JP3268890B2 - Method for producing 1,3-cyclohexanedicarboxylic acid - Google Patents

Method for producing 1,3-cyclohexanedicarboxylic acid

Info

Publication number
JP3268890B2
JP3268890B2 JP13700793A JP13700793A JP3268890B2 JP 3268890 B2 JP3268890 B2 JP 3268890B2 JP 13700793 A JP13700793 A JP 13700793A JP 13700793 A JP13700793 A JP 13700793A JP 3268890 B2 JP3268890 B2 JP 3268890B2
Authority
JP
Japan
Prior art keywords
steam
chda
cyclohexanedicarboxylic acid
acid
water vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13700793A
Other languages
Japanese (ja)
Other versions
JPH06321852A (en
Inventor
芳明 立野
智早 佐野
琴音 田中
光男 真柄
直記 岡本
和昭 加藤
Original Assignee
東和化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東和化成工業株式会社 filed Critical 東和化成工業株式会社
Priority to JP13700793A priority Critical patent/JP3268890B2/en
Publication of JPH06321852A publication Critical patent/JPH06321852A/en
Application granted granted Critical
Publication of JP3268890B2 publication Critical patent/JP3268890B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】[Industrial applications]

【0002】本発明は、1,3−シクロヘキサンジカル
ボン酸(以下、1,3−CHDAと云うことがある。)
の製造方法に関する。
The present invention relates to 1,3-cyclohexanedicarboxylic acid (hereinafter sometimes referred to as 1,3-CHDA).
And a method for producing the same.

【0003】[0003]

【従来の技術】[Prior art]

【0004】1,3−CHDAは、医薬品や合成樹脂、
合成繊維、塗料等の原料として有用であり、特に、耐熱
性、耐候性、物理的強度等の優れた樹脂や繊維製造用の
原料として用いられる。
[0004] 1,3-CHDA is used for pharmaceuticals and synthetic resins,
It is useful as a raw material for synthetic fibers, paints, etc., and is particularly used as a raw material for producing resins and fibers having excellent heat resistance, weather resistance, physical strength and the like.

【0005】1,3−CHDAを製造する方法として
は、工業用原料として製造されているイソフタル酸(以
下、IPAと云うことがある。)の中でも純度の高い物
を用い、ベンゼン環を水素化して得る方法が代表的であ
り、既にいくつかの方法が報告されている。
[0005] As a method for producing 1,3-CHDA, isophthalic acid (hereinafter sometimes referred to as IPA) having high purity among industrially produced raw materials is used to hydrogenate the benzene ring. Representative methods are typical, and several methods have already been reported.

【0006】それらの方法の中には、大きく分けると、
IPAの酸部分を一度ナトリウム等の金属塩にしたり、
各種エステルにしてからベンゼン環を還元する方法と、
酸のまま還元する方法がある。
[0006] Some of these methods are roughly divided into
Once the acid portion of IPA is converted to a metal salt such as sodium,
A method of reducing the benzene ring after forming various esters,
There is a method of reducing the acid.

【0007】前者の方法は、例えばUSP2,828,
335号公報等に紹介されているように、イソフタル酸
を水酸化ナトリウム等に溶解してイソフタル酸ナトリウ
ム塩とし、酸化ルテニウム等を触媒として還元し、酸を
用いてナトリウムを外すと云うものであるが、原料のI
PAを一度誘導体の形にしておき、還元した後に再度酸
の形に戻すと云う手間が余計にかかることから、酸のま
ま還元する方法が経済的であり、有力視されてきた。
The former method is disclosed, for example, in US Pat.
As disclosed in JP-A-335, etc., isophthalic acid is dissolved in sodium hydroxide or the like to form sodium isophthalate, reduced with ruthenium oxide or the like as a catalyst, and sodium is removed using an acid. Is the raw material I
Since it takes extra time to once convert PA into a derivative form and then return it to the acid form after reduction, the method of reducing PA as it is acid has been considered economical and promising.

【0008】多くの試みにも拘らず、酸のまま還元する
ことに成功した例は比較的少ないが、例えば、ジャーナ
ル・オブ・オルガニック・ケミストリー(Journal of O
rganic Chemistry),31(10)p3438−9(1
966)には、IPAを水溶媒中で、ロジウム・アルミ
ナ触媒の存在下で、60〜70℃、水素圧3気圧以下の
条件で水素化し、目的の1,3−CHDA(融点112
−134℃)をシス体:トランス体=60:40の比率
で、96%程度の収率で得る方法が紹介されている。
[0008] Despite many attempts, there have been relatively few examples of successful acid reductions. For example, Journal of Organic Chemistry (Journal of O.C.)
rganic Chemistry), 31 (10) p3438-9 (1
In 966), IPA is hydrogenated in a water solvent in the presence of a rhodium-alumina catalyst at 60 to 70 ° C. under a hydrogen pressure of 3 atm or less to give the desired 1,3-CHDA (melting point: 112).
(134 ° C.) in a ratio of cis-form: trans-form = 60: 40 with a yield of about 96% is introduced.

【0009】[0009]

【発明が解決しようとする課題】[Problems to be solved by the invention]

【0010】最近、1,3−CHDAを原料として用い
る樹脂等の分野に於いて国際的な競争力と高度な機能を
有する製品が要求されるにつれて、その原料にも国際的
な価格競争力がありながら極めて不純物の少ない品、例
えば、1,3−CHDAの純度が99.9重量%程度の
高純度品や、塩素等の無機物の少ない品、シクロヘキサ
ンカルボン酸類縁体等の不純物の少ない品等が従来品と
あまり変わらない価格で提供されることが要望されてい
る。
[0010] Recently, with the demand for products having international competitiveness and advanced functions in the field of resin and the like using 1,3-CHDA as a raw material, the raw material also has international price competitiveness. Despite this, a product having very few impurities, for example, a high-purity product having a purity of 1,3-CHDA of about 99.9% by weight, a product having a small amount of inorganic substances such as chlorine, a product having a small amount of impurities such as a cyclohexanecarboxylic acid analog, etc. It has been demanded to be provided at a price that is not so different from conventional products.

【0011】しかしながら、従来の製造方法により得ら
れる1,3−CHDAには、現在の高度な品質上の要求
に答えられるほど高い純度ではなく、例え何らかの製造
方法が考察されたとしても、極めて繁雑で高価なプロセ
スが要求され、実用性が無いと云う課題が残されてい
た。
However, the 1,3-CHDA obtained by the conventional manufacturing method is not high enough to meet the current high quality requirements, and is extremely complicated even if any manufacturing method is considered. However, there is a problem that an expensive process is required and that the method is not practical.

【0012】例えば、前記のイソフタル酸をナトリウム
塩にしてから還元する方法について云えば、実際に追試
を試みると、触媒の活性低下が激しく、還元に要する触
媒の費用が極めて高価になると云う課題があったのであ
る。
For example, regarding the above-mentioned method of reducing isophthalic acid to a sodium salt and then reducing it, if an attempt is made to actually perform an additional test, the problem is that the activity of the catalyst is drastically reduced, and the cost of the catalyst required for the reduction is extremely high. There was.

【0013】また、その他にも、反応時に副成する4−
メチルシクロヘキサンカルボン酸等のシクロヘキサンカ
ルボン酸類縁体や、原料IPAの溶解に使用するアルカ
リや水素化反応物からの1,3−CHDAの回収の際に
使用する酸から生じる硫酸ナトリウム、塩化ナトリウム
等の無機塩類の不純物が、1,3−CHDAに混入する
のを避けられないと云う致命的な課題も残されていた。
[0013] In addition, 4-
Cyclohexanecarboxylic acid analogs such as methylcyclohexanecarboxylic acid, and sodium sulfate, sodium chloride, etc. generated from the acid used in the recovery of 1,3-CHDA from the alkali or hydrogenation reactant used for dissolving the starting IPA. There remains a fatal problem that it is inevitable that impurities of inorganic salts are mixed into 1,3-CHDA.

【0014】従って、この方法によって得られた1,3
−CHDAを原料として用いた樹脂等の重合反応の際
に、原料中の不純物の存在に起因する反応のムラが発生
することや、得られた樹脂等の製品の耐熱性や物理的強
度、耐候性等が原料中の不純物によって著しく損なわれ
ること等の欠点があり、それらの欠点の改善も課題とし
て残されていた。
Therefore, the 1,3 obtained by this method
-During the polymerization reaction of a resin or the like using CHDA as a raw material, unevenness in the reaction due to the presence of impurities in the raw material occurs, and the heat resistance, physical strength, and weather resistance of the product such as the obtained resin. There are drawbacks such as that the properties and the like are significantly impaired by impurities in the raw material, and improvement of those drawbacks has been left as an issue.

【0015】また、例えば、前記イソフタル酸を直接還
元する方法について云えば、触媒として用いられている
ロジウムがパラジウムやルテニウムの10倍程度と云う
極めて高価なものでありながら、その価格ほどには触媒
寿命が長くなく、また、反応生成物中の目的物の純度が
96%程度と低く、且つ、反応時に副成するシクロヘキ
サンカルボン酸類縁体等の不純物が1,3−CHDAに
混入するのを避けられないと云う課題も残されていたの
である。
For example, in the method of directly reducing isophthalic acid, rhodium used as a catalyst is extremely expensive, about 10 times as large as palladium and ruthenium, but the catalyst is as expensive as the price. The service life is not long, the purity of the target product in the reaction product is as low as about 96%, and impurities such as cyclohexanecarboxylic acid analogs by-produced during the reaction are prevented from being mixed into 1,3-CHDA. There was also a task that could not be done.

【0016】これらの課題を解決する手段として、1,
3−CHDA含有物の結晶化も考えられるが、1,3−
CHDAと副成物であるシクロヘキサンカルボン酸類縁
体との構造及び性質が比較的似ているため、結晶化によ
り96%程度の1,3−CHDA純度を99.9%以上
に向上することはそれほど容易ではない。
As means for solving these problems,
Crystallization of the 3-CHDA-containing material is also considered, but 1,3-
Since the structure and properties of CHDA and the by-product cyclohexanecarboxylic acid analog are relatively similar, it is not so much that crystallization improves the 1,3-CHDA purity of about 96% to 99.9% or more. It's not easy.

【0017】その他に、触媒の使用を繰り返すにつれ
て、未還元物を残さないためには高い温度や高い圧力が
要求されるが、その厳しい温度条件故に反応生成物の
1,3−CHDA純度が低くなると云う課題も残されて
いた。
In addition, as the use of the catalyst is repeated, a high temperature and a high pressure are required in order not to leave unreduced substances, but the 1,3-CHDA purity of the reaction product is low due to the severe temperature conditions. There was also a problem to be solved.

【0018】前記に開示されている1,3−CHDAの
製造方法では、活性の失われていない新しい触媒を用い
て製造した例が開示されており、表面上は比較的高い純
度の1,3−CHDAが得られる方法に見えるが、本発
明者等の追試によれば、触媒を繰り返して使用した場合
には、殆ど全ての方法が低い純度の1,3−CHDAを
生成し、そのままでは実用に耐えないことが明らかにな
った。
In the above-mentioned method for producing 1,3-CHDA, an example of production using a new catalyst which has not lost its activity is disclosed. Although it seems to be a method for obtaining -CHDA, according to the additional tests of the present inventors, when the catalyst is used repeatedly, almost all methods produce 1,3-CHDA of low purity, and practically as it is. It turned out to be unbearable.

【0019】その原因は、多くの場合、不純物は生成し
ているけれども、触媒の担体として使用している活性炭
等の吸着点に優先的に吸着される故、見掛け上1,3−
CHDAの純度が高く見えるだけであり、活性炭等の吸
着容量は少ないので、その吸着容量が満たされた後は、
本来生成している不純物が反応で生成したままの割合で
検出されることにあると思われる。
The cause is that although impurities are generated in many cases, they are preferentially adsorbed to adsorption points of activated carbon or the like used as a carrier of the catalyst.
Only the purity of CHDA appears to be high and the adsorption capacity of activated carbon etc. is small, so after the adsorption capacity is satisfied,
It seems that the originally generated impurities are detected at a rate as they are generated in the reaction.

【0020】また、従来の製造方法では、ステンレス製
の耐圧容器が採用されているが、本発明者等の詳細な研
究によれば、通常のステンレス製容器にIPAや1,3
−CHDAの液を入れ、水素添加反応が行われる程度の
温度で容器壁と接触させた場合には、ステンレス鋼の成
分であるニッケル、鉄、クロム、モリブテン等が液中に
溶出し、ある濃度以上に金属が溶出してくると、その金
属が触媒毒となって触媒の活性を著しく減衰させること
が明らかになった。
Further, in the conventional manufacturing method, a pressure-resistant container made of stainless steel is employed. However, according to detailed studies by the present inventors, IPA, 1,3,
When a CHDA solution is charged and brought into contact with the vessel wall at a temperature at which a hydrogenation reaction is performed, nickel, iron, chromium, molybdenum, etc., which are components of stainless steel, are eluted into the solution and have a certain concentration. As described above, it became clear that when a metal eluted, the metal became a catalyst poison and significantly attenuated the activity of the catalyst.

【0021】本発明者等の研究によれば、溶出した金属
の濃度が5〜10ppm程度まではあまり深刻な影響は
無いが、20ppm程度から影響が大きくなりはじめる
ので、この溶出金属による触媒寿命の短縮と云う課題に
ついても対策を講ずることが望まれていたのである。
According to the study of the present inventors, there is no serious effect when the concentration of the eluted metal is about 5 to 10 ppm, but the effect starts to increase from about 20 ppm. It was desired to take measures against the problem of shortening.

【0022】これらの事情から、従来の方法では触媒の
活性低下が早いので経済的な製造が出来なかったこと、
また、1,3−CHDAを得るうえで、従来の反応から
は見掛け以上に多くの不純物が生成しているので、反応
生成物は到底最近の高度な要求を満たすに至らず、更
に、従来の技術で1,3−CHDAの純度を高くするこ
とも困難であったことから、前記諸々の課題を解決する
方法の開発が切望されていたのである。
From these circumstances, economical production could not be performed with the conventional method because the activity of the catalyst was rapidly reduced.
Further, in obtaining 1,3-CHDA, more impurities than the apparent amount are generated from the conventional reaction, so that the reaction product does not satisfy the recent high demands. Since it was also difficult to increase the purity of 1,3-CHDA by technology, development of a method for solving the above-mentioned various problems has been desired.

【0023】[0023]

【課題を解決するための手段】[Means for Solving the Problems]

【0024】本発明者等は、IPA又はそのアルカリ塩
の各種反応に対する挙動や水素化反応物の性質を研究
し、その経済的な工程の実現や製品の高純度化の方法を
鋭意検討した結果、触媒の活性低下の原因が従来使用さ
れているステンレス鋼等の耐圧金属容器壁から溶出して
きたニッケル、クロム、モリブデン、鉄等であることを
見出し、反応容器として高耐酸性の容器又は耐酸物質で
内張りをした容器を採用することにより、触媒活性の低
下を顕著に抑制して経済的な水素添加反応を実現するこ
とに成功し、更に、該水素化反応物含有液を水蒸気に接
触させることにより、非常に高い純度の1,3−CHD
Aを得ることに成功し、本発明を完成するに到った。
The present inventors have studied the behavior of IPA or its alkali salt for various reactions and the properties of hydrogenation reactants, and as a result of earnestly studying a method for realizing the economical process and purifying the product. , Found that the cause of the decrease in the activity of the catalyst is nickel, chromium, molybdenum, iron, etc. eluted from the walls of a conventionally used pressure-resistant metal container such as stainless steel. By adopting a vessel lined with, the reduction of catalyst activity is remarkably suppressed and an economical hydrogenation reaction has been successfully realized, and furthermore, the hydrogenation reaction product-containing liquid is brought into contact with steam. Gives very high purity 1,3-CHD
A was successfully obtained, and the present invention was completed.

【0025】以下に本発明の内容を詳細に説明する。Hereinafter, the contents of the present invention will be described in detail.

【0026】本発明は、第一に、1,3−シクロヘキサ
ンジカルボン酸を製造するに際し、IPA含有液をパラ
ジウム触媒の存在下で、耐酸容器内又は耐酸物質で内張
りをした容器内で水素添加する第一工程、第一工程で得
られた1,3−シクロヘキサンジカルボン酸含有液と水
蒸気とを接触させ、水蒸気側に移動した不純物を除去す
る第二工程、の二工程を逐次的に経由することを特徴と
する1,3−シクロヘキサンジカルボン酸の製造方法で
ある。
In the present invention, first, in producing 1,3-cyclohexanedicarboxylic acid, an IPA-containing liquid is hydrogenated in the presence of a palladium catalyst in an acid-resistant vessel or a vessel lined with an acid-resistant substance. Sequentially passing through two steps, a first step, and a second step of contacting the 1,3-cyclohexanedicarboxylic acid-containing liquid obtained in the first step with steam and removing impurities transferred to the steam side. A method for producing 1,3-cyclohexanedicarboxylic acid, characterized in that:

【0027】本発明は、第二に、第一工程の水素添加を
2kg/cm2 以上、200kg/cm2 未満の水素圧
力下で実施することを特徴とする前記第一記載の1,3
−シクロヘキサンジカルボン酸の製造方法である。
[0027] Secondly, the present invention is characterized in that the hydrogenation in the first step is carried out under a hydrogen pressure of 2 kg / cm 2 or more and less than 200 kg / cm 2, wherein
-A process for producing cyclohexanedicarboxylic acid.

【0028】本発明は、第三に、第一工程の水素添加を
2kg/cm2 以上、10kg/cm2 未満の水素圧力
下で実施することを特徴とする前記第一記載の1,3−
シクロヘキサンジカルボン酸の製造方法である。
Thirdly, the present invention is characterized in that the hydrogenation in the first step is carried out under a hydrogen pressure of 2 kg / cm 2 or more and less than 10 kg / cm 2,
This is a method for producing cyclohexanedicarboxylic acid.

【0029】本発明は、第四に、第二工程に於いて、
1,3−シクロヘキサンジカルボン酸含有液を充填塔の
一方から連続的に供給しながらそれとは逆の方向から連
続的に水蒸気を供給し、他方から1,3−シクロヘキサ
ンジカルボン酸を断続的に又は連続的に排出しながらそ
れとは逆の方向から水蒸気を排出して1,3−シクロヘ
キサンジカルボン酸と水蒸気とを向流接触させ、水蒸気
側に移動した不純物を、水蒸気と共に凝縮させて除去す
るか、又はアルカリ水溶液中に通して除去した後、必要
に応じて水蒸気を加熱し、再使用することを特徴とする
前記第一〜第三の何れかに記載の1,3−シクロヘキサ
ンジカルボン酸の製造方法である。
Fourth, the present invention provides a method for manufacturing a semiconductor device comprising:
While the 1,3-cyclohexanedicarboxylic acid-containing liquid is continuously supplied from one side of the packed tower, steam is continuously supplied from the opposite direction, and 1,3-cyclohexanedicarboxylic acid is intermittently or continuously supplied from the other side. Steam is discharged from the opposite direction while the water is discharged, and the 1,3-cyclohexanedicarboxylic acid and the water vapor are brought into countercurrent contact with each other to remove impurities transferred to the water vapor side by condensing with the water vapor, or The method for producing 1,3-cyclohexanedicarboxylic acid according to any one of the first to third aspects, wherein, after removing by passing through an alkaline aqueous solution, the steam is heated as necessary and reused. is there.

【0030】本発明に用いるIPAの品質は、従来から
1,3−CHDAの原料として使用されているような高
い純度のものはもとより、それよりも若干純度が低くて
従来は採用されていなかった一般工業用途の品質であっ
ても有利に採用することができる。
The quality of the IPA used in the present invention is not limited to that of high purity as conventionally used as a raw material for 1,3-CHDA, but is slightly lower than that of IPA. Even the quality for general industrial use can be advantageously adopted.

【0031】また、本発明を実施する際のIPAの濃度
は、第一工程の際には5〜50%が好ましいが、更に好
ましい濃度は10〜40%である。
The concentration of IPA in practicing the present invention is preferably 5 to 50% in the first step, and more preferably 10 to 40%.

【0032】本発明を実施するうえに於いて、第一工程
の前記濃度範囲を外れた場合には、例えば、5%未満の
場合には設備の大きさの割に能率の良い生産が出来ない
ので不経済であると云う理由から、また、50%を越え
た場合には、結晶が析出しやすくなってしまい取扱が困
難になると云う理由から、何れの場合も好ましくない。
In practicing the present invention, if the concentration is out of the above-mentioned concentration range in the first step, for example, if it is less than 5%, efficient production cannot be performed for the size of the equipment. Therefore, in either case, it is not preferable because it is uneconomical, and if it exceeds 50%, crystals are likely to precipitate and handling becomes difficult.

【0033】本発明に有利に用いられる水素添加反応用
触媒としては、担体上に担持された金属パラジウムが有
利に採用できるが、その担体としては、アルミナ、シリ
カ、炭素等の中で各種活性炭に代表される炭素が、酸の
影響を受けにくいこと等の理由から最も好ましい。
As the catalyst for the hydrogenation reaction advantageously used in the present invention, metal palladium supported on a carrier can be advantageously used, and the carrier may be alumina, silica, carbon or any other activated carbon. Representative carbon is most preferred because it is less susceptible to acids.

【0034】また、本発明を実施するうえで有利に採用
できるパラジウムの担持量は、反応が充分に進行するこ
とや経済的であること等の理由から、触媒重量の中のパ
ラジウム金属含有率で表現したときに2〜20%である
が、更に好ましい担持量は5〜10%である。
The amount of supported palladium that can be advantageously employed in the practice of the present invention is determined by the palladium metal content in the catalyst weight because the reaction proceeds sufficiently and is economical. When expressed, it is 2 to 20%, more preferably 5 to 10%.

【0035】本発明を実施する際に、濃度を調整するた
めに用いる溶媒としては各種アルコール類や水、1,3
−CHDA等があるが、反応に対して不活性であること
や安価であること等の理由から水が最も好ましい。
In carrying out the present invention, the solvent used for adjusting the concentration includes various alcohols, water, 1,3
Although -CHDA and the like are available, water is most preferred because it is inert to the reaction and inexpensive.

【0036】本発明に用いる耐酸物質、耐酸容器として
は、耐酸性の強い金属、例えば、ハステロイ鋼、インコ
ネル鋼やそれらの成形体、金属以外の耐酸性の強い物
質、例えば、セラミック、ホウロウ、ガラス等のガラス
質やそれらの成形体が挙げられるが、これらの他に、通
常の耐圧容器に使用される鉄やステンレス鋼に前記の各
種耐酸物質を内張りした容器も経済的であり、有利に採
用することができる。
Examples of the acid-resistant substance and acid-resistant container used in the present invention include metals having strong acid resistance, such as Hastelloy steel, Inconel steel and molded products thereof, and substances having strong acid resistance other than metals, such as ceramic, enamel and glass. Examples thereof include vitreous materials and molded products thereof.In addition to these, containers in which the above-described various acid-resistant substances are lined with iron or stainless steel used for ordinary pressure-resistant containers are also economical, and are advantageously used. can do.

【0037】本発明の第一工程を有利に実施する条件と
しては、温度120〜160℃、水素圧力2〜200k
g/cm2 、更に好ましくは2kg/cm2 以上10k
g/cm2 未満、反応時間30分〜120分が挙げられ
るが、これらの範囲を外れた場合には、何れの場合も製
品の歩留りや純度に悪影響を及ぼすので好ましくない。
The conditions under which the first step of the present invention is advantageously carried out include a temperature of 120 to 160 ° C. and a hydrogen pressure of 2 to 200 k.
g / cm 2 , more preferably 2 kg / cm 2 or more and 10 k
g / cm < 2 > and a reaction time of 30 to 120 minutes. Any deviation from these ranges is not preferred because it adversely affects the yield and purity of the product.

【0038】また、第二工程に使用する1,3−CHD
A含有反応物の濃度は、水素化後、触媒を除去した濾過
液をそのままの濃度で用いることが最も経済的である
が、通常得られるシス体とトランス体との比率や経済的
な制約、水に対する溶解度等から、凡そ、2%〜40%
程度が好ましく、更に好ましい濃度範囲は、5%〜30
%である。
The 1,3-CHD used in the second step
As for the concentration of the A-containing reactant, it is most economical to use the filtrate from which the catalyst has been removed after hydrogenation at the same concentration, but the ratio of the cis-form to the trans-form usually obtained, economic restrictions, Approximately 2% to 40% from solubility in water
Is preferable, and a more preferable concentration range is 5% to 30%.
%.

【0039】更に、第二工程に使用する1,3−CHD
A含有反応物に含まれるシス体とトランス体との割合に
ついても格別の制約はなく、IPAを水素化して得られ
る反応物中に出現する程度の割合であれば、本発明の実
施に支障が生ずることはないが、一般に、トランス体の
割合が多くなるにつれて反応物の水に対する溶解温度が
上昇する傾向があり、操作上扱い易い割合としては、シ
ス:トランス=65:35程度が挙げられる。
Further, the 1,3-CHD used in the second step
There is no particular limitation on the ratio of the cis-form to the trans-form contained in the A-containing reactant, and any ratio that appears in a reactant obtained by hydrogenating IPA will not hinder the practice of the present invention. Although it does not occur, generally, the dissolution temperature of water in the reactant tends to increase as the ratio of the trans form increases, and a ratio that is easy to handle in operation includes cis: trans = 65: 35.

【0040】本発明の第二工程では、水蒸気を使用する
が、その水蒸気にも格別の制約はなく、本発明を実施す
る際に必要な温度条件を実現できる程度のものであれ
ば、通常の水蒸気発生器等によって発生されたもので充
分である。
In the second step of the present invention, water vapor is used. There is no particular restriction on the water vapor, and any ordinary water vapor can be used as long as the temperature conditions necessary for carrying out the present invention can be realized. What is generated by a steam generator or the like is sufficient.

【0041】第二工程に於いて1,3−シクロヘキサン
ジカルボン酸含有液と水蒸気とを接触させる方法には、
回分式と連続式があるが、本発明に於いては何れの方法
も採用可能であり、連続的に行う方法が、効率的に優れ
ている。
In the second step, the method of contacting the 1,3-cyclohexanedicarboxylic acid-containing liquid with steam is as follows:
Although there are a batch type and a continuous type, any of the methods can be adopted in the present invention, and a method of performing the method continuously is excellent.

【0042】また、1,3−CHDAと水蒸気が接触し
た後に水蒸気側に移動した不純物を除去する方法も、回
分式又は連続式の何れもが採用可能であり、水蒸気を凝
縮させて不純物と水蒸気のドレーンとの混合物として除
去する方法や、アルカリ水溶液中に水蒸気を吹き込んだ
りアルカリ水溶液のシャワー中に水蒸気を通す等の方法
が採用可能である。
Also, a method of removing impurities which have moved to the steam side after the 1,3-CHDA has come into contact with the steam can be either a batch type or a continuous type. And a method of blowing steam into an aqueous alkaline solution or passing steam through a shower of an alkaline aqueous solution.

【0043】本発明の更に好ましい第二工程の実施態様
としては、前記1,3−シクロヘキサンジカルボン酸含
有液と水蒸気との接触を向流で接触させることである。
In a further preferred embodiment of the second step of the present invention, the 1,3-cyclohexanedicarboxylic acid-containing liquid is brought into contact with steam in countercurrent.

【0044】更に、工程全体のエネルギーロスを少なく
するために水蒸気を再利用することも任意であり、例え
ば、前記のようにアルカリ水溶液で水蒸気中の不純物を
除去した後に、水蒸気を必要に応じて加熱して使用する
こともできる。
Further, it is optional to reuse steam in order to reduce energy loss in the entire process. For example, after removing impurities in steam with an aqueous alkaline solution as described above, steam is optionally removed. It can be used after heating.

【0045】以上に述べた第二工程の各操作は、それぞ
れ任意に組み合わせて採用することができるが、これら
の組み合わせの中でも、1,3−CHDA含有液と水蒸
気とを向流接触させ、不純物を含んだ水蒸気をアルカリ
水溶液に接触させて不純物をアルカリ水溶液側に吸収さ
せた後、水蒸気を再使用する方法が最も経済的に有利な
方法である。
The operations in the second step described above can be employed in any combination. Among these combinations, the 1,3-CHDA-containing liquid and the steam are brought into countercurrent contact with each other to remove impurities. The most economically advantageous method is to contact the aqueous solution containing water with an aqueous alkali solution to absorb impurities into the aqueous alkali solution, and then reuse the water vapor.

【0046】この組み合わせによる方法を更に詳細に説
明すると、ラシヒリング等の充填物を詰めた塔(A)及
び塔(B)を用意しておき、塔(A)の上部と塔(B)
の下部、塔(A)の下部と塔(B)の上部とをそれぞれ
配管で連結し、各配管及び塔は所定の温度に調節できる
ようにジャケット等の構造を備えておき、塔(A)の下
部と塔(B)の上部をつなぐ配管の途中に水蒸気を循環
させる機能を有するポンプ(P)を塔(A)側が排出側
になるように備えておく。
The method based on this combination will be described in more detail. A tower (A) and a tower (B) packed with packing such as Raschig rings are prepared, and the upper part of the tower (A) and the tower (B) are prepared.
The lower part of the tower, the lower part of the tower (A) and the upper part of the tower (B) are connected by pipes, and each of the pipes and the tower is provided with a structure such as a jacket so that the temperature can be adjusted to a predetermined temperature. A pump (P) having a function of circulating water vapor is provided in the middle of a pipe connecting the lower part of the tower and the upper part of the tower (B) so that the tower (A) side is the discharge side.

【0047】次に、該装置のポンプ(P)を運転しなが
ら、塔(A)の上部から加熱した1,3−CHDA含有
液を連続的に導入し、塔(A)下部から抜き取り、それ
と同時に、塔(B)上部から加熱したアルカリ水溶液を
連続的に導入し、塔(B)下部から抜き取る。
Next, while operating the pump (P) of the apparatus, the heated 1,3-CHDA-containing liquid was continuously introduced from the upper part of the column (A), and was withdrawn from the lower part of the column (A). At the same time, a heated alkaline aqueous solution is continuously introduced from the top of the tower (B), and is withdrawn from the bottom of the tower (B).

【0048】このとき、塔(A)に供給する1,3−C
HDA含有液の好ましい濃度は2〜40%であるが、更
に好ましくは、5〜30%である。
At this time, 1,3-C to be supplied to the tower (A)
The preferred concentration of the HDA-containing liquid is 2 to 40%, and more preferably 5 to 30%.

【0049】また、塔(B)に供給するアルカリ水溶液
の好ましい濃度は1〜50%であるが、更に好ましくは
1〜20%である。
The concentration of the aqueous alkali solution supplied to the tower (B) is preferably 1 to 50%, more preferably 1 to 20%.

【0050】塔(A)に供給する1,3−CHDA含有
液の供給速度は、濃度や温度やその中に含有されている
不純物の濃度等により左右されるが、凡そ、塔(A)の
容量の1〜6倍量/毎時程度が好ましい。
The feed rate of the 1,3-CHDA-containing liquid to be supplied to the tower (A) depends on the concentration, temperature, concentration of impurities contained therein, and the like. The volume is preferably 1 to 6 times the volume / hour.

【0051】このとき、1,3−CHDAの供給速度が
1倍/毎時未満の場合には必要以上に効率を低下させる
ことになるので好ましくなく、6倍を超えた場合には不
純物の除去が不完全になることがあるので好ましくな
い。
At this time, if the supply rate of 1,3-CHDA is less than 1 time / hour, the efficiency is unnecessarily lowered, which is not preferable. It is not preferable because it may be incomplete.

【0052】また、アルカリ水溶液の塔(B)に対する
供給速度は、塔(B)の容量の1〜6倍/毎時程度が好
ましいが、この範囲を外れた場合には、何れもアルカリ
が無駄になったり不足になったりすることがあって好ま
しくない。
The supply rate of the aqueous alkali solution to the tower (B) is preferably about 1 to 6 times / hour of the capacity of the tower (B). It is not preferable because it may become insufficient or shortage.

【0053】本発明に有利に使用できるアルカリには水
酸化ナトリウム、水酸化カリウム、リン酸三ナトリウム
等が挙げられるが、アルカリの中でもカルシウム塩はス
ケールの原因になることが多く、炭酸塩はガスが発生す
るので何れも採用することは可能であるがあまり好まし
くはない。
The alkalis that can be advantageously used in the present invention include sodium hydroxide, potassium hydroxide, and trisodium phosphate. Among the alkalis, calcium salts often cause scale, and carbonates are gases. Can occur, so it is possible to use any of them, but it is not so preferable.

【0054】ポンプ(P)の水蒸気循環量は、水蒸気を
凝縮した水の量に換算したときに、塔(A)の容量の
0.1〜1.6倍/毎時程度が好ましいが、この範囲を
外れた場合には、何れも第二工程のコストや収率に良い
影響を与えないので好ましくない。
The amount of water vapor circulated by the pump (P) is preferably about 0.1 to 1.6 times the capacity of the tower (A) / hour when converted to the amount of water condensed with water vapor. Any deviation from the above is not preferable because none of them has a good effect on the cost and yield of the second step.

【0055】前記組み合わせの第二工程を採用した場合
には、各塔及び配管を100〜150℃、更に好ましく
は102〜130℃の範囲の温度に保持することが推奨
されるが、塔(A)と塔(B)の温度が異なった場合に
は、供給された1,3−CHDA含有液が沸騰したり、
水蒸気が凝縮したりして、塔内の物質の収支バランスが
取りにくいので好ましくなく、温度範囲が100℃未満
の場合には不純物の除去が不充分になることが多く、1
50℃を超えた場合には分解等により歩留りが低下する
ことがあるので何れも好ましくない。
When the second step of the above combination is adopted, it is recommended to maintain each column and the pipe at a temperature in the range of 100 to 150 ° C., more preferably 102 to 130 ° C. ) And the temperature of the column (B) are different, the supplied 1,3-CHDA-containing liquid boils,
It is not preferable because water vapor condenses and it is difficult to balance the balance of substances in the column. When the temperature range is lower than 100 ° C., the removal of impurities is often insufficient.
If the temperature is higher than 50 ° C., the yield may decrease due to decomposition or the like, and neither is preferable.

【0056】前記塔(B)については、水蒸気中に含ま
れる不純物がアルカリ側に吸収され移動する速度が極め
て速いので、塔(A)の上部から出た不純物を含有した
水蒸気をシャワー状のアルカリ水溶液に接触させる方法
やアルカリ水溶液の中に直接水蒸気を吹き込む方法も採
用することができる。
In the column (B), since the speed at which the impurities contained in the water vapor are absorbed and moved to the alkali side is extremely high, the water vapor containing the impurities discharged from the upper part of the column (A) is converted into a shower-like alkali. A method of contacting with an aqueous solution or a method of directly blowing steam into an aqueous alkaline solution can also be adopted.

【0057】以上のように、本発明を実施することによ
り、水素添加触媒の活性低下を抑え、触媒の寿命を著し
く長く保つことが可能になり、これによってIPAを直
接水素添加反応に供して1,3−CHDAを得る方法が
経済的に可能になり、更に、現在の高度な要求に充分に
応えられる高い品質の、1,3−CHDAを製造するこ
とが可能になる。
As described above, by practicing the present invention, it is possible to suppress the decrease in the activity of the hydrogenation catalyst and to keep the life of the catalyst extremely long. , 3-CHDA can be obtained economically, and high-quality 1,3-CHDA can be produced which can sufficiently meet the present high demands.

【0058】[0058]

【実施例】【Example】

【0059】以下に、参考例及び実施例を掲げて本発明
の内容を更に具体的に説明するが、本発明の範囲はこれ
らの例に限定されるものではない。
Hereinafter, the contents of the present invention will be described more specifically with reference to Reference Examples and Examples, but the scope of the present invention is not limited to these examples.

【0060】[実施例−1](第一工程)Example 1 (First Step)

【0061】フッソ樹脂(テフロン)製の攪拌羽根を取
り付けた容量500mlのガラス製オートクレーブにイ
ソフタル酸30g、水270g並びに10%パラジウム
−炭素触媒(エヌ・イー・ケムキャット社製)10gを
入れ、温度130℃、水素圧8.3〜9.8kg/cm
2 で水素化を行った結果、50分後に水素の吸収が認め
られなくなり、反応が終了した。
30 g of isophthalic acid, 270 g of water and 10 g of 10% palladium-carbon catalyst (manufactured by NE Chemcat) were placed in a 500 ml glass autoclave equipped with a stirring blade made of a fluoro resin (Teflon), and a temperature of 130 g. ° C, hydrogen pressure 8.3-9.8kg / cm
As a result of hydrogenation in 2 , as a result, no absorption of hydrogen was observed after 50 minutes, and the reaction was completed.

【0062】反応液をオートクレーブから取り出し、6
0℃に保持して触媒を濾過し、濾液を得た。
The reaction solution was taken out of the autoclave and
The catalyst was filtered while maintaining the temperature at 0 ° C. to obtain a filtrate.

【0063】この濾液をガスクロマトグラフ法にて分析
した結果、固形分中の1,3−CHDAの純度は98.
0%であり、未還元物量は0.01%、不純物の種類は
3−メチルシクロヘキサンカルボン酸とシクロヘキサン
カルボン酸のみであった。
As a result of analyzing the filtrate by gas chromatography, the purity of 1,3-CHDA in the solid content was 98.
It was 0%, the amount of unreduced substances was 0.01%, and the types of impurities were only 3-methylcyclohexanecarboxylic acid and cyclohexanecarboxylic acid.

【0064】次いで、回収した触媒にイソフタル酸30
g及び水270gを加えて同様の水素化を繰り返した。
Next, isophthalic acid 30 was added to the recovered catalyst.
g and 270 g of water were added and the same hydrogenation was repeated.

【0065】回収した触媒を使用して水素化の繰り返し
を70回目まで行ったが、触媒の水素化活性の指標にな
る反応時間、1,3−CHDA純度及び未還元物の量に
殆ど変化は見られなかった。
The hydrogenation was repeated up to the 70th time using the recovered catalyst. However, the reaction time, the 1,3-CHDA purity and the amount of unreduced product, which are indicative of the hydrogenation activity of the catalyst, showed almost no change. I couldn't see it.

【0066】繰り返して水素化した結果を表1に示す。Table 1 shows the results of repeated hydrogenation.

【0067】[0067]

【表1】 [Table 1]

【0068】[比較例−1](第一工程)Comparative Example 1 (First Step)

【0069】実施例−1のガラス製オートクレーブに代
えてステンレス製のオートクレーブを使用した他は実施
例−1と同様にして水素化を20回まで繰り返した。
The hydrogenation was repeated up to 20 times in the same manner as in Example 1 except that a stainless steel autoclave was used instead of the glass autoclave of Example 1.

【0070】その結果、水素化に要する反応時間が長く
なったため、以降の繰り返しを止めた。繰り返して水素
化した結果を表2に示す。
As a result, the reaction time required for hydrogenation became longer, and the subsequent repetition was stopped. Table 2 shows the results of repeated hydrogenation.

【0071】[0071]

【表2】 [Table 2]

【0072】[実施例−2](第一工程)Example 2 (First Step)

【0073】10,000mlのステンレス(SUS3
06)容器の内側と攪拌羽根の接液部分にグラスライニ
ングを施したオートクレーブに、イソフタル酸1.2k
g、水4.8kg並びに10%パラジウム−炭素240
gを入れ、温度130℃、水素圧8.5〜9.8kg/
cm2 の条件で水素化を行った結果、反応開始後80分
で水素の吸収が認められなくなり、反応が終了した。
10,000 ml of stainless steel (SUS3
06) Isophthalic acid 1.2k was placed in an autoclave in which the inside of the vessel and the wetted part of the stirring blade were lined with glass.
g, 4.8 kg of water and 10% palladium-carbon 240
g at a temperature of 130 ° C. and a hydrogen pressure of 8.5 to 9.8 kg /
As a result of hydrogenation under the condition of cm 2 , absorption of hydrogen was not observed 80 minutes after the start of the reaction, and the reaction was completed.

【0074】反応液を60℃まで冷却した後オートクレ
ーブから取り出し、ろ過して、濾液を分析した結果、
1,3−CHDA純度は97.1%であり、未還元物含
量は0.02%であった。
After the reaction solution was cooled to 60 ° C., it was taken out of the autoclave, filtered, and the filtrate was analyzed.
The 1,3-CHDA purity was 97.1% and the unreduced content was 0.02%.

【0075】[実施例−3](第一工程)Example 3 (First Step)

【0076】実施例−2と同じオートクレーブに、イソ
フタル酸600g、水5.4kg、並びに10%パラジ
ウム−炭素触媒120gを入れ、温度140℃、水素圧
力5〜6kg/cm2 で水素化を行った結果、反応開始
後140分で水素の吸収が認められなくなり、反応が終
了した。
In the same autoclave as in Example 2, 600 g of isophthalic acid, 5.4 kg of water and 120 g of a 10% palladium-carbon catalyst were put, and hydrogenation was carried out at a temperature of 140 ° C. and a hydrogen pressure of 5 to 6 kg / cm 2 . As a result, no absorption of hydrogen was observed 140 minutes after the start of the reaction, and the reaction was completed.

【0077】反応液を冷却した後、実施例−2と同様に
して加熱濾過し、冷却して、濾液を分析した結果、1,
3−CHDA純度は95.8%であり、未還元物含量は
0.02%であった。
After cooling the reaction solution, it was filtered by heating in the same manner as in Example-2, cooled, and the filtrate was analyzed.
3-CHDA purity was 95.8% and unreduced matter content was 0.02%.

【0078】[実施例−4](第一工程)[Example-4] (First step)

【0079】触媒として7.5%パラジウム−炭素触媒
を280g使用し、反応温度を150℃とし、水素圧力
を8.5〜9.8kg/cm2 とした他は実施例−3と
同様にして水素化した結果、反応時間は70分で、分析
結果は、1,3−CHDA純度が96.2%、未還元物
含量が0.02%であった。
The same procedure as in Example 3 was carried out except that 280 g of a 7.5% palladium-carbon catalyst was used as the catalyst, the reaction temperature was 150 ° C., and the hydrogen pressure was 8.5 to 9.8 kg / cm 2. As a result of hydrogenation, the reaction time was 70 minutes, and the analysis result was that the purity of 1,3-CHDA was 96.2% and the content of unreduced substances was 0.02%.

【0080】[実施例−5](第一工程)[Example-5] (First step)

【0081】実施例−2と同じオートクレーブに、イソ
フタル酸900g、水5.1kg、並びに5%パラジウ
ム−炭素触媒400gを入れ、温度130℃、水素圧力
8.5〜9.8kg/cm2 で水素化を行った結果、反
応開始後80分で水素の吸収が認められなくなり、反応
が終了した。
In the same autoclave as in Example 2, 900 g of isophthalic acid, 5.1 kg of water and 400 g of a 5% palladium-carbon catalyst were placed, and hydrogen was added at a temperature of 130 ° C. and a hydrogen pressure of 8.5 to 9.8 kg / cm 2 . As a result, the absorption of hydrogen was not observed 80 minutes after the start of the reaction, and the reaction was completed.

【0082】実施例−2と同様にして濾液を分析した結
果、1,3−CHDA純度は97.6%であり、未還元
物含量は0.02%であった。
The filtrate was analyzed in the same manner as in Example 2. As a result, the purity of 1,3-CHDA was 97.6%, and the content of unreduced substances was 0.02%.

【0083】[実施例−6](第二工程)[Example-6] (Second step)

【0084】ジャケット付のステンレス製の塔(B)と
それ以外の各々の接液部をグラスライニングした図1に
示す加熱ジャケット付設備を用意し、図のように加熱ジ
ャケット付配管を接続した。
A stainless steel tower (B) with a jacket and a heating jacket equipment shown in FIG. 1 were prepared by glass-lining the other liquid contacting parts, and piping with a heating jacket was connected as shown in the figure.

【0085】各々の寸法は、塔(A)の容器(1)(内
径5cm、長さ20cm)、カラム(2)(内径5c
m、長さ200cm、容量3900ml)、液受器
(3)(内径5cm、長さ70cm)、塔(B)の容器
(4)(内径5cm、長さ20cm)、カラム(5)
(内径5cm、長さ200cm、容量3900ml)、
液受器(6)(内径5cm、長さ70cm)とし、カラ
ム(2)には内径3mm、外径6mm、長さ6mmの磁
製のラシヒリングを、カラム(5)には5mm×12m
mの金網をそれぞれ充填した。
The dimensions of the column (A) were as follows: vessel (1) (inside diameter 5 cm, length 20 cm), column (2) (inside diameter 5 c)
m, length 200 cm, capacity 3900 ml), liquid receiver (3) (inner diameter 5 cm, length 70 cm), vessel (4) of tower (B) (inner diameter 5 cm, length 20 cm), column (5)
(Inner diameter 5cm, length 200cm, capacity 3900ml),
A liquid receiver (6) (inside diameter 5 cm, length 70 cm), a column (2) with a porcelain Raschig ring having an inside diameter of 3 mm, an outside diameter of 6 mm, and a length of 6 mm, and a column (5) of 5 mm × 12 m
m of wire mesh were filled respectively.

【0086】また、容器(1)の上部には1,3−CH
DA含有液の入口(a)を、側面には水蒸気出口(b)
を、液受器(3)の側面には水蒸気入口(c)を、下部
には1,3−CHDAの排出口(d)を、容器(4)の
上部にはアルカリ水溶液の入口(e)を、側面には水蒸
気出口(f)を、液受器(6)の側面には水蒸気入口
(g)を、下部にはアルカリ水溶液の取出口(h)をそ
れぞれ取り付けた。
Further, 1,3-CH was placed on the upper part of the container (1).
A DA-containing liquid inlet (a) and a steam outlet (b) on the side
, A steam inlet (c) on the side of the liquid receiver (3), a 1,3-CHDA outlet (d) on the lower part, and an alkaline aqueous solution inlet (e) on the upper part of the container (4). , A steam outlet (f) on the side, a steam inlet (g) on the side of the liquid receiver (6), and an outlet (h) for an alkaline aqueous solution at the bottom.

【0087】最初に装置のジャケット部に4.8kg/
cm2 の蒸気圧をかけ、系内の温度を150℃に調節
し、次いで、水蒸気循環ポンプ(9)を毎分57ml
(水としての量)の速さで運転して水蒸気入口(c)に
向けて水蒸気を送り、系内の水蒸気を循環させた。
First, 4.8 kg /
A steam pressure of 150 cm 2 was applied to adjust the temperature in the system to 150 ° C., and then a steam circulation pump (9) was turned on at 57 ml / min.
By operating at a speed of (amount as water), steam was sent toward the steam inlet (c), and the steam in the system was circulated.

【0088】次に、ポンプ(8)を運転して10%の水
酸化ナトリウム水溶液を毎分67mlの速さで入口
(e)に送り、実施例−2で製造した1,3−CHDA
含有液(濃度20%、1,3−CHDA純度97.1
%)をポンプ(7)で毎分133mlの速さで送り、1
0分毎に各塔の排出口(d)及び取出口(h)から各々
の液の抜き取りを行った。
Next, the pump (8) was operated to feed a 10% aqueous sodium hydroxide solution to the inlet (e) at a rate of 67 ml / min.
Contained liquid (concentration 20%, 1,3-CHDA purity 97.1)
%) By the pump (7) at a rate of 133 ml per minute.
Every 0 minutes, each liquid was withdrawn from the outlet (d) and outlet (h) of each tower.

【0089】1時間後及び2時間後に液受器(3)の排
出口(d)から生成された1,3−CHDA含有液を抜
き取って分析した結果、不純物は検出されなかった。
After 1 hour and 2 hours, the 1,3-CHDA-containing liquid produced from the outlet (d) of the liquid receiver (3) was extracted and analyzed. As a result, no impurities were detected.

【0090】[実施例−7](第二工程)[Example-7] (Second step)

【0091】下記に示す条件の他は実施例−6と同じ方
法で処理を行った。
Processing was performed in the same manner as in Example 6 except for the following conditions.

【0092】配管及び装置内部温度を130℃とし、
1,3−CHDA含有液として実施例−5の条件で得た
もの(濃度15%、1,3−CHDA純度97.6%)
を用い、入口(a)への供給速度を毎分133mlとし
て、10%水酸化ナトリウム水溶液の入口(e)への供
給速度を毎分67mlとした。
The temperature inside the piping and the apparatus was set to 130 ° C.
1,3-CHDA-containing liquid obtained under the conditions of Example-5 (concentration 15%, 1,3-CHDA purity 97.6%)
The supply rate to the inlet (a) was set to 133 ml / min, and the supply rate of the 10% aqueous sodium hydroxide solution to the inlet (e) was set to 67 ml / min.

【0093】また、水蒸気循環ポンプ(9)の供給速度
を水の量で毎分71mlとして該装置を運転し、1時間
後及び2時間後に液受器(3)の排出口(d)から抜き
取った液を分析した結果、不純物は検出されなかった。
The apparatus was operated with the supply rate of the steam circulation pump (9) being 71 ml / min of water, and after 1 hour and 2 hours, it was withdrawn from the outlet (d) of the liquid receiver (3). As a result of analyzing the solution, no impurities were detected.

【0094】[実施例−8](第二工程)[Example-8] (Second step)

【0095】実施例−6の装置内部の温度を110℃に
調節し、1,3−CHDA含有液として実施例−3の条
件で製造したもの(1,3−CHDA純度95.8%、
濃度10%)を用い、入口(a)への供給速度を毎分2
00mlとし、5%のアルカリ水溶液を用いて、その入
口(e)への供給速度を毎分134mlとし、水蒸気循
環ポンプ(9)の供給速度を水の量で毎分71mlとし
て実施例−6と同様に運転し、1時間後及び2時間後に
液受器(3)の排出口(d)から抜き取った液を分析し
た結果、不純物は検出されなかった。
The temperature of the inside of the apparatus of Example-6 was adjusted to 110 ° C., and a 1,3-CHDA-containing liquid was prepared under the conditions of Example-3 (1,3-CHDA purity: 95.8%,
Concentration 10%) and the feed rate to the inlet (a) is 2 min / min.
Example 6 using a 5% alkaline aqueous solution, the supply rate to the inlet (e) was set to 134 ml / min, and the supply rate of the steam circulation pump (9) was set to 71 ml / min by the amount of water. The same operation was performed, and after 1 hour and 2 hours, the liquid extracted from the outlet (d) of the liquid receiver (3) was analyzed. As a result, no impurities were detected.

【0096】[実施例−9](第二工程)[Example-9] (Second step)

【0097】実施例−6の塔(B)として、充填物の入
っていない、内径12cm、長さ100cm、容積11
300mlのステンレス容器を用い、水蒸気出口(b)
と水蒸気入口(g)の間には、液が逆流しないように逆
止弁を取り付け、水蒸気が水蒸気出口(b)から水蒸気
入口(g)に流れるようにした。
As the column (B) of Example-6, an inner diameter of 12 cm, a length of 100 cm, and a volume of 11 without packing was used.
Steam outlet (b) using a 300 ml stainless steel container
A check valve was provided between the steam inlet (g) and the steam inlet (g) so that the liquid did not flow backward, and the steam was allowed to flow from the steam outlet (b) to the steam inlet (g).

【0098】容器(B)の水蒸気入口(g)がアルカリ
水溶液の液面下になるように、濃度20%の水酸化カリ
ウム5000mlを入れ、全体の系を130℃に保っ
た。
[0098] 5000 ml of potassium hydroxide having a concentration of 20% was charged so that the steam inlet (g) of the vessel (B) was below the level of the alkaline aqueous solution, and the whole system was kept at 130 ° C.

【0099】実施例−5の条件で製造した1,3−CH
DA含有液(1,3−CHDA純度97.6%、濃度1
5%)を毎分67mlの速さで入口(a)から供給し、
アルカリの連続的な供給と抜き取りをしない他は実施例
−6と同様に装置を運転して、1時間目及び2時間目
に、排出口(d)から抜き出した液を分析した結果、不
純物は検出されなかった。
1,3-CH produced under the conditions of Example-5
DA-containing liquid (1,3-CHDA purity 97.6%, concentration 1
5%) from the inlet (a) at a rate of 67 ml per minute,
The apparatus was operated in the same manner as in Example 6 except that continuous supply and extraction of the alkali were not performed, and the liquid extracted from the outlet (d) was analyzed at the first and second hours. Not detected.

【0100】[実施例−10](第二工程)[Example 10] (Second step)

【0101】実施例−6の塔(A)のみを用いて、水蒸
気入口(c)に外部のジャケットと同じ蒸気圧の水蒸気
が入るように配管を接続し、水蒸気出口(b)に絞り弁
と冷却器を取り付け、排出される水蒸気を凝縮させる構
造にした。
Using only the tower (A) of Example-6, pipes were connected to the steam inlet (c) so that steam having the same vapor pressure as the outer jacket could enter, and a throttle valve was connected to the steam outlet (b). A cooler was installed to condense the discharged steam.

【0102】装置及び配管のジャケットに2.0kg/
cm2 の水蒸気圧をかけて温度を120℃に保持し、水
蒸気入口(c)の弁を開けて装置内部に水蒸気を導入
し、水蒸気出口(b)の弁を開けて冷却されて排出され
て来る凝縮水の量を毎分57mlになるように調節し
た。
2.0 kg /
The temperature was kept at 120 ° C. by applying a steam pressure of 2 cm 2, the steam at the steam inlet (c) was opened to introduce steam into the apparatus, and the steam at the steam outlet (b) was opened to be cooled and discharged. The volume of condensed water coming was adjusted to 57 ml per minute.

【0103】次いで、実施例−4の条件で製造した1,
3−CHDA含有液(1,3−CHDA純度96.2
%、濃度10%)をポンプ(7)で毎分100mlの速
さで入口(a)に供給し、水蒸気入口(c)の弁を調節
して排出口(d)から排出される精製された1,3−C
HDA含有液の濃度が10%になるように調節した。
Next, the 1 prepared under the conditions of Example-4
3-CHDA-containing liquid (1,3-CHDA purity 96.2)
%, Concentration 10%) was supplied to the inlet (a) at a rate of 100 ml / min by the pump (7), and the purified steam discharged from the outlet (d) by adjusting the valve of the steam inlet (c). 1,3-C
The concentration of the HDA-containing liquid was adjusted to 10%.

【0104】排出口(d)から10分毎に液を排出し、
1時間目及び2時間目の抜き取り液を分析した結果、不
純物は検出されなかった。
The liquid is discharged from the discharge port (d) every 10 minutes.
As a result of analyzing the extracted liquids at the first and second hours, no impurities were detected.

【0105】[実施例−11](第二工程)[Example 11] (Second step)

【0106】図2に示すように、実施例−6の塔(B)
に代えてジャケット付の塔(C)(材質、SUS31
6)を用意し、その塔(C)の構造を塔(B)と同様に
上から、容器(10)(内径12cm、長さ20c
m)、アルカリシャワー装置(11)(内径12cm、
長さ50cm、容積22600ml)、及び液受器(1
2)(内径12cm、長さ50cm、容積11300m
l)とした。
As shown in FIG. 2, the tower (B) of Example-6 was used.
Instead of the tower (C) with jacket (material, SUS31
6) is prepared, and the structure of the tower (C) is set in the same manner as the tower (B) from above with a container (10) (inner diameter 12 cm, length 20 c).
m), alkali shower device (11) (inner diameter 12 cm,
Length 50 cm, volume 22600 ml) and liquid receiver (1
2) (Inner diameter 12cm, length 50cm, volume 11300m
l).

【0107】容器(10)の上部にはアルカリ液入口
(i)を、また内部には、アルカリの配管の先端に分配
器をつけてアルカリ液入口(i)から入ったアルカリ液
がアルカリシャワー装置(11)内で均一にシャワー状
に分散される構造とし、容器(10)の側面には水蒸気
出口(j)を取り付け、その外側に絞り弁及び冷却器を
取り付けた。
An alkali solution inlet (i) is provided at the upper part of the container (10), and a distributor is provided at the end of an alkali pipe to supply an alkali solution entered from the alkali solution inlet (i) to an alkali shower device. The structure (11) was uniformly dispersed in the form of a shower. A steam outlet (j) was attached to the side surface of the container (10), and a throttle valve and a cooler were attached to the outside thereof.

【0108】液受器(12)の下部には液の出口(k)
を、側面には水蒸気入口(m)と弁を取り付け、アルカ
リ液入口(i)と出口(k)との間にポンプ(13)を
取り付けて、液をアルカリ液入口(i)の方向に循環で
きる構造にした。
At the lower part of the liquid receiver (12), a liquid outlet (k) is provided.
Is attached to the side with a steam inlet (m) and a valve, and a pump (13) is installed between the alkaline liquid inlet (i) and the outlet (k) to circulate the liquid in the direction of the alkaline liquid inlet (i). A structure that can be used.

【0109】更に、水蒸気出口(b)と水蒸気入口
(m)、水蒸気入口(c)と水蒸気出口(j)とをそれ
ぞれ配管で接続し、水蒸気入口(c)と水蒸気出口
(j)との間に水蒸気循環ポンプ(9)を入れて水蒸気
が水蒸気入口(c)の方向に循環するようにした。
Further, the steam outlet (b) and the steam inlet (m), the steam inlet (c) and the steam outlet (j) are connected by pipes, respectively, and the steam inlet (c) and the steam outlet (j) are connected. A steam circulating pump (9) was put into the hopper so that steam circulated in the direction of the steam inlet (c).

【0110】最初に、塔(C)の容器(10)に10%
水酸化ナトリウム水溶液5000mlを入れ、各ジャケ
ットに水蒸気圧2kg/cm2 をかけて温度を120℃
とした後、ポンプ(13)を毎分6000mlの速度で
循環させ、水蒸気循環ポンプ(9)を毎分71ml(水
として)の速さで運転しながら、実施例−5の条件で製
造した1,3−CHDA含有液を毎分177mlの速さ
で塔(A)の入口(a)に供給し、排出口(d)から
は、10分毎に1,3−CHDA含有液を抜き取った。
First, 10% was added to the vessel (10) of the tower (C).
5000 ml of an aqueous sodium hydroxide solution was added, and a steam pressure of 2 kg / cm 2 was applied to each jacket to raise the temperature to 120 ° C.
After that, the pump (13) was circulated at a rate of 6000 ml / min, and the steam circulating pump (9) was operated at a rate of 71 ml / min (as water) while producing the mixture under the conditions of Example-5. , 3-CHDA-containing liquid was supplied to the inlet (a) of the tower (A) at a rate of 177 ml / min, and the 1,3-CHDA-containing liquid was withdrawn from the outlet (d) every 10 minutes.

【0111】排出口(d)から抜き取った液の1時間目
及び2時間目の品質を分析した結果、不純物は検出され
なかった。
As a result of analyzing the quality of the liquid withdrawn from the discharge port (d) at the first and second hours, no impurities were detected.

【0112】[0112]

【発明の効果】【The invention's effect】

【0113】本発明を実施することによって、高価なパ
ラジウム触媒の活性低下を顕著に抑制して経済的な水素
添加反応を実現することが可能になり、更に、該水素化
反応物含有液を水蒸気に接触させることにより、簡便な
操作で非常に高い純度の1,3−CHDAを得ることが
でき、この高純度1,3−CHDAを用いることによ
り、耐侯性や物理的強度等が優れた樹脂や高純度医薬品
の製造が可能になる。
By practicing the present invention, it is possible to realize an economical hydrogenation reaction by remarkably suppressing the activity of an expensive palladium catalyst, and furthermore, to convert the hydrogenation reaction product-containing liquid to steam. By contacting with, a very high purity 1,3-CHDA can be obtained by a simple operation. By using this high-purity 1,3-CHDA, a resin having excellent weather resistance and physical strength can be obtained. And the production of high-purity pharmaceuticals.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施に用いる加熱ジャケット付設備装
置の第1例の概略図である。
FIG. 1 is a schematic view of a first example of an equipment device with a heating jacket used for carrying out the present invention.

【図2】本発明の実施に用いる加熱ジャケット付設備装
置の第2例の概略図である。
FIG. 2 is a schematic view of a second example of a facility apparatus with a heating jacket used for carrying out the present invention.

【符号の説明】[Explanation of symbols]

A 塔 B 塔 C 塔 a 入口 b 水蒸気出口 c 水蒸気入口 d 排出口 e 入口 f 水蒸気出口 g 水蒸気入口 h 取出口 i アルカリ液入口 j 水蒸気出口 k 出口 m 水蒸気入口 1 容器 2 カラム 3 液受器 4 容器 5 カラム 6 液受器 7 ポンプ 8 ポンプ 9 水蒸気循環ポンプ 10 容器 11 アルカリシャワー装置 12 液受器 13 ポンプ A tower B tower C tower a inlet b steam outlet c steam inlet d outlet e inlet f steam outlet g steam inlet h outlet i alkaline liquid inlet j steam outlet k outlet m steam inlet 1 container 2 column 3 liquid receiver 4 container 5 Column 6 Liquid receiver 7 Pump 8 Pump 9 Steam circulation pump 10 Container 11 Alkaline shower device 12 Liquid receiver 13 Pump

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加藤 和昭 埼玉県北葛飾郡吉川町中曽根477 (56)参考文献 特開 平6−184041(JP,A) 特開 昭58−198439(JP,A) (58)調査した分野(Int.Cl.7,DB名) C07C 51/43 C07C 51/36 C07C 61/09 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Kazuaki Kato 477 Nakasone, Yoshikawa-cho, Kita-Katsushika-gun, Saitama (56) References JP-A-6-184041 (JP, A) JP-A-58-198439 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) C07C 51/43 C07C 51/36 C07C 61/09

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 1,3−シクロヘキサンジカルボン酸を
製造するに際し、 イソフタル酸含有液をパラジウム触媒の存在下で、耐酸
容器内又は耐酸物質で内張りをした容器内で水素添加す
る第一工程、 第一工程で得られた1,3−シクロヘキサンジカルボン
酸含有液と水蒸気とを接触させ、水蒸気側に移動した不
純物を除去する第二工程、 の二工程を逐次的に経由することを特徴とする1,3−
シクロヘキサンジカルボン酸の製造方法。
1. A first step of hydrogenating an isophthalic acid-containing liquid in an acid-resistant vessel or a vessel lined with an acid-resistant substance in the presence of a palladium catalyst in producing 1,3-cyclohexanedicarboxylic acid. A second step of bringing the 1,3-cyclohexanedicarboxylic acid-containing liquid obtained in one step into contact with water vapor to remove impurities transferred to the water vapor side; , 3-
A method for producing cyclohexanedicarboxylic acid.
【請求項2】 第一工程の水素添加を2kg/cm2
上、200kg/cm2 未満の水素圧力下で実施するこ
とを特徴とする請求項1記載の1,3−シクロヘキサン
ジカルボン酸の製造方法。
2. The method for producing 1,3-cyclohexanedicarboxylic acid according to claim 1, wherein the hydrogenation in the first step is carried out under a hydrogen pressure of 2 kg / cm 2 or more and less than 200 kg / cm 2. .
【請求項3】 第一工程の水素添加を2kg/cm2
上、10kg/cm2 未満の水素圧力下で実施すること
を特徴とする請求項1記載の1,3−シクロヘキサンジ
カルボン酸の製造方法。
3. The method for producing 1,3-cyclohexanedicarboxylic acid according to claim 1, wherein the hydrogenation in the first step is carried out under a hydrogen pressure of 2 kg / cm 2 or more and less than 10 kg / cm 2. .
【請求項4】 第二工程に於いて、1,3−シクロヘキ
サンジカルボン酸含有液を充填塔の一方から連続的に供
給しながらそれとは逆の方向から連続的に水蒸気を供給
し、他方から1,3−シクロヘキサンジカルボン酸を断
続的に又は連続的に排出しながらそれとは逆の方向から
水蒸気を排出して1,3−シクロヘキサンジカルボン酸
と水蒸気とを向流接触させ、水蒸気側に移動した不純物
を、水蒸気と共に凝縮させて除去するか、又はアルカリ
水溶液中に通して除去した後、必要に応じて水蒸気を加
熱し、再使用することを特徴とする請求項1〜3の何れ
かに記載の1,3−シクロヘキサンジカルボン酸の製造
方法。
4. In the second step, while the 1,3-cyclohexanedicarboxylic acid-containing liquid is continuously supplied from one of the packed towers, steam is continuously supplied from the opposite direction, and the other is supplied from the other one. While discharging 1,3-cyclohexanedicarboxylic acid intermittently or continuously, water vapor is discharged from the opposite direction to bring countercurrent contact between 1,3-cyclohexanedicarboxylic acid and water vapor, and impurities transferred to the water vapor side Is condensed and removed together with water vapor, or is removed by passing through an alkaline aqueous solution, and then, if necessary, heating the water vapor and reusing it. A method for producing 1,3-cyclohexanedicarboxylic acid.
JP13700793A 1993-05-17 1993-05-17 Method for producing 1,3-cyclohexanedicarboxylic acid Expired - Fee Related JP3268890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13700793A JP3268890B2 (en) 1993-05-17 1993-05-17 Method for producing 1,3-cyclohexanedicarboxylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13700793A JP3268890B2 (en) 1993-05-17 1993-05-17 Method for producing 1,3-cyclohexanedicarboxylic acid

Publications (2)

Publication Number Publication Date
JPH06321852A JPH06321852A (en) 1994-11-22
JP3268890B2 true JP3268890B2 (en) 2002-03-25

Family

ID=15188633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13700793A Expired - Fee Related JP3268890B2 (en) 1993-05-17 1993-05-17 Method for producing 1,3-cyclohexanedicarboxylic acid

Country Status (1)

Country Link
JP (1) JP3268890B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY129474A (en) * 1997-12-19 2007-04-30 Basf Ag Method for hydrogenating benzene polycarboxylic acids or derivatives thereof by using a catalyst containing macropores
JP4687844B2 (en) * 2000-12-28 2011-05-25 三菱瓦斯化学株式会社 Method for producing cyclohexanedicarboxylic acid
ATE511498T1 (en) 2003-11-20 2011-06-15 Solvay METHOD FOR PRODUCING DICHLOROPROPANOL FROM GLYCERIN AND A CHLORINATING AGENT IN THE PRESENCE OF A CATALYST SELECTED FROM ADIPINE AND GLUTARIC ACID
FR2913421B1 (en) 2007-03-07 2009-05-15 Solvay PROCESS FOR PRODUCING DICHLOROPROPANOL
TW200911740A (en) 2007-06-01 2009-03-16 Solvay Process for manufacturing a chlorohydrin
TW200911693A (en) 2007-06-12 2009-03-16 Solvay Aqueous composition containing a salt, manufacturing process and use
TW200911773A (en) 2007-06-12 2009-03-16 Solvay Epichlorohydrin, manufacturing process and use
FR2925045B1 (en) 2007-12-17 2012-02-24 Solvay GLYCEROL-BASED PRODUCT, PROCESS FOR OBTAINING THE SAME AND USE THEREOF IN THE MANUFACTURE OF DICHLOROPROPANOL

Also Published As

Publication number Publication date
JPH06321852A (en) 1994-11-22

Similar Documents

Publication Publication Date Title
JP3106411B2 (en) Method for producing 1,4-cyclohexanedicarboxylic acid
US20080051600A1 (en) Process for producing trans-1, 4-cyclohexanedicarboxylic acid
JP3268890B2 (en) Method for producing 1,3-cyclohexanedicarboxylic acid
JP3523332B2 (en) Purification method of ε-caprolactam
JPS5919931B2 (en) Hydrogenation method of diacetoxybutene
JP5076739B2 (en) Method for producing hexafluroisopropanol
JP2002255895A (en) Method for producing hydrogenated aromatic carboxylic acid
JP4134761B2 (en) Production method of alkyl nitrite
JPH07188117A (en) Method of treating liquid reaction product obtained in production dimethyl carbonate in the presence of cu catalyst
JP2880060B2 (en) Method for producing acetic acid, methyl acetate and acetic anhydride by carbonylation of methanol
EP1140702B1 (en) Method of producing zinc bromide
JP2002356461A (en) Method for continuously producing diaminodicyclohexylmethane
US5420344A (en) Process for producing highly pure terephthalic acid
JPH06192146A (en) Production of 1,4-cyclohexanedimethanol
JP3769312B2 (en) Method for producing succinic acid
EP1167334B1 (en) Process for continuously producing a cyclododecanone compound
EP1191007B1 (en) Process for production of allyl chloride
JPH09100258A (en) Production of ethylamine compounds
JP2945372B2 (en) Purification method of chlorinated aromatic hydrocarbon
EP1199297B1 (en) Method of continuously producing a cyclododecanone compound
JP3232700B2 (en) Method for producing high-purity terephthalic acid
JP2004059434A (en) Method for producing cyclododecanone
GB1560694A (en) Process for producing butanediol or butenediol
JP2000072710A (en) High-purity monochloroacetic acid and its production
JPH0769940A (en) Production of cycloolefin

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011225

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees