JPH0769940A - Production of cycloolefin - Google Patents

Production of cycloolefin

Info

Publication number
JPH0769940A
JPH0769940A JP5212758A JP21275893A JPH0769940A JP H0769940 A JPH0769940 A JP H0769940A JP 5212758 A JP5212758 A JP 5212758A JP 21275893 A JP21275893 A JP 21275893A JP H0769940 A JPH0769940 A JP H0769940A
Authority
JP
Japan
Prior art keywords
reactor
oil phase
heat
phase
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5212758A
Other languages
Japanese (ja)
Inventor
Takeshi Matsuoka
毅 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP5212758A priority Critical patent/JPH0769940A/en
Publication of JPH0769940A publication Critical patent/JPH0769940A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To stably produce a cycloolefln from a monocyclic aromatic hydrocarbon over a long period by efficiently removing the heat of a reaction solution. CONSTITUTION:In the production of a cycloolefin by partially reducing a monocyclic aromatic hydrocarbon (e.g. benzene or toluene) with hydrogen in the coexistence of a ruthenium catalyst and water, the reaction solution is divided into an aqueous phase and an oil phase, both of which contain the raw material and the product, and the oil phase is introduced into a heat- exchanger to remove heat and recycled to the reactor. The following methods are cited as examples of the separation method of the reaction solution into the oil phase and the aqueous phase. Firstly, only the oil phase is taken out by placing a water-oil separation weir in the reaction tank. Secondly, a part of the reaction solution is taken out and fed to a water-oil separation tank placed outside of the reactor to attain the phase separation. Since the corrosion, etc., of the material of e.g. a reactor at a contacting surface is caused by the aqueous solution, a conventional stainless steel can be used as the material for the heat-exchanger when only the oil phase is introduced to the heat- exchanger.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は単環芳香族炭化水素を部
分還元してシクロオレフィン類を製造する方法に関す
る。特にベンゼンを部分還元してシクロヘキセンを製造
する方法に関する。シクロヘキセンは有機化学工業製品
の中間原料、例えば、ポリアミド原料などとして広く利
用されている。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for partially reducing monocyclic aromatic hydrocarbons to produce cycloolefins. In particular, it relates to a method for partially reducing benzene to produce cyclohexene. Cyclohexene is widely used as an intermediate raw material for organic chemical industrial products, for example, a polyamide raw material.

【0002】[0002]

【従来の技術】シクロオレフィン類、特にシクロヘキセ
ンの製造方法は様々な方法が知られており、その中で
も、単環芳香族炭化水素をルテニウム触媒と水の共存
下、水素により部分還元する方法が、対応するシクロオ
レフィンの選択率、収率が高く、好ましい方法として知
られている(特公昭56ー22850号他)。
Various methods are known for producing cycloolefins, especially cyclohexene. Among them, a method for partially reducing a monocyclic aromatic hydrocarbon with hydrogen in the presence of a ruthenium catalyst and water is known. It is known as a preferred method because of high selectivity and yield of the corresponding cycloolefin (Japanese Patent Publication No. 56-22850).

【0003】かかる方法では、添加物の陰イオンやアル
カリにより、反応器などの接液部において材料の腐食が
進行したり、反応器から溶出する金属によって触媒の活
性や選択性が低下するなどの現象が起こることが知られ
ている。このため、反応器の接液部をフッ素樹脂コーテ
ィングしたり(特公昭56ー22850号)、ニッケル
コーティングしたり(特開昭62ー67033号)、あ
るいは材質としてチタンやジルコニウムを用いる(特開
昭62ー81331号)などが必要となっている。
In such a method, the anion or alkali of the additive causes the corrosion of the material in the wetted part of the reactor or the like, or the metal eluted from the reactor lowers the activity or selectivity of the catalyst. It is known that phenomena occur. Therefore, the wetted part of the reactor is coated with a fluororesin (Japanese Patent Publication No. 56-22850), nickel coated (Japanese Patent Laid-Open No. 62-67033), or titanium or zirconium is used as a material (Japanese Laid-Open Patent Publication No. Sho 62-67033). No. 62-81331) is required.

【0004】[0004]

【発明が解決しようとする課題】本発明者の検討によれ
ば、シクロオレフィンの製造方法における問題点の一つ
として、単環芳香族炭化水素をシクロオレフィンとする
部分還元反応が発熱を伴う反応であって、反応系の除熱
が必要であり、特に工業的スケールの場合において反応
系の除熱を効率的に行うことが重要であることを確認し
ている。
According to the studies made by the present inventors, one of the problems in the method for producing cycloolefin is that a partial reduction reaction using a monocyclic aromatic hydrocarbon as a cycloolefin is accompanied by heat generation. However, it has been confirmed that it is necessary to remove heat from the reaction system, and particularly in the case of industrial scale, it is important to efficiently remove heat from the reaction system.

【0005】そして、大型の反応器全体を効率よく除熱
することが困難である場合、反応液の一部を取り出して
熱交換器に通して反応器に循環させることにより反応系
の除熱を行うこと方法が考えられる。しかしながら,除
熱を効率よく行うためには熱交換器の接液面積が反応器
のそれよりもかなり広くしておくことが好ましいが、そ
の熱交換器全体を前記の反応器で使用しているようなチ
タンなどの高級材質にすると建設費の高騰を招くほか、
細管部分の各種ライニングは技術的にも難しい。
When it is difficult to efficiently remove heat from the large reactor as a whole, a part of the reaction solution is taken out, passed through a heat exchanger and circulated in the reactor to remove heat from the reaction system. Possible ways to do it. However, in order to perform the heat removal efficiently, it is preferable that the liquid contact area of the heat exchanger is considerably larger than that of the reactor, but the entire heat exchanger is used in the above reactor. In addition to high construction costs, such as titanium and other high-grade materials,
Various linings for the thin tube are technically difficult.

【0006】[0006]

【課題を解決するための手段】本発明者は、上記課題を
解決すべく鋭意検討した結果、反応液を油相と水相に分
液した場合、反応器などの接液部において材料の腐食な
どの原因は主に水相の液に起因していることに着目し、
油相だけを熱交換器に通して除熱する方法を採用すれ
ば、熱交換器の材質を通常用いられるステンレス鋼(S
US)とすることができ、また、反応成績も長期、安定
に維持できることを見い出し、本発明に到達した。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventor has found that when a reaction solution is separated into an oil phase and an aqueous phase, the material is corroded in a liquid contact part such as a reactor. Focusing on that the cause of such is mainly due to the liquid of the aqueous phase,
If the method of removing heat by passing only the oil phase through the heat exchanger is adopted, the material of the heat exchanger is usually stainless steel (S
The present invention has been completed, and it was found that the reaction results can be stably maintained for a long period of time.

【0007】すなわち、本発明の要旨は、単環芳香族炭
化水素をルテニウム触媒と水の共存下、水素により部分
還元するシクロオレフィンの製造方法において、反応液
を油相と水相に分液し、該油相を熱交換器に通して反応
器に循環させることを特徴とするシクロオレフィンの製
造方法に存する。以下、本発明を詳細に説明する。
That is, the gist of the present invention is, in a method for producing a cycloolefin in which a monocyclic aromatic hydrocarbon is partially reduced with hydrogen in the presence of a ruthenium catalyst and water, the reaction solution is separated into an oil phase and an aqueous phase. And a method for producing cycloolefin, characterized in that the oil phase is passed through a heat exchanger and circulated in a reactor. Hereinafter, the present invention will be described in detail.

【0008】本発明で原料として用いられる単環芳香族
炭化水素としては、ベンゼン、または、トルエン、キシ
レンなど、通常、炭素数4以下程度の低級アルキル基で
置換されたベンゼンである。ルテニウム触媒としては、
種々のルテニウム化合物を還元して得られるもの、また
はその調整段階もしくは調整後において他の金属、例え
ば、亜鉛、クロム、モリブテン、タングステン、マンガ
ン、コバルト、ニッケル、鉄、銅などを加えたルテニウ
ムを主体とするものである。種々のルテニウム化合物と
しては特に制限されないが、例えば、塩化物、臭化物、
ヨウ化物、硝酸塩、硫酸塩、水酸化物、酸化物、あるい
は各種のルテニウムを含む錯体などを用いることができ
る。還元法としては、水素ガスによる還元、あるいはホ
ルマリン、水素化ホウ素ナトリウム、ヒドラジン等によ
る化学還元法によって行うことができる。
The monocyclic aromatic hydrocarbon used as a raw material in the present invention is benzene or benzene substituted with a lower alkyl group having about 4 or less carbon atoms, such as toluene and xylene. As a ruthenium catalyst,
Those obtained by reducing various ruthenium compounds, or ruthenium mainly containing other metals such as zinc, chromium, molybdenum, tungsten, manganese, cobalt, nickel, iron, and copper after the adjustment step or adjustment thereof. It is what Although various ruthenium compounds are not particularly limited, for example, chloride, bromide,
Iodides, nitrates, sulfates, hydroxides, oxides, or various ruthenium-containing complexes can be used. As the reduction method, reduction with hydrogen gas or a chemical reduction method with formalin, sodium borohydride, hydrazine or the like can be performed.

【0009】ルテニウム触媒は担体に担持させて使用し
てもよく、担体として、シリカ、アルミナ、シリカーア
ルミナ、ゼオライト、活性炭、あるいは一般的な金属酸
化物、複合酸化物、水酸化物、難水溶性金属塩等が例示
される。ルテニウムは、担体に各種のルテニウム化合物
を通常行われる方法、例えば、イオン交換法、吸着法、
浸漬法、共沈法乾固法などによって担持される。担持さ
れるルテニウム化合物としては、ルテニウムの塩化物、
臭化物、ヨウ化物、硝酸塩、硫酸塩、水酸化物、酸化
物、あるいは各種のルテニウムを含む錯体、またはこれ
ら化合物においてルテニウムを金属状態にまで還元した
ものである。また、これらの触媒の調製後、他の金属
種、例えばクロム、モリブテン、タングステン、マンガ
ン、コバルト、ニッケル、鉄、銅、銀などを共担持して
もよい。ルテニウムの担持量は、通常0.01〜10重
量%である。
The ruthenium catalyst may be used by supporting it on a carrier, and as the carrier, silica, alumina, silica-alumina, zeolite, activated carbon, or general metal oxides, complex oxides, hydroxides, poorly water-soluble. Examples of the organic metal salt include: Ruthenium is a method in which various ruthenium compounds are usually used as a carrier, for example, an ion exchange method, an adsorption method,
It is supported by a dipping method, a coprecipitation method or a dry solidification method. The supported ruthenium compound, ruthenium chloride,
It is a complex containing bromide, iodide, nitrate, sulfate, hydroxide, oxide, or various ruthenium, or a compound obtained by reducing ruthenium to a metal state. In addition, after the preparation of these catalysts, other metal species such as chromium, molybdenum, tungsten, manganese, cobalt, nickel, iron, copper and silver may be co-loaded. The amount of ruthenium supported is usually 0.01 to 10% by weight.

【0010】本発明の反応系には、水の存在が必要であ
る。水の量としては、反応形式によって異なるが、一般
的には単環芳香族炭化水素の0.1〜20重量倍であ
り、好ましくは0.5〜5重量倍である。かかる条件で
は、原料及び生成物を主成分とする有機液相(「油相」
と称する)と水を含む液相(「水相」と称する)との2
相を形成することになる。油相と水相の割合が極端な場
合は2相の形成が困難となり、分液が困難となる。ま
た、水の量が少なすぎても、多すぎても共存の効果が減
少し、更に、水が多すぎる場合は反応器を大きくする必
要があるので好ましくない。
The reaction system of the present invention requires the presence of water. Although the amount of water varies depending on the reaction mode, it is generally 0.1 to 20 times by weight, preferably 0.5 to 5 times by weight that of the monocyclic aromatic hydrocarbon. Under such conditions, an organic liquid phase (“oil phase”) containing the raw materials and products as the main components is used.
2) and a liquid phase containing water (referred to as “water phase”) 2
Will form a phase. When the ratio of the oil phase and the water phase is extremely large, it becomes difficult to form the two phases, and the liquid separation becomes difficult. Further, if the amount of water is too small or too large, the effect of coexistence decreases, and if the amount of water is too large, it is necessary to enlarge the reactor, which is not preferable.

【0011】また、本発明の反応系において、従来知ら
れた方法の如く金属塩を併用してもよい。金属塩の種類
としては、周期表の1族金属、2族金属、12族金属
(族番号はIUPAC無機化学命名法改訂版(198
9)による)、あるいはマンガン、コバルト等の金属の
硝酸塩、塩化物、硫酸塩、酢酸塩、燐酸塩などが例示さ
れ、特に硫酸亜鉛を併用するのが好ましい。金属塩の使
用量は、通常、反応系の水に対して1×10-5〜1重量
倍程度である。
Further, in the reaction system of the present invention, a metal salt may be used in combination as in a conventionally known method. The types of metal salts include metals of Group 1 metal, Group 2 metal, and Group 12 metal of the periodic table (group number is IUPAC Inorganic Chemical Nomenclature Revised Edition
9)) or nitrates, chlorides, sulfates, acetates, phosphates and the like of metals such as manganese and cobalt, and zinc sulfate is particularly preferably used in combination. The amount of the metal salt used is usually about 1 × 10 −5 to 1 times the weight of water in the reaction system.

【0012】本発明での反応器の接液部の材質として反
応液によって腐食の起きない材質を用いることが好まし
い。これらの材質としては、チタン、ジルコニウム、ハ
ステロイなどの高級材質、あるいはフッ素樹脂、ニッケ
ル、チタニアなどをコーティングしたものが例示される
が、これらに限定されるものではない。本発明の反応
は、通常、50〜250℃、10〜100kg/cm2Gの水
素圧下で行われる。反応は、回分式でも連続的でも実施
することができ、また、多段反応も可能である。
As the material of the liquid contact portion of the reactor in the present invention, it is preferable to use a material which is not corroded by the reaction solution. Examples of these materials include, but are not limited to, high-quality materials such as titanium, zirconium, and Hastelloy, and materials coated with fluororesin, nickel, titania, and the like. The reaction of the present invention is usually carried out at 50 to 250 ° C. under a hydrogen pressure of 10 to 100 kg / cm 2 G. The reaction can be carried out batchwise or continuously, and a multistage reaction is also possible.

【0013】本発明は,以上のような反応系において生
成した反応液を油相と水相に分液して、該油相を熱交換
器に通して反応器に循環させることにより、反応系の除
熱を行うことを特徴とするものである。本発明の反応は
発熱反応であって、反応系からの効率的な除熱が工業的
に特に必要なのである。反応液を油相と水相に分離する
方法としては、反応器内に油・水分離堰を設けて油相の
みを取り出す方法、あるいは、反応液の一部を液循環ポ
ンプなどで取り出し、反応器外に設けた油・水分離槽に
供給して分離する方法等が考えられる。また、油・水分
離槽を複数設けて交互に運転するような方法も可能であ
る。そして、取り出した油相のみを熱交換器に通して除
熱後、反応器に循環させる。
According to the present invention, the reaction liquid produced in the reaction system as described above is separated into an oil phase and an aqueous phase, and the oil phase is passed through a heat exchanger and circulated in the reaction system. It is characterized by removing heat. The reaction of the present invention is an exothermic reaction, and efficient heat removal from the reaction system is industrially particularly necessary. As a method for separating the reaction liquid into an oil phase and an aqueous phase, an oil / water separation weir is provided in the reactor to take out only the oil phase, or a part of the reaction liquid is taken out by a liquid circulation pump or the like to carry out the reaction. It is conceivable to supply it to an oil / water separation tank provided outside the vessel for separation. It is also possible to provide a plurality of oil / water separation tanks and operate them alternately. Then, only the oil phase taken out is passed through a heat exchanger to remove heat, and then circulated in the reactor.

【0014】なお、水相は熱交換器に通すことなく直
接、反応器に循環することとなる。熱交換器としては、
従来から使用されている熱交換器でよく、例えば、二重
管式熱交換器、多管円筒形熱交換器等が挙げられる。本
発明の方法では熱交換器は腐食の問題が殆どないので、
熱交換器の材質は接液部分を含めて通常の材質(例えば
SUS304、SUS306等)を用いることができ
る。
The aqueous phase is directly circulated in the reactor without passing through the heat exchanger. As a heat exchanger,
It may be a conventionally used heat exchanger, and examples thereof include a double-tube heat exchanger and a multi-tube cylindrical heat exchanger. Since the heat exchanger in the method of the present invention has almost no corrosion problems,
As the material of the heat exchanger, an ordinary material (eg, SUS304, SUS306, etc.) including the liquid contact portion can be used.

【0015】[0015]

【実施例】以下、本発明を図面に示した実施例に基づい
て説明するが、本発明はその要旨を越えない限り実施例
に限定されるものではない。 実施例1 図1に反応器の内部に油・水分離堰を設けた例を示す。
EXAMPLES The present invention will be described below based on the examples shown in the drawings, but the present invention is not limited to the examples as long as the gist thereof is not exceeded. Example 1 FIG. 1 shows an example in which an oil / water separation weir is provided inside the reactor.

【0016】原料調製槽(図示せず)で、あらかじめベ
ンゼン40重量部、水50重量部、ルテニウム担持シリ
カ担体触媒(金属ルテニウム0.5重量部含有)3重量
部、硫酸亜鉛7重量部を混合した原料液を原料供給管2
より反応器1(接液部はチタン製)に連続的に供給し、
水素を水素供給管3より供給して、全圧50kg/cm2G、
150℃で連続的に部分水素化反応を行った。反応生成
液は、反応液抜出し管4より抜き出した。
In a raw material preparation tank (not shown), 40 parts by weight of benzene, 50 parts by weight of water, 3 parts by weight of a silica-supported catalyst supporting ruthenium (containing 0.5 part by weight of metal ruthenium), and 7 parts by weight of zinc sulfate were mixed in advance. Raw material supply pipe 2
Continuously supplied to reactor 1 (wetted part is made of titanium),
Hydrogen is supplied from the hydrogen supply pipe 3, and the total pressure is 50 kg / cm 2 G,
The partial hydrogenation reaction was continuously carried out at 150 ° C. The reaction product liquid was extracted from the reaction liquid extraction tube 4.

【0017】途中、反応液の一部は油・水分離堰5で油
相と水相を分液した後に、油相抜出し管6から油相を抜
き出して、熱交換器7(接液部はSUS304製)に供
給し、冷却後、反応器1に循環させた。この装置におい
て約500時間の連続反応を実施したが、熱交換器で腐
食や触媒の活性低下は認められず、安定した反応を示し
た。 実施例2 図2に反応器の外部に油・水分離槽を設けた例を示す。
On the way, a part of the reaction liquid is separated into an oil phase and a water phase by an oil / water separation weir 5, and then the oil phase is extracted from an oil phase extraction pipe 6 to obtain a heat exchanger 7 (the liquid contact part is SUS304), cooled, and then circulated in the reactor 1. When a continuous reaction was carried out for about 500 hours in this device, no corrosion or reduction in catalyst activity was observed in the heat exchanger, indicating a stable reaction. Example 2 FIG. 2 shows an example in which an oil / water separation tank is provided outside the reactor.

【0018】実施例1と同様に調製した原料液を原料供
給管2より反応器1(接液部はチタン製)に連続的に供
給し、水素を水素供給管3より供給して、全圧50kgf/
cm2、150℃で連続的に部分水素化反応を行った。反
応生成液は、反応液抜出し管4より抜き出した。途中、
反応液の一部を抜出し管9より抜き出し、油・水分離槽
10(接液部はチタン製)に供給し、油相は熱交換器7
(接液部はSUS304製)で冷却後、反応器1に循環
させ、水相はそのまま反応器1に循環させた。
A raw material solution prepared in the same manner as in Example 1 was continuously supplied from a raw material supply pipe 2 to a reactor 1 (a liquid contact part is made of titanium), and hydrogen was supplied from a hydrogen supply pipe 3 to a total pressure. 50kgf /
The partial hydrogenation reaction was continuously carried out at 150 ° C. and cm 2. The reaction product liquid was extracted from the reaction liquid extraction tube 4. On the way
A part of the reaction liquid is extracted from the extraction pipe 9 and supplied to the oil / water separation tank 10 (the liquid contact part is made of titanium), and the oil phase is the heat exchanger 7
After cooling with a liquid contact part made of SUS304, it was circulated in the reactor 1, and the aqueous phase was circulated in the reactor 1 as it was.

【0019】この装置においても約500時間の連続反
応を実施したが、熱交換器で腐食や触媒の活性低下は認
められず、安定した反応を示した。
Even in this apparatus, a continuous reaction was carried out for about 500 hours, but no corrosion or reduction in catalyst activity was observed in the heat exchanger, showing a stable reaction.

【0020】[0020]

【発明の効果】本発明の方法により、単環芳香族炭化水
素よりシクロオレフィンを長期に渡り安定に製造するこ
とが可能となる。また、接液面積の大きい冷却用熱交換
器の材質を廉価にすることができ、建設費や設備維持費
を大きく節減することができる。
By the method of the present invention, it becomes possible to stably produce a cycloolefin from a monocyclic aromatic hydrocarbon for a long period of time. Further, the material of the cooling heat exchanger having a large liquid contact area can be made inexpensive, and the construction cost and the equipment maintenance cost can be significantly reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】油・水分離機構が反応器内部にある実施例を示
す説明図である。
FIG. 1 is an explanatory view showing an example in which an oil / water separation mechanism is inside a reactor.

【図2】油・水分離機構が反応器外部にある実施例を示
す説明図である。
FIG. 2 is an explanatory diagram showing an example in which an oil / water separation mechanism is provided outside the reactor.

【符号の説明】[Explanation of symbols]

1 反応器 2 原料供給管 3 水素供給管 4 反応液抜き出し管 5 油・水分離堰 6 油相抜き出し管 7 熱交換器 8 油相リサイクル管 9 反応液抜き出し管 10 油・水分離槽 11 水相リサイクル管 1 Reactor 2 Raw Material Supply Pipe 3 Hydrogen Supply Pipe 4 Reaction Liquid Extraction Pipe 5 Oil / Water Separation Weir 6 Oil Phase Extraction Pipe 7 Heat Exchanger 8 Oil Phase Recycling Pipe 9 Reaction Liquid Extraction Pipe 10 Oil / Water Separation Tank 11 Water Phase Recycling pipe

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 単環芳香族炭化水素をルテニウム触媒と
水の共存下、水素により部分還元するシクロオレフィン
の製造方法において、反応液を油相と水相に分液し、該
油相を熱交換器に通して反応器に循環させることを特徴
とするシクロオレフィンの製造方法。
1. A method for producing a cycloolefin in which a monocyclic aromatic hydrocarbon is partially reduced with hydrogen in the coexistence of a ruthenium catalyst and water, the reaction solution is separated into an oil phase and an aqueous phase, and the oil phase is heated. A method for producing a cycloolefin, which is characterized in that the cycloolefin is circulated in a reactor through an exchanger.
JP5212758A 1993-08-27 1993-08-27 Production of cycloolefin Pending JPH0769940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5212758A JPH0769940A (en) 1993-08-27 1993-08-27 Production of cycloolefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5212758A JPH0769940A (en) 1993-08-27 1993-08-27 Production of cycloolefin

Publications (1)

Publication Number Publication Date
JPH0769940A true JPH0769940A (en) 1995-03-14

Family

ID=16627925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5212758A Pending JPH0769940A (en) 1993-08-27 1993-08-27 Production of cycloolefin

Country Status (1)

Country Link
JP (1) JPH0769940A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102659502A (en) * 2012-04-24 2012-09-12 中国天辰工程有限公司 Partial hydrogenation of benzene process method capable of recycling catalysts
WO2021227135A1 (en) * 2020-05-14 2021-11-18 南京延长反应技术研究院有限公司 Benzene selective hydrogenation reaction system and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102659502A (en) * 2012-04-24 2012-09-12 中国天辰工程有限公司 Partial hydrogenation of benzene process method capable of recycling catalysts
WO2021227135A1 (en) * 2020-05-14 2021-11-18 南京延长反应技术研究院有限公司 Benzene selective hydrogenation reaction system and method

Similar Documents

Publication Publication Date Title
JP3106411B2 (en) Method for producing 1,4-cyclohexanedicarboxylic acid
RU2711661C2 (en) Method of purifying monochloroacetic acid
TW201503956A (en) Method for regenerating catalyst for hydrogenation reaction, and method for producing hydride of polyhydric alcohol
JPH0769940A (en) Production of cycloolefin
JP2880060B2 (en) Method for producing acetic acid, methyl acetate and acetic anhydride by carbonylation of methanol
JP3268890B2 (en) Method for producing 1,3-cyclohexanedicarboxylic acid
JP2819171B2 (en) Method for producing aromatic alcohol
JPH01308245A (en) Production of benoic acid and salt thereof
JPS6267033A (en) Method of preventing deterioration of catalyst
JP2004501891A (en) Method for producing aromatic amine
US4422954A (en) Method to restore the metal content of a noble metal hydrogenation catalyst
JP5300392B2 (en) Method for producing isopropanol
JP2004315380A (en) Method for producing cyclic olefin
JP2925129B2 (en) Method for producing cycloolefin
JPH0776530A (en) Production of cycloolefin
JP4432390B2 (en) Method for producing chlorobenzene
JPH08165255A (en) Production of cycloolefin
JPH08193035A (en) Production of cycloolefin
JP2979991B2 (en) Method for producing cycloolefin
US6506951B1 (en) Process for producing brominated trifluoromethylbenzenes
JP2606113B2 (en) Method for producing cyclohexene
JP2646986B2 (en) Method for producing cycloolefin
EP3115350A1 (en) A process for the production of a mixture comprising cyclohexanol and cyclohexanone
JPS59186929A (en) Production of cycloolefin
JPH08193037A (en) Production of cycloolefin