts of Ni and Al were changed. Second
The figure shows a TEM of the structure of the ferromagnetic metal particles obtained in Example 1.
(Transmission electron microscope) photograph, FIG. 3 is a TEM photograph of the structure of the ferromagnetic metal particles obtained in Comparative Example 1, and FIG. 4 is a TEM of the structure of the ferromagnetic metal particles obtained in Comparative Example 2. Photograph and FIG. 5 are TEM images of the structure of the ferromagnetic metal particles obtained in Comparative Example 3.
The photograph and FIG. 6 are TEM photographs of the structure of the ferromagnetic metal particles obtained in Comparative Example 4.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01F 1/06 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display area H01F 1/06

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】第一鉄塩、アルカリ化合物、ニッケル化合
物及びアルミニウム化合物を含む懸濁液に酸素含有ガス
を通じて該懸濁液内で酸化反応を行い、ニッケル及びア
ルミニウムを固溶したα−オキシ水酸化鉄粒子を合成
し、これを濾過水洗した後、再び水に懸濁させて水懸濁
液とし、該懸濁液のpHを7以上に保ちつつ前記ニッケル
及びアルミニウムを固溶したα−オキシ水酸化鉄粒子の
表面にアルミナ水和物を被着させ、、またはけい素化合
物及びアルミナ水和物をを被着させ、得られた粒子を濾
別、乾燥し、その後非還元性のガス雰囲気中で400℃以
上で加熱焼成し、次いで還元する強磁性金属粒子の製造
方法であって、α−オキシ水酸化鉄に固溶させるニッケ
ルとアルミニウムの量が、α−オキシ水酸化鉄の鉄原子
に対してニッケル原子として0.5〜5重量%及びアルミ
ニウム原子として0.5〜3重量%であり、被着させるア
ルミニウム及びけい素の量が、鉄原子に対してアルミニ
ウム原子として1〜5重量%のアルミニウム、けい素原
子として7重量%以下のけい素であることを特徴とする
強磁性金属粒子の製造方法。
1. An α-oxy water in which nickel and aluminum are solid-dissolved by performing an oxidation reaction in a suspension containing a ferrous salt, an alkali compound, a nickel compound and an aluminum compound through an oxygen-containing gas. Iron oxide particles were synthesized, filtered and washed with water, and then suspended again in water to obtain a water suspension, and α-oxy in which nickel and aluminum were solid-dissolved while maintaining the pH of the suspension at 7 or more. Alumina hydrate is deposited on the surface of iron hydroxide particles, or a silicon compound and alumina hydrate are deposited, the particles obtained are filtered and dried, and then a non-reducing gas atmosphere In a method for producing ferromagnetic metal particles, which comprises heating and baking in an atmosphere of 400 ° C. or higher, and then reducing the amount of nickel and aluminum to be solid-solved in α-iron oxyhydroxide, iron atoms of α-iron oxyhydroxide are used. Against nickel atom 0.5 to 5% by weight and 0.5 to 3% by weight as an aluminum atom, and the amount of aluminum and silicon to be deposited is 1 to 5% by weight as an aluminum atom relative to an iron atom, and 7 as a silicon atom. A method for producing ferromagnetic metal particles, characterized in that the content of silicon is not more than wt%.
JP2232767A 1990-09-03 1990-09-03 Method for producing ferromagnetic metal particles Expired - Lifetime JPH0776365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2232767A JPH0776365B2 (en) 1990-09-03 1990-09-03 Method for producing ferromagnetic metal particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2232767A JPH0776365B2 (en) 1990-09-03 1990-09-03 Method for producing ferromagnetic metal particles

Publications (2)

Publication Number Publication Date
JPH04116110A JPH04116110A (en) 1992-04-16
JPH0776365B2 true JPH0776365B2 (en) 1995-08-16

Family

ID=16944424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2232767A Expired - Lifetime JPH0776365B2 (en) 1990-09-03 1990-09-03 Method for producing ferromagnetic metal particles

Country Status (1)

Country Link
JP (1) JPH0776365B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5919163B2 (en) * 1980-05-06 1984-05-02 日立マクセル株式会社 Method for producing magnetic metal powder
JPH0778243B2 (en) * 1988-07-26 1995-08-23 チッソ株式会社 Method for producing ferromagnetic metal fine particles with excellent dispersibility

Also Published As

Publication number Publication date
JPH04116110A (en) 1992-04-16

Similar Documents

Publication Publication Date Title
JPH0217603B2 (en)
JP3925640B2 (en) Spindle-like alloy magnetic particle powder for magnetic recording and production method thereof
JP3750414B2 (en) Spindle-shaped goethite particle powder, spindle-shaped hematite particle powder, spindle-shaped metal magnetic particle powder containing iron as a main component, and production method thereof
JP3337046B2 (en) Spindle-shaped metal magnetic particles containing cobalt and iron as main components and method for producing the same
JPH0776365B2 (en) Method for producing ferromagnetic metal particles
JPH02175806A (en) Manufacture of metal magnetic powder for magnetic recorder
JPH0776363B2 (en) Method for producing ferromagnetic metal particles
JP2805162B2 (en) Method for producing metal magnetic powder for magnetic recording
JP3303896B2 (en) Spindle-shaped iron-based metal magnetic particle powder and method for producing the same
JP3092649B2 (en) Method for producing spindle-shaped metal magnetic particles containing iron as a main component
JPH0776364B2 (en) Method for producing ferromagnetic metal particles
JPS63265823A (en) Method for coating metal compound on fine particles of acicular iron oxyhydroxide or the like
JP2965606B2 (en) Method for producing metal magnetic powder
JP3087808B2 (en) Manufacturing method of magnetic particle powder for magnetic recording
JPH0258322B2 (en)
JP3171223B2 (en) Method for producing acicular magnetic particle powder
JP2740922B2 (en) Method for producing metal magnetic powder for magnetic recording material
JP2001192211A (en) Method for manufacturing powdery particle of iron- based compound
JPS63140005A (en) Production of fine ferromagnetic metal particle powder
JP3141907B2 (en) Method for producing spindle-shaped iron-based metal magnetic particle powder
JP3095041B2 (en) Method for producing acicular metal magnetic particle powder containing iron as a main component
JP3405748B2 (en) Method for producing metal magnetic powder
JPH11130439A (en) Fusiform goethite particle powder and its production, fusiform hematite particle powder and its production and fusiform metallic magnetic particle powder consisting essentially of iron and its production
JPH0778243B2 (en) Method for producing ferromagnetic metal fine particles with excellent dispersibility
JPS61124507A (en) Production of magnetic metallic powder