JPH0768343A - Production of aluminum alloy casting - Google Patents

Production of aluminum alloy casting

Info

Publication number
JPH0768343A
JPH0768343A JP18612694A JP18612694A JPH0768343A JP H0768343 A JPH0768343 A JP H0768343A JP 18612694 A JP18612694 A JP 18612694A JP 18612694 A JP18612694 A JP 18612694A JP H0768343 A JPH0768343 A JP H0768343A
Authority
JP
Japan
Prior art keywords
core
mold
casting
aluminum alloy
granular material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18612694A
Other languages
Japanese (ja)
Inventor
Tokufusa Harada
徳房 原田
Kyoji Tominaga
恭爾 富永
Isao Kai
勲 甲斐
Kazuo Tamemoto
和雄 為本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Yukizai Corp
Original Assignee
Asahi Organic Chemicals Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Organic Chemicals Industry Co Ltd filed Critical Asahi Organic Chemicals Industry Co Ltd
Priority to JP18612694A priority Critical patent/JPH0768343A/en
Publication of JPH0768343A publication Critical patent/JPH0768343A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mold Materials And Core Materials (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To improve the collapsibility of a core after pouring molten metal by blending curable organic binder into molding sand containing a specific amount of refractory granular material with high sp. gr. having true sp. gr. of a specific value and forming the core. CONSTITUTION:The curable organic binder is blended into the refractory granular material with high sp. gr. having true sp. gr. of >= 3.4 or the molding sand containing >=10% the above granular material to form the core. An aluminum alloy casting is cast by using this core. After casting, the core is removed by giving the casting vibration. In the casting of the aluminum alloy, as sufficient heat histrory for decomposing the binder in the core is not given, the core is difficult to collapse. At the time of using the granular material having the true sp. gr. of >=3.4, the vibrating propagation effect is improved and the core is collapsed. The refractory granular material with high sp. gr. is desirable to use e.g. zircon sand, chromite sand, blast rushed converter slag, granular iron, etc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、注湯後の崩壊性が良好
な鋳型用組成物を用いて、アルミニウム合金を製造する
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an aluminum alloy using a mold composition having good disintegration after pouring.

【0002】[0002]

【従来の技術】通常、鋳造に用いる中子は、鋳物砂と有
機粘結剤とから成る鋳型用組成物によって作られている
が、この鋳型用組成物については注湯後において容易に
崩壊することが要求され、そのためにこれまでも多くの
研究がなされている。
2. Description of the Related Art Usually, a core used for casting is made of a molding composition composed of foundry sand and an organic binder, and this molding composition easily disintegrates after pouring. Therefore, much research has been done so far.

【0003】特に、アルミニウム合金の鋳造に際して
は、鉄の場合と異なり、中子中の粘結剤が分解するのに
十分な熱履歴を与えないため、注湯後の中子が崩壊しに
くく、エアハンマーなどで鋳物に大きな衝撃を与えて砂
落しを行うか、あるいは約500℃の高温下で4〜8時
間加熱処理して砂焼きしなければならず、多大の労力と
エネルギーの消費を必要としていた。ところで、最近の
自動車関連の鋳造部品は、軽量化のために、従来の鉄に
代えてアルミニウム合金を用いる傾向にあり、中子の崩
壊性の向上の問題はいよいよ焦眉の急となってきてい
る。
Particularly, when casting an aluminum alloy, unlike the case of iron, since the binder in the core does not give sufficient heat history to decompose, the core after pouring is less likely to collapse, A large impact must be given to the casting with an air hammer etc. to remove the sand, or heat treatment must be performed at a high temperature of about 500 ° C for 4 to 8 hours to burn the sand, which requires a great deal of labor and energy consumption. I was trying. By the way, in recent automobile-related cast parts, there is a tendency to use an aluminum alloy in place of conventional iron in order to reduce the weight, and the problem of improving the disintegration property of the core is becoming more and more urgent. .

【0004】中子の注湯後の崩壊性を改善する手段の1
つとして、比較的低温で熱分解する物質を配合して粘結
剤の結合力を破壊することが行われ、これまでに、この
ような物質として含ハロゲン有機化合物、過酸化物、リ
ン酸エステル類又は無機塩化物などが提案されている
(特開昭57−139442号公報、特開昭57−14
9043号公報、特開昭57−156858号公報、特
開昭58−3745号公報、特開昭58−205641
号公報)。
A means for improving the disintegration property of cores after pouring
As one of the methods, a substance that thermally decomposes at a relatively low temperature is blended to destroy the binding force of the binder, and as such substances, halogen-containing organic compounds, peroxides, and phosphoric acid esters have been used so far. And inorganic chlorides have been proposed (JP-A-57-139442 and JP-A-57-14).
9043, JP-A-57-156858, JP-A-58-3745, and JP-A-58-205641.
Issue).

【0005】しかしながら、これらの物質は、粘結剤の
結合力を破壊する性質上、得られる中子の強度が低下す
るのを免れず、このためその配合量にはおのずから限度
があり、十分な崩壊性の向上は望めない。
However, these substances are unavoidable in that the strength of the resulting core is deteriorated due to the property of destroying the binding force of the binder, and therefore, the blending amount is naturally limited and sufficient. No improvement in disintegration can be expected.

【0006】[0006]

【発明が解決しようとする課題】本発明は、注湯後の崩
壊性が優れた鋳型用組成物を用いてアルミニウム合金鋳
物を製造する方法を提供することを目的とするものであ
る。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for producing an aluminum alloy casting using a mold composition having excellent disintegration after pouring.

【0007】[0007]

【課題を解決するための手段】本発明者らは、アルミニ
ウム合金からの鋳物に、振動を与えながら砂落しを行う
場合に、振動を迅速に中子全体に伝ぱんさせ、その崩壊
を促進させる方法について鋭意研究を重ねた結果、真比
重3.4以上の耐火性高比重粒状体又はこれを10重量
%以上含む鋳物砂との混合物から成る鋳型用基材に硬化
性有機粘結剤を配合した鋳型用組成物を用いることによ
りその目的を達成しうることを見出し、この知見に基づ
いて本発明をなすに至った。
Means for Solving the Problems The inventors of the present invention rapidly propagate vibrations to the entire core and accelerate the collapse of the castings made of aluminum alloy when sand is removed while applying vibrations. As a result of earnest research on the method, a curable organic binder was added to a mold base material made of a refractory high specific gravity granular material having a true specific gravity of 3.4 or more or a mixture with molding sand containing 10% by weight or more thereof. It was found that the object can be achieved by using the above composition for a mold, and the present invention has been completed based on this finding.

【0008】すなわち、本発明は、(a)真比重3.4
以上の耐火性高比重粒状体又はこれを10重量%以上含
む鋳物砂との混合物から成る鋳型用基材に硬化性有機粘
結剤を配合して鋳型用組成物を調製する工程、(b)前
記鋳型用組成物で中子を成形する工程、(c)前記中子
を用いてアルミニウム合金鋳物を鋳造する工程、及び
(d)前記アルミニウム合金鋳物に振動を与えて中子を
除去する工程を含むことを特徴とするアルミニウム合金
鋳物の製造方法を提供するものである。
That is, according to the present invention, (a) the true specific gravity is 3.4.
(B) a step of preparing a mold composition by blending a curable organic binder into a mold base material made of the above refractory high specific gravity granules or a mixture with molding sand containing 10 wt% or more thereof Molding a core with the mold composition, (c) casting an aluminum alloy casting using the core, and (d) vibrating the aluminum alloy casting to remove the core. The present invention provides a method for producing an aluminum alloy casting, which comprises:

【0009】本発明方法で用いる鋳型用基材は、全部が
真比重3.4以上の耐火性高比重粒状体から成っていて
もよいし、またこの耐火性高比重粒状体を10重量%以
上含む鋳物砂との混合物であってもよい。なお、この混
合物中の耐火性高比重粒状体の比率が10重量%未満で
あると、振動伝ぱん効果が十分に促進されない。
The mold base material used in the method of the present invention may be composed entirely of refractory high specific gravity granules having a true specific gravity of 3.4 or more, and the refractory high specific gravity granules of 10% by weight or more. It may be a mixture with foundry sand containing. If the proportion of the refractory high specific gravity granules in this mixture is less than 10% by weight, the vibration propagation effect is not sufficiently promoted.

【0010】この耐火性高比重粒状体としては、真比重
が3.4以上のものを用いることが必要であり、真比重
3.4未満のものでは、振動を伝ぱんさせる作用が十分
に付加されない。この真比重は高ければ高いほどよい
が、8.0よりも大きな物質は一般にコストの高い貴重
な金属になるため実用的でない。本発明方法において用
いられる耐火性高比重粒状体の具体例としては、ジルコ
ンサンド、クロマイトサンド、転炉風砕スラグ、粒状鉄
などが挙げられ、これらはそれぞれ単独で用いてもよい
し、2種以上組み合わせて用いてもよい。なお、ここに
示す真比重はJIS−R−2205に準じて測定した値
である。また、この粒状体の粒度分布については特に制
限はないが、20メッシュふるいを通過しない量が20
重量%以下で、かつ270メッシュふるい通過量が10
重量%以下であるような粒状体が好適である。
As the refractory high specific gravity granular material, it is necessary to use one having a true specific gravity of 3.4 or more. If the true specific gravity is less than 3.4, a function of propagating vibration is sufficiently added. Not done. The higher this true specific gravity is, the better, but a substance larger than 8.0 is generally not practical because it becomes a precious metal with high cost. Specific examples of the refractory high specific gravity granules used in the method of the present invention include zircon sand, chromite sand, converter blast slag, and granular iron. These may be used alone or in combination of two kinds. You may use it in combination of the above. The true specific gravity shown here is a value measured according to JIS-R-2205. The particle size distribution of this granular material is not particularly limited, but the amount that does not pass through a 20-mesh sieve is 20
Weight% or less and a 270 mesh sieve passage amount of 10
Granules with a weight percentage of less than or equal are preferred.

【0011】この鋳型用基材には、その合計量に対し、
0.1〜10重量%の硬化性有機粘結剤を添加すること
が必要である。この有機粘結剤としては、通常中子の製
造に際して慣用されている加熱硬化性樹脂(シェルモー
ルド法)、通気硬化性樹脂(コールドボックス法)、常
温自硬化性樹脂(常温硬化法)などであり、例えばシェ
ルモールド法においては、ノボラック型又はレゾール型
フェノール系樹脂、尿素系樹脂など、コールドボックス
法においては、フェノール・イソシアネート系樹脂、フ
ラン系樹脂など、常温硬化法においては、フェノール系
樹脂、フラン系樹脂、フェノール・イソシアネート系樹
脂などが用いられる。また、これらの樹脂に対し、崩壊
性を改善する目的で各種の添加剤、例えば臭素含有有機
化合物や塩素化合物などを反応若しくは混合した変性樹
脂なども用いることができる。
This base material for a mold has a total amount of
It is necessary to add 0.1 to 10% by weight of a curable organic binder. Examples of the organic binder include a heat-curable resin (shell mold method), an air-curable resin (cold box method), and a room-temperature self-curing resin (a room-temperature curing method) that are commonly used in the production of cores. There, for example, in shell mold method, novolac type or resol type phenolic resin, urea resin, etc., in cold box method, phenol / isocyanate resin, furan resin, etc., in room temperature curing method, phenolic resin, Furan resins, phenol / isocyanate resins, etc. are used. In addition, modified resins obtained by reacting or mixing various additives such as bromine-containing organic compounds and chlorine compounds with these resins for the purpose of improving disintegration can also be used.

【0012】本発明方法においては、上記の耐火性高比
重粒状体又はそれを10重量%以上含む鋳物砂との混合
物から成る鋳型用基材と硬化性有機粘結剤とを、所定の
割合で適当な混練機を用いて混合するか、あるいは鋳物
砂と硬化性有機粘結剤又は耐火性高比重粒状体と硬化性
有機粘結剤とをそれぞれ混練機を用いて別々に混合し、
次いでこれらを所定の割合で配合することにより鋳型用
組成物を調製する。なお、鋳型用基材は前述したような
硬化性有機粘結剤の性質に応じて加熱又は常温の状態で
用いられる。
In the method of the present invention, a mold base comprising the above-mentioned refractory high specific gravity granules or a mixture of molding sand containing 10% by weight or more of the granules and a curable organic binder at a predetermined ratio. Mixing using a suitable kneader, or the molding sand and the curable organic binder or the refractory high specific gravity granules and the curable organic binder are separately mixed using a kneader, respectively,
Then, these are mixed in a predetermined ratio to prepare a mold composition. The template substrate is used under heating or at room temperature depending on the properties of the curable organic binder described above.

【0013】次に、この鋳型用組成物を用いて所望形状
の中子を成形する。このようにして得られた中子は通
常、造型時、搬送時、鋳造時などにおける破壊防止のた
めに、その形状や対象鋳物に応じて一定の強度を保有す
るように鋳型用組成物によって製造され、管理される。
この場合、中子の強度は同一有機粘結剤でも使用される
鋳型用基材の種類や粒度分布によって異なるため、一般
的には該有機粘結剤の添加量によって調整される。
Next, a core having a desired shape is molded using this mold composition. The core thus obtained is usually produced by a mold composition so as to have a certain strength according to its shape and target casting, in order to prevent breakage during molding, transportation, casting, etc. Be managed.
In this case, the strength of the core varies depending on the type of the base material for the mold used and the particle size distribution even with the same organic binder, and thus is generally adjusted by the addition amount of the organic binder.

【0014】本発明方法においては、このようにして成
形した中子を、例えば金型、砂型等の外型の中にセット
し、両者の間に形成された空隙にあらかじめ所望の温度
で溶融させたアルミニウム合金を注湯し、これを冷却凝
固させて中子を内部に有するアルミニウム合金鋳物を作
製する。次いで、この鋳物に、例えばエアハンマーなど
で外部から振動を与えると、容易に中子が崩壊し、これ
を除去して中空鋳物を得ることができる。
In the method of the present invention, the core thus formed is set in an outer mold such as a mold or a sand mold, and is melted at a desired temperature in a space formed between the mold and the mold. Then, the aluminum alloy is poured and cooled and solidified to produce an aluminum alloy casting having a core inside. Next, when this casting is externally vibrated by, for example, an air hammer, the core easily collapses, and this can be removed to obtain a hollow casting.

【0015】このようにして、従来の鋳型組成物を用い
た場合に比べ、多くは非常に短い時間で中子を崩壊する
ことができ、作業時間を著しく短縮することができる。
In this way, the core can be disintegrated in a very short time, and the working time can be remarkably shortened, as compared with the case of using the conventional template composition.

【0016】[0016]

【発明の効果】本発明方法は、鋳型用基材として真比重
3.4以上の耐火性高比重粒状体単独若しくはこれと鋳
物砂との混合物を用いたものであって、これから得られ
た中子は、アルミニウム合金などの注湯後における崩壊
性が従来のものに比べて大幅に改善され、その崩壊に要
する時間が著しく短縮される。したがって、本発明方法
によれば、生産効率が上がり生産性を著しく向上させる
ことができ、その上低いノックアウト圧で容易に砂落し
をしうるので、鋳物の破壊が少なく製品歩留りが向上
し、さらに熱処理時間の短縮による省エネルギーや、ノ
ックアウト時の手作業の軽減による省力化が可能とな
る。
INDUSTRIAL APPLICABILITY The method of the present invention uses a refractory high specific gravity granular material having a true specific gravity of 3.4 or more alone or a mixture thereof with molding sand as a base material for a mold. The child has a significantly improved disintegration property after pouring an aluminum alloy or the like as compared with the conventional one, and the time required for the disintegration is significantly shortened. Therefore, according to the method of the present invention, the production efficiency can be significantly improved and the productivity can be remarkably improved, and since the sand can be easily shredded at a low knockout pressure, the product yield is improved with less breakage of the casting, and Energy can be saved by shortening the heat treatment time, and labor can be saved by reducing manual work during knockout.

【0017】[0017]

【実施例】次に、実施例により本発明をさらに詳細に説
明する。なお、各例中の鋳型用組成物の曲げ強度及び中
子の崩壊時間は次のようにして測定したものである。
EXAMPLES Next, the present invention will be described in more detail by way of examples. The bending strength and core disintegration time of the mold composition in each example are measured as follows.

【0018】(1)曲げ強度;JISK6910に準じ
た方法により測定した。 (2)崩壊時間;鋳造後得られた鋳物の1か所にエアー
圧力0.4kg/cm2のエアハンマーで振動を与えて
鋳物の径10mmの出口により中子が完全に排出される
までの時間を測定した。 また、各例において用いた鋳型用基材の粒度分布を表1
に示す。
(1) Bending strength: Measured by a method according to JIS K6910. (2) Disintegration time; until one core of the casting obtained after casting is vibrated by an air hammer with an air pressure of 0.4 kg / cm 2 until the core is completely discharged by the outlet with a diameter of 10 mm of the casting The time was measured. In addition, the particle size distribution of the template base material used in each example is shown in Table 1.
Shown in.

【0019】[0019]

【表1】 [Table 1]

【0020】実施例1〜4 鋳型用基材として、表1に示す耐火性高比重粒状体50
00重量部を用い、ヒーターによって140〜150℃
に加熱してスピードミキサー(遠州鉄工社製)に投入
し、次いでただちに、ほぼ一定の中子の強度を得るため
の粘結剤として表2に示すような所定量のノボラック型
フェノール樹脂[旭有機材工業(株)製、SP690]
を投入し、ミキサー中で50秒間混練して該樹脂で該粒
状体を被覆したのち、鋳型用基材に対し冷却水1.5重
量%と該樹脂に対しヘキサメチレンテトラミン15重量
%とを水溶液として投入し、約40〜60秒後に内容物
が乾体自由流動体になったところで、鋳型用基材に対し
て滑剤としてステアリン酸カルシウム0.1重量%を投
入して、さらに15秒間混練後にミキサーから取り出
し、流動性に富んだ加熱硬化性の鋳型用組成物を調製し
た。
Examples 1 to 4 The refractory high specific gravity granules 50 shown in Table 1 were used as the mold base material.
00 to 100 parts by weight, 140 to 150 ° C by a heater
The mixture is heated into a speed mixer (manufactured by Enshu Iron Works Co., Ltd.), and immediately thereafter, a predetermined amount of a novolac-type phenol resin [Asahi] is used as a binder for obtaining an almost constant core strength. Machinery Industry Co., Ltd., SP690]
, And kneading in a mixer for 50 seconds to coat the granular material with the resin, and then 1.5% by weight of cooling water to the base material for the mold and 15% by weight of hexamethylenetetramine to the resin in an aqueous solution. When about 40 to 60 seconds later, when the content became a dry body free-flowing substance, 0.1% by weight of calcium stearate was added as a lubricant to the base material for the mold, and the mixture was further kneaded for 15 seconds. Then, a thermosetting mold composition having a high fluidity was prepared.

【0021】このようにして得た鋳型用組成物を用い
て、ドックボーン型中子(巾40mm、長さ75mm、
厚さ25mm)を作成し、一方、別に前記中子より少し
大きい寸法を有する外型を他の砂型で成形して、その中
に前記中子をセットし、次いで720±5℃に溶融した
アルミニウム合金を注湯する。冷却後、鋳物の1か所に
エアー圧力0.4kg/cm2のエアハンマーで振動を
与えて中子を崩壊し、これを鋳物から除去して中空鋳物
を得た。この際の鋳型用組成物の曲げ強度及び中子の崩
壊時間を表2に示す。
Using the mold composition thus obtained, a dockbone type core (width 40 mm, length 75 mm,
(Thickness 25 mm), on the other hand, an outer mold having a size slightly larger than the core is separately molded with another sand mold, the core is set therein, and then aluminum melted at 720 ± 5 ° C. Pour the alloy. After cooling, one part of the casting was vibrated with an air hammer having an air pressure of 0.4 kg / cm 2 to collapse the core, and this was removed from the casting to obtain a hollow casting. Table 2 shows the bending strength and core disintegration time of the mold composition at this time.

【0022】実施例5,6 鋳型用基材として、耐火性高比重粒状体を単独で用いる
代りに、表1に示すような鋳物砂と耐火性高比重粒状体
との混合物を用いる以外は、実施例1〜4と同様な方法
でアルミニウム合金の鋳物を製造した。この際の鋳型用
組成物の曲げ強度及び中子の崩壊時間を表2に示す。
Examples 5, 6 As a base material for a mold, instead of using the refractory high specific gravity granules alone, a mixture of foundry sand and refractory high specific gravity granules as shown in Table 1 was used. Aluminum alloy castings were manufactured in the same manner as in Examples 1 to 4. Table 2 shows the bending strength and core disintegration time of the mold composition at this time.

【0023】実施例7 耐火性高比重粒状体の代りに鋳物砂(三河6号ケイ砂)
を用いる以外は、実施例1〜4と同様な方法で1.2重
量%のノボラック型フェノール樹脂を使用した樹脂被覆
鋳物砂Aを得た。一方、前記と同様にして、耐火性高比
重粒状体(ジルコンサンド)と1.2重量%のノボラッ
ク型フェノール樹脂を使用した樹脂被覆耐火性高比重粒
状体Bを得た。次に、このようにして得られたAとBと
を重量比50:50の割合で混合して加熱硬化性の鋳型
用組成物を調製した。この鋳型用組成物を用い、実施例
1〜4と同様にしてアルミニウム合金の鋳物を製造し
た。この際の鋳型用組成物の曲げ強度及び中子の崩壊時
間を表2に示す。
Example 7 Casting sand (Mikawa No. 6 silica sand) was used instead of the refractory high specific gravity granular material.
Resin coating molding sand A using 1.2% by weight of novolac type phenolic resin was obtained in the same manner as in Examples 1 to 4 except that On the other hand, in the same manner as above, a resin-coated fire-resistant high-specific-gravity granular material B using a fire-resistant high-specific-gravity granular material (zircon sand) and 1.2% by weight of a novolac type phenol resin was obtained. Next, A and B thus obtained were mixed at a weight ratio of 50:50 to prepare a heat-curable mold composition. Using this mold composition, aluminum alloy castings were produced in the same manner as in Examples 1 to 4. Table 2 shows the bending strength and core disintegration time of the mold composition at this time.

【0024】比較例1,2 鋳型用基材として、耐火性高比重粒状体の代りに表2に
示す鋳物砂を用いる以外は、実施例1〜4と同様にして
加熱硬化性の鋳型用組成物を調製し、この鋳型用組成物
を用いて、アルミニウム合金の鋳物を製造した。この際
の鋳型用組成物の曲げ強度及び中子の崩壊時間を表2に
示す。
Comparative Examples 1 and 2 A heat-curable mold composition was prepared in the same manner as in Examples 1 to 4 except that the molding sand shown in Table 2 was used as the mold base material instead of the refractory high specific gravity granules. A casting of an aluminum alloy was manufactured using the composition for a mold. Table 2 shows the bending strength and core disintegration time of the mold composition at this time.

【0025】[0025]

【表2】 [Table 2]

【0026】表2から明らかなように、本発明方法によ
れば、従来方法に比べて、崩壊時間が大幅に短縮されて
おり、崩壊性が著しく向上していることが分る。
As is clear from Table 2, the disintegration time is remarkably shortened and the disintegration property is remarkably improved by the method of the present invention as compared with the conventional method.

【0027】実施例8 鋳型用基材として、表1に示すようなジルコンサンド2
500重量部を用い、卓上ミキサー(品川工業社製)に
投入し、次いでただちに、ほぼ一定の中子の強度を得る
ための粘結剤として表3に示すような所定量のフェノー
ル樹脂[旭有機材工業(株)製、AP−P200]及び
硬化促進剤[旭有機材工業(株)製 UA]を投入して
ミキサー中で30秒間混練後、ポリイソシアネート[旭
有機材工業(株)製、AP−M750]を投入し、さら
に30秒間混練したのち、ミキサーから取り出して常温
自硬性の鋳型用組成物を調製した。
Example 8 Zircon sand 2 as shown in Table 1 was used as a mold base material.
Using 500 parts by weight, the mixture was put into a tabletop mixer (manufactured by Shinagawa Kogyo Co., Ltd.), and immediately after that, a predetermined amount of a phenol resin [Asahi] was used as a binder for obtaining a substantially constant core strength. Kikiki Kogyo Co., Ltd., AP-P200] and a curing accelerator [UA, Asahi Organic Material Co., Ltd.] were added and kneaded in a mixer for 30 seconds, and then polyisocyanate [Asahi Organic Material Co., Ltd., [AP-M750] was added, and the mixture was further kneaded for 30 seconds and then taken out from the mixer to prepare a room-temperature self-hardening mold composition.

【0028】このようにして得た鋳型用組成物を用い、
実施例1〜4と同様の中子を作成し、アルミニウム合金
を鋳造した。上記の中子についての崩壊時間及び鋳型用
組成物を径50mm、高さ50mmの木型に手込めし
て、24時間後に測定した圧縮強度を表3に示す。
Using the mold composition thus obtained,
Cores similar to those in Examples 1 to 4 were prepared and aluminum alloys were cast. Table 3 shows the disintegration time of the above core and the compressive strength measured 24 hours after the composition for a mold was handed into a wooden mold having a diameter of 50 mm and a height of 50 mm.

【0029】実施例9 鋳型用基材として、ジルコンサンドの代りにジルコンサ
ンドと鋳物砂との混合物を用いる以外は、実施例8と同
様にして常温自硬性の鋳型用組成物を調製するととも
に、その鋳型の圧縮強度を測定した。次に、この鋳型用
組成物を用いて、実施例1〜4と同様の中子を作成して
アルミニウム合金を鋳造した。上記の中子についての崩
壊時間と鋳型用組成物の圧縮強度を表3に示す。
Example 9 A room temperature self-hardening mold composition was prepared in the same manner as in Example 8 except that a mixture of zircon sand and foundry sand was used as the mold base material instead of zircon sand. The compressive strength of the mold was measured. Next, using this mold composition, cores similar to those in Examples 1 to 4 were prepared and aluminum alloys were cast. Table 3 shows the disintegration time and the compressive strength of the mold composition for the above cores.

【0030】比較例3,4 鋳型用基材として、ジルコンサンドの代りに鋳物砂を用
いる以外は、実施例8と同様にして常温自硬性の鋳型用
組成物を調製するとともに、その鋳型の圧縮強度を測定
した。次に、この鋳型用組成物を用いて、実施例1〜4
と同様の中子を作成し、アルミニウム合金の鋳造を行っ
た。この際の、中子の崩壊時間及び鋳型用組成物の圧縮
強度を表3に示す。
Comparative Examples 3 and 4 A room temperature self-hardening mold composition was prepared in the same manner as in Example 8 except that molding sand was used instead of zircon sand as the mold base material, and the mold was compressed. The strength was measured. Next, using this mold composition, Examples 1 to 4 were prepared.
A core similar to that was prepared and an aluminum alloy was cast. Table 3 shows the core disintegration time and the compressive strength of the mold composition at this time.

【0031】[0031]

【表3】 [Table 3]

【0032】実施例11 鋳型用基材として、表1に示すジルコンサンド2500
重量部を用い、卓上ミキサー(品川工業社製)に投入
し、次いでただちに、ほぼ一定の中子の強度を得るため
の粘結剤として表4に示すような所定量のフェノール樹
脂[旭有機材工業(株)製、CB−P]及びポリイソシ
アネート[旭有機材工業(株)製、CB−M]を投入し
て60秒間混練後、ミキサーから取り出して通気硬化性
の鋳型用組成物を得たのち、トリエチルアミンガスを通
気させて実施例8と同様の鋳型(径50mm、高さ50
mm)を成形し、鋳型の圧縮強度を測定した。次に、鋳
型用組成物を用いて、実施例1〜4と同様の中子を作成
しアルミニウム合金の鋳造を行った。この際の中子の崩
壊時間及び鋳型用組成物の圧縮強度を表4に示す。
Example 11 Zircon sand 2500 shown in Table 1 was used as a template base material.
Part by weight, charged into a desktop mixer (manufactured by Shinagawa Kogyo Co., Ltd.), and immediately thereafter, a predetermined amount of phenol resin [Asahi Organic Material] as a binder for obtaining a substantially constant core strength. CB-P] manufactured by Kogyo Co., Ltd. and polyisocyanate [CB-M manufactured by Asahi Organic Materials Co., Ltd.] are kneaded and kneaded for 60 seconds, and then taken out from the mixer to obtain an air-curable composition for a mold. After that, a mold similar to that in Example 8 (diameter 50 mm, height 50) was prepared by ventilating triethylamine gas.
mm) was molded and the compressive strength of the mold was measured. Next, using the mold composition, cores similar to those in Examples 1 to 4 were prepared and aluminum alloys were cast. Table 4 shows the core disintegration time and the compressive strength of the mold composition.

【0033】比較例5 鋳型用基材として、ジルコンサンドの代りにフリーマン
トルサンドを用いる以外は、実施例11と同様にして通
気硬化性の鋳型用組成物を調製するとともにその鋳型の
圧縮強度を測定した。次に、この鋳型用組成物を用い
て、実施例1〜4と同様の中子を作成してアルミニウム
合金の鋳造を行った。この際の中子の崩壊時間及び鋳型
用組成物の圧縮強度を表4に示す。
Comparative Example 5 An air-curable mold composition was prepared in the same manner as in Example 11, except that Fremantle sand was used instead of zircon sand as the mold base material, and the compression strength of the mold was determined. It was measured. Next, using this mold composition, cores similar to those in Examples 1 to 4 were prepared and aluminum alloys were cast. Table 4 shows the core disintegration time and the compressive strength of the mold composition.

【0034】[0034]

【表4】 [Table 4]

【0035】比較例6 鋳型用基材として、真比重3.06の耐火性高比重粒状
体(フェロクロムスラグ)を用い、粘結剤量を1.5重
量%とする以外は、実施例1〜4と同様にして加熱硬化
性の鋳型用組成物を調製し、その鋳型の曲げ強度を測定
した。次に、この鋳型用組成物を用いて、実施例1〜4
と同様な方法でアルミニウム合金を鋳造した。この際の
鋳型用組成物の曲げ強度34.2kg/cm2、中子の
崩壊時間は14秒であった。
Comparative Example 6 Examples 1 to 3 except that a fire-resistant high-specific-gravity granular material (ferrochrome slag) having a true specific gravity of 3.06 was used as the template base material and the amount of the binder was 1.5% by weight. A heat-curable mold composition was prepared in the same manner as in 4, and the bending strength of the mold was measured. Next, using this mold composition, Examples 1 to 4 were prepared.
An aluminum alloy was cast in the same manner as in. The bending strength of the mold composition at this time was 34.2 kg / cm 2 , and the core disintegration time was 14 seconds.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 為本 和雄 愛知県丹羽郡扶桑町大字南山名字新津26− 4 旭有機材工業株式会社愛知工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuo Tamemoto 26-4 Niitsu Niiyama, Fuso-cho, Niwa-gun, Aichi Prefecture Asahi Organic Materials Co., Ltd. Aichi factory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 下記の工程を含むことを特徴とするアル
ミニウム合金鋳物の製造方法。 (a)真比重3.4以上の耐火性高比重粒状体又はこれ
を10重量%以上含む鋳物砂との混合物から成る鋳型用
基材に硬化性有機粘結剤を配合して鋳型用組成物を調製
する工程、 (b)前記鋳型用組成物で中子を成形する工程、 (c)前記中子を用いてアルミニウム合金鋳物を鋳造す
る工程、及び (d)前記アルミニウム合金鋳物に振動を与えて中子を
除去する工程。
1. A method for producing an aluminum alloy casting, which comprises the following steps. (A) Molding composition in which a curable organic binder is blended with a molding base material made of a fire-resistant high-specific-gravity granular material having a true specific gravity of 3.4 or more or a mixture with molding sand containing 10% by weight or more of the granular material. (B) molding a core with the composition for a mold, (c) casting an aluminum alloy casting using the core, and (d) applying vibration to the aluminum alloy casting. To remove the core.
JP18612694A 1994-08-08 1994-08-08 Production of aluminum alloy casting Pending JPH0768343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18612694A JPH0768343A (en) 1994-08-08 1994-08-08 Production of aluminum alloy casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18612694A JPH0768343A (en) 1994-08-08 1994-08-08 Production of aluminum alloy casting

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP9252985A Division JPS61249643A (en) 1985-04-30 1985-04-30 Composition for casting mold having good collapsing property

Publications (1)

Publication Number Publication Date
JPH0768343A true JPH0768343A (en) 1995-03-14

Family

ID=16182827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18612694A Pending JPH0768343A (en) 1994-08-08 1994-08-08 Production of aluminum alloy casting

Country Status (1)

Country Link
JP (1) JPH0768343A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014077203A1 (en) * 2012-11-19 2014-05-22 新東工業株式会社 Sand for casting mold, manufacturing method for sand casting-mold, and core for metal casting
CN113646107A (en) * 2019-03-29 2021-11-12 旭有机材株式会社 Mold material composition and method for producing mold using same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57139442A (en) * 1981-02-23 1982-08-28 Asahi Organic Chem Ind Co Ltd Resin-coated sand grains for forming mold and mold formed of this sand grain
JPS57149043A (en) * 1981-03-09 1982-09-14 Asahi Organic Chem Ind Co Ltd Shell mold material for light alloy casting and mold molded by heating from this

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57139442A (en) * 1981-02-23 1982-08-28 Asahi Organic Chem Ind Co Ltd Resin-coated sand grains for forming mold and mold formed of this sand grain
JPS57149043A (en) * 1981-03-09 1982-09-14 Asahi Organic Chem Ind Co Ltd Shell mold material for light alloy casting and mold molded by heating from this

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014077203A1 (en) * 2012-11-19 2014-05-22 新東工業株式会社 Sand for casting mold, manufacturing method for sand casting-mold, and core for metal casting
CN104812509A (en) * 2012-11-19 2015-07-29 新东工业株式会社 Sand for casting mold, manufacturing method for sand casting-mold, and core for metal casting
JP5972393B2 (en) * 2012-11-19 2016-08-17 新東工業株式会社 Mold sand and molding method of sand mold
US9789533B2 (en) 2012-11-19 2017-10-17 Sintokogio, Ltd. Sand for casting mold, manufacturing method for sand casting-mold, and core for metal casting
CN113646107A (en) * 2019-03-29 2021-11-12 旭有机材株式会社 Mold material composition and method for producing mold using same
CN113646107B (en) * 2019-03-29 2024-05-03 旭有机材株式会社 Casting material composition and method for producing casting using same

Similar Documents

Publication Publication Date Title
JP4610679B2 (en) Manufacturing procedures for ferrules for molds, other feeding heads and feeding elements, and compositions for the production of said ferrules and elements
JP5412492B2 (en) core
JP3278168B2 (en) Sleeve, its manufacturing method and application
CN104162626A (en) Easily shaped molding sand and preparation method thereof
JP3457213B2 (en) Manufacturing method of exothermic material for casting
JPWO2005053876A1 (en) Heating element molding material for casting, heating element for casting, and manufacturing method thereof
KR20100121495A (en) Compositions containing certain metallocenes and their uses
JP3253579B2 (en) Sand for mold
JPH0768343A (en) Production of aluminum alloy casting
JPH1133679A (en) Manufacture of heating body for casting
JPS61249643A (en) Composition for casting mold having good collapsing property
JPS61245938A (en) Compound for casting mold
US3960798A (en) Process for regulating hardening speed of self-hardening mold
CN104801654A (en) Casting sand with high thermal conductivity and preparation method thereof
JPS61245937A (en) Compound for casting mold material
JP2002239681A (en) Molding sand composition
JPH05353A (en) Disintegrating agent of casting mold for casting light alloy, coated sand composition and casting mold
RU2369462C1 (en) Exothermal mixture for heating heads of steel and iron castings
JP3238315B2 (en) Nickel aluminum bronze propeller casting mold
JP3131638B2 (en) Binder composition for gas-curing mold and method for producing mold
JP2001286977A (en) Mold and method for manufacturing mold
JPS645979B2 (en)
JP2024056445A (en) Mold making method and mold material
JPS63264239A (en) Mold material used for molding sand mold and core necessitating no coating
JP2003275844A (en) Mold composition and method of producing mold