JP4249505B2 - PH controller in water treatment plant - Google Patents

PH controller in water treatment plant Download PDF

Info

Publication number
JP4249505B2
JP4249505B2 JP2003038381A JP2003038381A JP4249505B2 JP 4249505 B2 JP4249505 B2 JP 4249505B2 JP 2003038381 A JP2003038381 A JP 2003038381A JP 2003038381 A JP2003038381 A JP 2003038381A JP 4249505 B2 JP4249505 B2 JP 4249505B2
Authority
JP
Japan
Prior art keywords
water
injection rate
adjustment
chemical
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003038381A
Other languages
Japanese (ja)
Other versions
JP2004243277A (en
Inventor
浩嗣 山本
武士 松代
潮子 宮島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003038381A priority Critical patent/JP4249505B2/en
Publication of JP2004243277A publication Critical patent/JP2004243277A/en
Application granted granted Critical
Publication of JP4249505B2 publication Critical patent/JP4249505B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、取水された原水に対し着水井でpH調整用薬品を注入し、pHを目標値に調整して塩素や凝集剤を注入する、浄水場におけるpH制御装置に関する。
【0002】
【従来の技術】
浄水場では河川や貯水池などの水源から原水を取水し、凝集、フロック形成、沈殿、ろ過および殺菌の5つの単位プロセスによって、懸濁質とコロイド質を除去すると共に、細菌等を無害化し、清澄な水道水として需要家に供給している。一般に浄水処理(凝集、フロック形成、沈殿、ろ過による一連の除濁処理)では凝集剤を用いる(例えば、特許文献1参照)。
【0003】
この凝集剤の効果は、さまざまな物理的、生物化学的な影響を受け、最適凝集条件は、多くの因子によって定まる複雑な平衡の上に成り立っている。例えば、夏季において浄水場の取水河川の流量が低下し、河川水中や河床に付着している藻類の光合成が活発化することでpHが上昇した場合、凝集効果が低下することが知られている。
【0004】
この場合、pH調整用薬品の注入率一定注入や原水流量による比例注入が行われているが、原水水質の変動に応じた注入率の最適化が難しく、凝集剤の大量注入が必要となり、コストが増大するとともに、凝集特性も悪化し、さらには排水処理における汚泥の発生量が増大するという問題があった。
【0005】
【特許文献1】
特開平8-24515号公報
【0006】
【発明が解決しようとする課題】
このように、原水のpHの値が凝集効果に影響を与えるので、原水の水質に応じてpH調整用薬品を適切に注入し、処理対象水のpHを最適に調整する必要がある。
【0007】
本発明の目的は、原水水質の変動に応じてpH調整用薬品の注入率を最適化することで浄水プロセス全体のコストを低減し、安定した水質を提供する浄水場におけるpH制御装置を提供することにある。
【0008】
【課題を解決するための手段】
本発明は、取水された原水に対し着水井でpH調整用薬品を注入し、pHを目標値に調整して、塩素や凝集剤を注入する浄水場におけるpH制御装置であって、前記塩素や凝集剤注入後における被処理水のpH実測値と目標とする設定値との差分からpH調整用薬品の注入率を求めるフィードバック演算手段と、原水pH及び原水アルカリ度の実測値を入力し、予め求められた、複数のアルカリ度におけるpH調整用薬品注入率と原水pHとの変化の関係を用い、前記原水アルカリ度実測値における原水pH実測値を目標値に変化させるためのpH調整用薬品注入率を演算により求めるフィードフォワード演算手段と、前記フィードバック演算手段及びフィードフォワード演算手段により求めた各注入率に対して所定の重み係数をかけて合成し、pH調整用薬品の今回注入率として出力する合成制御手段とを備えたことを特徴とする。
【0010】
また、フィードフォワード演算手段は、着水井での全炭酸濃度と原水のアルカリ度及び原水pHから原水の緩衝能を演算し、この緩衝能と、原水pHの実測値と目標値との差とから、pH調整用薬品の最適注入率を算出してもよい。
【0011】
さらに、フィードフォワード演算手段は、着水井でのアルカリ度と現在注入されている塩素や凝集剤の注入率とから、被処理水のアルカリ度を推定し、被処理水のpH設定値に基き着水井の全炭酸濃度を用いて算出される目標とすべきアルカリ度を推定し、これら両アルカリ度推定値の差からpH調整用薬品の最適注入率を算出してもよい。
【0012】
これらの発明では、フィードバック演算手段により、塩素及び凝集剤注入後における被処理水のpH実測値と目標とする設定値との差分からpH調整用薬品の注入率を求め、フィードフォワード演算手段により、原水から測定される原水水質値に基き、予め定められた演算則により前記被処理水のpHを最適化するpH調整用薬品の注入率を求め、前記フィードバック演算手段及びフィードフォワード演算手段により求めた各注入率に対して、合成制御手段により、所定の重み係数をかけて合成し、pH調整用薬品の今回注入率として出力するので、原水水質の変化に応じた費用対効果の高い最適なpH制御を行うことができる。
【0013】
【発明の実施の形態】
以下、本発明による浄水場におけるpH制御装置の一実施の形態について、図面を参照して説明する。
【0014】
図1は本実施の形態によるpH制御装置の構成例を示すブロック図である。図1において、11は浄水場の着水井で、河川などの水源12から、図示しない取水ポンプによって取水された原水が着水する。この着水井11の吐出側は、急速攪拌池(以下、急攪池と略称する)13に連結している。
【0015】
この着水井11には、硫酸等のpH調整用薬品(以下、硫酸として説明する)の注入設備16が設けられており、着水した原水に対し、所定の注入率(その求め方については後述する)により硫酸が注入される。また、この着水井11から急攪池13までの間には、塩素及び凝集剤の注入設備14,15がそれぞれ設けられ、塩素及び凝集剤が所定の注入率で注入される。急攪池13は、これら注入された塩素及び凝集剤を攪拌し、図示しない後続の処理設備に被処理水として供給する。
【0016】
17は原水水質計器で、水源12から着水井11に取水される原水の水質(pH、アルカリ度、水温等)を測定する。18は着水井の水質計器で、着水井11でのpH、濁度、水温、アルカリ度等を測定する。19は急攪池の水質計器で、急攪池13における被処理水のpHを測定する。
【0017】
21は演算装置で、各水質計器17,18,19の測定値を入力し、後述する各種設定値とから所定の演算により、硫酸の注入率Snを求め、硫酸注入設備16に出力する。この演算装置21は、フィードフォワード演算手段22と、フィードバック演算手段23と、これらの合成制御手段24とで構成される。
【0018】
フィードフォワード演算手段22には、原水水質計器17で測定された原水水質(pH、アルカリ度、水温等)が入力される。このほか、目標pHの値、前記注入器14,15で注入される塩素や凝集剤などの各薬品の注入率、後述する図2で示す注入率演算用近似曲線に関するデータが入力される。そして、このフィードフォワード演算手段22は、原水から測定される原水水質値に基き、予め定められた演算則により前記被処理水のpHを最適化する硫酸(pH調整用薬品)の注入率Sfを求める。
【0019】
フィードバック演算手段23には、急攪池の水質計19で測定された被処理水のpH値が入力されるとともに、この被処理水に対する設定値(目標pH値)が入力されている。このほか、着水井の水質計器18によって測定されたpH、濁度、水温、アルカリ度等が入力されている。そして、このフィードバック演算手段23は、塩素及び凝集剤注入後における急攪池13での被処理水のpH実測値と目標とする設定値との差分から、硫酸(pH調整用薬品)の注入率Sbを求める。
【0020】
合成制御手段24には、フィードフォワード演算手段22により求めた硫酸注入率Sf及びフィードバック演算手段23で求めた硫酸の注入率Sbが入力されており、これらを基に合成制御を行う。すなわち、以下の(1)式で示すように、各注入率Sf、Sbに対して所定の重み係数をかけて合成し、硫酸(pH調整用薬品)の今回注入率Snを求め、これを硫酸注入設備16に出力する。
【0021】
Sn = w1×Sf + w2×Sb ・・・ (1)
ここで,
Sn;今回硫酸注入率演算値 (mg/L as H2SO4)
w1;フィードフォワード重み係数
w2;フィードバック 重み係数
次に、上記各演算手段22,23の具体的な演算手法について説明する。先ずフィードバック演算手段23による演算手法について説明する。
【0022】
このフィードバック制御による演算手法では、急攪池13での水質計器19によるpH実測値pHpvとpH設定値pHsvとによってフィードバック制御を行う。
【0023】
注入率演算は、次に示す(2)〜(4)式によって行う。
【0024】
Sb=Kp・{(en−en-1)+Δt/Ti・en}・Kb+Sn-1+Sbf ・・・(2)
n=β・(pHpv − pHsv) ・・・(3)
Sbf=−(Pacn−Pacn-1)・Kpac − (Cln―Cln-1)・Kcl ・・・(4)
ここで,
Sb;今回フィードバック硫酸注入率演算値 mg/L
Sn-1;前回硫酸注入率演算値 mg/L
pHsv;急速攪拌池pH設定値
pHpv;急速攪拌池pH実測値n分平均値
β ;被処理水のもつ緩衝能 mg/L as CaCO3
n ;今回制御周期入力偏差
n-1;前回制御周期入力偏差
Kp;比例ゲイン
i ;積分時間
Δt;制御周期(分)
Kb ;硫酸のアルカリ度換算係数 (=98/100)
Sbf;PAC(凝集剤:硫酸ばんど)と塩素の注入率変動に対する補償分mg/L
Pacn;今回のPAC注入率 mg/L
Pacn-1;前回のPAC注入率 mg/L
Kpac;PACのアルカリ度換算係数
Cln;今回の前塩素注入率 mg/L
Cln-1;前回の前塩素注入率 mg/L
Kcl;塩素のアルカリ度換算係数
なお,緩衝能βとは,酸・アルカリを注入したときのpHの変化のしにくさを示す値で,次のように(5)〜(15)で表せる。
【0025】
β=ln10・105・〔 [H+]・{ R・Kc/(Kc+[H+])2
C・( K1/(K1+[H+])2 + K2/(K2+[H+])2 )} +
[H+] + Kw/[H+] 〕 ・・・(5)
[H+]=10-pHpv;水素イオン濃度 ・・・(6)
R=Rcpv/35.45×10-3;Rcpvは,急攪池残留塩素濃度のn分平均値・・(7)
Kc=f1(Tmp);次亜塩素酸の酸性度定数,水温の関数として演算・・・(8)
K1=f2(Tmp);炭酸の第1解離定数,水温の関数として演算・・・(9)
K2=f3(Tmp);炭酸の第2解離定数,水温の関数として演算・・・(10)
Kw=f4(Tmp) ;水のイオン積 ・・・(11)
C=(Alkpv×10-5 − Kw/[H+] + [H+])/(a1+2×a2) ;
Cは全炭酸濃度(モル濃度),Alkpvは着水井アルカリ度n分平均値・・(12)
Tmp=Tmppv+273;着水井水温Tmppvn分平均値を絶対温度に換算・・・(13)
a1=K1・[H+]/([H+]2 + K1・[H+] + K1・K2) ;
炭酸,重炭酸イオンおよび炭酸イオンの3者の和に対する[HCO3 -]の比率・・・(14)
a2=K1・K2/([H+]2 + K1・[H+] + K1・K2) ;
炭酸,重炭酸イオンおよび炭酸イオンの3者の和に対する[CO3 2-]の比率・・・(15)
すなわち、着水井11の水質計器18からの各測定値(アルカリ度、水温等)等に基いて緩衝能βを求め、この緩衝能βを用いて設定値pHsv及びpH実測値pHpvから、補償分を加味して注入率Sbを求めている。
【0026】
次に、フィードフォワード演算手段22による演算手法を説明する。このフィードフォワード演算手段22による演算手法は3種類ある。先ず、第1の演算手法を説明する。
【0027】
この第1の演算手法では、先ず、原水水質計器17により原水水質を測定し、フィードフォワード演算手段22に入力する。予め演算則を持つ演算手段22は、その原水水質に従う最適な注入率Sfを算出する。
【0028】
ここで、pH調整用薬品である硫酸の注入率は、図2で示す原水pHおよびアルカリ度の実測値と、予め決められたグラフによって決定する。
【0029】
グラフは3ケースのアルカリ度(ALK60,ALK40,ALK20)について、硫酸注入率-pH曲線をそれぞれ入力して作成したもので、演算手段22設定されている。ここでは、設定されたアルカリ度を20,40,60として説明する。
【0030】
硫酸注入率Sfは以下の手順により求める。
【0031】
原水ALKに近い2本のグラフを選ぶ
原水pHと目標pHに相当する硫酸注入率を各々のグラフから求める(図中A,B,C,D)。これらA,BからP点を,C,DからのQ点を求める。
【0032】
例) 原水の実測されたアルカリ度が50(ALK50)のとき:
原水pHと、原水アルカリ度(50)に近い2本のグラフALK40,ALK60との交点A,Bを結ぶ線分ABを1:1に内分した点をP、目標pHとALK40,ALK60の交点C,Dを結ぶ線分CDを1:1に内分した点をQとする。
【0033】
(Qの注入率‐Pの注入率)を原水に対する硫酸注入率Xとする。
【0034】
塩素や凝集剤などの薬品による補正項Yを求める。
【0035】
Y=Ka(Kpac×凝集剤実注入率+Kcl×前塩実注入率)
Kpac;凝集剤のアルカリ度換算係数
Kcl;塩素のアルカリ度換算係数
Sf=aX‐bY+cとする。
【0036】
a ;(手動設定値,0.0≦ a≦2.0)
b ;(手動設定値,0.0≦ b≦2.0)
c ;(手動設定値,-5.0≦ c≦5.0)
Sf;今回フィードフォワード硫酸注入率演算値 mg/L
ここで、手動設定値a,b,cは、注入率の偏りを経験的に補正するための係数である。すなわち、フィードフォワード制御では、原水水質やセンサーの応答等、現場の状況によって注入率が高めになったり低めになったりする偏りが生じることがあるので、係数a,b,cは、この偏りを経験的に補正するために設定される。
【0037】
このように、第1の演算手法では、原水pH及び原水アルカリ度の実測値を水質計器17から入力し、図2で示すように、予め求められた、複数のアルカリ度における硫酸(pH調整用薬品)注入率と原水pHとの変化の関係を用い、前記原水アルカリ度実測値における原水pH実測値を目標値に変化させるための硫酸(pH調整用薬品)注入率Sfを演算により求めている。
【0038】
次に第2の演算手法を説明する。この演算手法では、原水pHと取水の緩衝能予測値とから注入率Sfを求めている。
【0039】
前述したフィードバック制御の項で述べた水質の演算を利用し、水温と、アルカリ度、pH、全炭酸濃度の3種のうちのいずれか2種類が既知である場合、残りの1種類が演算で求められることを利用する。
【0040】
この場合の手順は,次のようになる;
(1)現在注入している硫酸の注入率と,着水井のアルカリ度から,時間差を考慮して,原水アルカリ度推定値を演算する。
【0041】
(2)着水井の全炭酸濃度Cを演算する。
【0042】
(3)着水井の全炭酸濃度は原水と同値であると仮定し、(2)で求めた着水井の全炭酸濃度、(1)で求めた原水アルカリ度推定値、計測している原水pH実測値、の各値より、原水の緩衝能βを演算する。
【0043】
硫酸注入率Sfは、次の(16)式で求める。
【0044】
Sf=β×(pH原水pv − pHsvff)×Kb ---------- (16)
ここで、
pH原水pv;原水pH実測値n分平均
pHsvff;フィードフォワード用pH目標値 (PAC,塩素による後段のpH変化を考慮し、設定される値)
このように第2の演算手法では、着水井での全炭酸濃度と原水のアルカリ度及び原水pHから原水の緩衝能を演算し、この緩衝能と、原水pHの実測値と目標値との差とから、pH調整用薬品の最適注入率Sfを算出している。
【0045】
次に、第3の演算手法を説明する。この演算手法は、急攪池13のpH設定値を急攪アルカリ度に置き換えて演算する方法である。
【0046】
この手法の場合も、前述したフィードバック制御の項で述べた水質の演算を利用し、水温と、アルカリ度、pH、全炭酸濃度の3種のうちのいずれか2種類が既知である場合、残りの1種類が演算で求められることを利用する。
【0047】
この場合の手順は,次のようになる;
(1)着水井の全炭酸濃度を演算する。
【0048】
(2)現在注入している塩素、凝集剤である硫酸ばんどの注入率と、着水井のアルカリ度から、時間差を考慮して急攪池アルカリ度推定値ALKxxを演算する。
【0049】
(3)一方,急攪池13のpH設定値、急攪池13の残留塩素濃度実測値、(1)で求めた着水井の全炭酸濃度から、急攪池の目標とすべきアルカリ度ALKsvffを推定する。
【0050】
(4)ΔALK=ALKxx − ALKsvffより、
Sf = ΔALK・Kb + Sn-1 ・・・(17)
このように、第3の演算手法では、着水井11でのアルカリ度と現在注入されている塩素、凝集剤の注入率とから、急攪池13における被処理水のアルカリ度ALKxxを推定し、被処理水のpH設定値に基き着水井11の全炭酸濃度Cを用いて算出された目標とすべきアルカリ度ALKsvffを推定し、これら両アルカリ度推定値の差ΔALKからpH調整用薬品の最適注入率Sfを算出している。
【0051】
【発明の効果】
本発明によれば、pH調整用薬品を原水水質変化に応じて自動的に注入すると共に、フィードフォワード制御とフィードバック制御を合成することでpH調整用薬品注入の最適化を実現するので、運転監視の労力が低減し、薬品コスト等の維持管理の効果が大きい。
【図面の簡単な説明】
【図1】本発明による浄水場におけるpH制御装置の一実施の形態を示すブロック図である。
【図2】同上一実施の形態のフィードフォワード演算に用いる特性を表すグラフである。
【符号の説明】
11 着水井
12 水源
13 急速攪拌池
16 pH調整用薬品注入設備
17 原水水質計器
18 着水井の水質計器
19 急攪池の水質計器
22 フィードフォワード演算手段
23 フィードバック演算手段
24 合成制御手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pH control apparatus in a water purification plant, in which a chemical for pH adjustment is injected into a raw water taken in a receiving well, pH is adjusted to a target value, and chlorine and a flocculant are injected.
[0002]
[Prior art]
In the water purification plant, raw water is taken from water sources such as rivers and reservoirs, and suspended and colloidal substances are removed and bacteria are made harmless and clarified by five unit processes of aggregation, flock formation, precipitation, filtration and sterilization. It is supplied to customers as fresh tap water. In general, a flocculant is used in water purification treatment (a series of turbidity treatment by aggregation, flock formation, precipitation, and filtration) (see, for example, Patent Document 1).
[0003]
The effect of this flocculant is influenced by various physical and biochemical effects, and the optimum flocculation condition is based on a complex equilibrium determined by many factors. For example, it is known that the agglomeration effect is reduced when the flow rate of the water intake river of the water purification plant decreases in summer and the pH rises due to the activation of photosynthesis of algae attached to the river water and riverbed. .
[0004]
In this case, constant injection of the pH adjusting chemical injection rate and proportional injection based on the raw water flow rate are performed, but it is difficult to optimize the injection rate according to fluctuations in the raw water quality, and a large amount of flocculant injection is required. In addition, there is a problem that the agglomeration characteristics are deteriorated and the amount of sludge generated in the waste water treatment is increased.
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 8-24515 [0006]
[Problems to be solved by the invention]
As described above, since the pH value of the raw water affects the coagulation effect, it is necessary to optimally adjust the pH of the water to be treated by appropriately injecting a chemical for pH adjustment according to the quality of the raw water.
[0007]
An object of the present invention is to provide a pH control apparatus in a water purification plant that reduces the cost of the entire water purification process by optimizing the injection rate of the chemical for pH adjustment according to fluctuations in raw water quality and provides stable water quality. There is.
[0008]
[Means for Solving the Problems]
The present invention is a pH control apparatus in a water purification plant for injecting a chemical for pH adjustment in a receiving well to raw water taken, adjusting the pH to a target value, and injecting chlorine or a flocculant, Input the feedback calculation means for obtaining the injection rate of the chemical for pH adjustment from the difference between the measured pH value of the water to be treated after the flocculant injection and the target set value, and the measured values of the raw water pH and the raw water alkalinity, Using the obtained relationship between the change rate of the pH adjustment chemical injection rate and the raw water pH in a plurality of alkalinities, the pH adjustment chemical injection for changing the raw water pH actual measurement value in the raw water alkalinity actual measurement value to the target value feedforward calculation means for calculating a rate by calculation, synthesis by multiplying a predetermined weight coefficient for each injection ratio determined by the feedback arithmetic unit and the feed-forward operation means , Characterized in that a synthesis control means for outputting a current injection rate of pH adjusting chemicals.
[0010]
The feedforward calculation means calculates the buffer capacity of the raw water from the total carbonic acid concentration in the landing well, the alkalinity of the raw water, and the raw water pH, and from the buffer capacity and the difference between the measured value of the raw water pH and the target value. The optimum injection rate of the chemical for pH adjustment may be calculated.
[0011]
Furthermore, the feedforward calculation means estimates the alkalinity of the water to be treated from the alkalinity at the landing well and the injection rate of the currently injected chlorine and flocculant, and determines the alkalinity based on the pH setting value of the water to be treated. The target alkalinity calculated using the total carbonic acid concentration of the water well may be estimated, and the optimal injection rate of the chemical for pH adjustment may be calculated from the difference between these two alkalinity estimated values.
[0012]
In these inventions, the feedback calculation means obtains the injection rate of the chemical for pH adjustment from the difference between the measured pH value of the water to be treated and the target set value after chlorine and flocculant injection, and the feedforward calculation means Based on the raw water quality value measured from the raw water, the injection rate of the chemical for pH adjustment that optimizes the pH of the water to be treated is determined by a predetermined calculation rule, and is determined by the feedback calculation means and the feedforward calculation means. Each injection rate is synthesized by applying a predetermined weighting factor by the synthesis control means and output as the current injection rate of the chemical for pH adjustment. Therefore, the optimum pH that is cost-effective according to changes in raw water quality Control can be performed.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of a pH control apparatus in a water purification plant according to the present invention will be described with reference to the drawings.
[0014]
FIG. 1 is a block diagram showing a configuration example of a pH control apparatus according to this embodiment. In FIG. 1, reference numeral 11 denotes a water intake well of a water purification plant, and raw water taken by a water intake pump (not shown) is received from a water source 12 such as a river. The discharge side of the landing well 11 is connected to a rapid stirring basin (hereinafter abbreviated as a rapid stirring basin) 13.
[0015]
The landing well 11 is provided with an injection facility 16 for chemicals for pH adjustment (hereinafter, referred to as sulfuric acid) such as sulfuric acid, and a predetermined injection rate (how to obtain it will be described later) with respect to the incoming raw water. To inject sulfuric acid. In addition, chlorine and flocculant injection facilities 14 and 15 are provided between the landing well 11 and the rapid stirring basin 13, respectively, and chlorine and flocculant are injected at a predetermined injection rate. The rapid agitation pond 13 agitates the injected chlorine and the flocculant and supplies the treated water to a subsequent treatment facility (not shown) as treated water.
[0016]
A raw water quality meter 17 measures the quality (pH, alkalinity, water temperature, etc.) of raw water taken from the water source 12 to the landing well 11. Reference numeral 18 denotes a water quality meter for the landing well, which measures pH, turbidity, water temperature, alkalinity, etc. in the landing well 11. A water quality meter 19 for the rapid turbid pond measures the pH of the treated water in the rapid turbid pond 13.
[0017]
Reference numeral 21 denotes an arithmetic unit which inputs measurement values of the water quality meters 17, 18, and 19, obtains an injection rate Sn of sulfuric acid by a predetermined calculation from various set values described later, and outputs it to the sulfuric acid injection facility 16. This computing device 21 includes a feedforward computing means 22, a feedback computing means 23, and a synthesis control means 24 thereof.
[0018]
The feedforward computing means 22 receives the raw water quality (pH, alkalinity, water temperature, etc.) measured by the raw water quality meter 17. In addition, the target pH value, the injection rate of each chemical such as chlorine and coagulant injected by the injectors 14 and 15, and data relating to the approximate curve for calculating the injection rate shown in FIG. The feedforward calculating means 22 calculates the injection rate Sf of sulfuric acid (pH adjusting chemical) that optimizes the pH of the treated water according to a predetermined calculation rule based on the raw water quality value measured from the raw water. Ask.
[0019]
The feedback calculation means 23 is supplied with the pH value of the water to be treated measured by the water quality meter 19 of the rapid pond and the set value (target pH value) for the water to be treated. In addition, pH, turbidity, water temperature, alkalinity and the like measured by the water quality meter 18 of the landing well are input. The feedback calculation means 23 calculates the injection rate of sulfuric acid (chemicals for pH adjustment) from the difference between the measured pH value of the water to be treated in the rapid stirring pond 13 after the chlorine and flocculant injection and the target set value. Sb is obtained.
[0020]
The synthesis control means 24 receives the sulfuric acid injection rate Sf obtained by the feedforward computing means 22 and the sulfuric acid injection rate Sb obtained by the feedback computing means 23, and performs synthesis control based on these. That is, as shown by the following equation (1), each injection rate Sf, Sb is synthesized by applying a predetermined weighting factor to obtain the current injection rate Sn of sulfuric acid (chemical for pH adjustment). Output to the injection facility 16.
[0021]
Sn = w1 x Sf + w2 x Sb (1)
here,
Sn: Calculated sulfuric acid injection rate (mg / L as H 2 SO 4 )
w1; feed forward weighting coefficient w2; feedback weighting coefficient Next, a specific calculation method of each of the calculation means 22 and 23 will be described. First, a calculation method by the feedback calculation means 23 will be described.
[0022]
In this calculation method based on feedback control, feedback control is performed based on the measured pH value pHpv and the set pH value pHsv by the water quality meter 19 in the rapid turbidity reservoir 13.
[0023]
The injection rate calculation is performed by the following equations (2) to (4).
[0024]
Sb = Kp · {(e n −e n−1 ) + Δt / T i · e n } · Kb + Sn−1 + Sbf (2)
e n = β · (pHpv − pHsv) (3)
Sbf = − (Pac n −Pac n−1 ) · Kpac− (Cl n −Cl n−1 ) · Kcl (4)
here,
Sb: Current feedback sulfuric acid injection rate calculated mg / L
Sn-1: Previously calculated sulfuric acid injection rate mg / L
pHsv: Rapid stirring pond pH setting
pHpv: Rapid stirring pond pH measured value n minute average value β: Buffer capacity of treated water mg / L as CaCO 3
e n ; current control cycle input deviation e n-1 ; previous control cycle input deviation Kp; proportional gain T i ; integration time Δt; control cycle (minutes)
Kb: Conversion factor of sulfuric acid alkalinity (= 98/100)
Sbf: PAC (coagulant: sulfate sulfate) and compensation for fluctuations in chlorine injection rate mg / L
Pac n ; PAC injection rate this time mg / L
Pac n-1 ; previous PAC injection rate mg / L
Kpac: PAC alkalinity conversion factor
Cl n : The previous chlorine injection rate mg / L
Cl n-1 : The previous chlorine injection rate mg / L
Kcl: Conversion factor of alkalinity of chlorine The buffer capacity β is a value indicating the difficulty of changing the pH when acid / alkali is injected, and can be expressed by (5) to (15) as follows.
[0025]
β = ln10 · 10 5 · [[H + ] · {R · Kc / (Kc + [H + ]) 2 +
C ・ (K1 / (K1 + [H + ]) 2 + K2 / (K2 + [H + ]) 2 )} +
[H + ] + Kw / [H + ]] (5)
[H + ] = 10 -pHpv ; Hydrogen ion concentration (6)
R = Rcpv / 35.45 × 10 -3 ; Rcpv is the n-minute average value of the chlorine concentration in the stirrer pond (7)
Kc = f1 (Tmp); calculated as a function of the acidity constant of hypochlorous acid and water temperature (8)
K1 = f2 (Tmp); First dissociation constant of carbonic acid, calculated as a function of water temperature ... (9)
K2 = f3 (Tmp); second dissociation constant of carbonic acid, calculated as a function of water temperature (10)
Kw = f4 (Tmp); Water ion product (11)
C = (Alkpv × 10 −5 −Kw / [H + ] + [H + ]) / (a1 + 2 × a2);
C is the total carbonic acid concentration (molar concentration), Alkpv is the average value for the alkalinity of the landing well n minutes.
Tmp = Tmppv + 273; Incoming water temperature Tmppvn average value converted to absolute temperature ... (13)
a1 = K1 · [H + ] / ([H + ] 2 + K1 · [H + ] + K1 · K2);
Carbonate, to the sum of three parties bicarbonate and carbonate ions [HCO 3 -] ratio of (14)
a2 = K1 / K2 / ([H + ] 2 + K1, [H + ] + K1, K2);
Ratio of [CO 3 2- ] to the sum of carbonic acid, bicarbonate ion and carbonate ion ... (15)
That is, the buffer capacity β is obtained based on each measured value (alkalinity, water temperature, etc.) from the water quality meter 18 of the landing well 11, and the compensation value is obtained from the set value pHsv and the measured pH value pHpv using the buffer capacity β. In consideration of the above, the injection rate Sb is obtained.
[0026]
Next, a calculation method by the feedforward calculation means 22 will be described. There are three types of calculation methods by the feedforward calculation means 22. First, the first calculation method will be described.
[0027]
In this first calculation method, first, the raw water quality is measured by the raw water quality meter 17 and input to the feedforward calculation means 22. The calculation means 22 having a calculation rule in advance calculates an optimal injection rate Sf according to the raw water quality.
[0028]
Here, the injection rate of sulfuric acid, which is a pH adjusting chemical, is determined by the measured values of raw water pH and alkalinity shown in FIG. 2 and a predetermined graph.
[0029]
The graph is prepared by inputting the sulfuric acid injection rate-pH curve for the alkalinity (ALK60, ALK40, ALK20) of the three cases, and is set by the calculation means 22. Here, the set alkalinity will be described as 20, 40, 60.
[0030]
The sulfuric acid injection rate Sf is obtained by the following procedure.
[0031]
Select the two graphs close to the raw water ALK and the sulfuric acid injection rate corresponding to the target water pH and the target pH from each graph (A, B, C, D in the figure). The point P from these A and B and the point Q from C and D are obtained.
[0032]
Example) When the measured alkalinity of raw water is 50 (ALK50):
The point obtained by internally dividing the line segment AB connecting the intersections A and B of the raw water pH and the two graphs ALK40 and ALK60 close to the raw water alkalinity (50) into P, the intersection of the target pH and ALK40 and ALK60 Let Q be the point where the line segment CD connecting C and D is internally divided by 1: 1.
[0033]
(Q injection rate-P injection rate) is the sulfuric acid injection rate X relative to the raw water.
[0034]
Find the correction term Y for chemicals such as chlorine and flocculants.
[0035]
Y = Ka (Kpac x flocculant actual injection rate + Kcl x pre-salt actual injection rate)
Kpac; alkalinity conversion coefficient of flocculant Kcl; chlorine alkalinity conversion coefficient Sf = aX−bY + c
[0036]
a ; (Manual setting value, 0.0 ≦ a ≦ 2.0)
b ; (Manual setting value, 0.0 ≦ b ≦ 2.0)
c ; (Manual setting value, -5.0 ≦ c ≦ 5.0)
Sf: Feed forward sulfuric acid injection rate calculated this time mg / L
Here, the manually set values a, b, and c are coefficients for empirically correcting the deviation of the injection rate. That is, in feed-forward control, biases such as the raw water quality and sensor response that cause the injection rate to increase or decrease depending on the situation at the site may occur, so the coefficients a, b, and c Set to empirically correct.
[0037]
As described above, in the first calculation method, the measured values of the raw water pH and the raw water alkalinity are inputted from the water quality meter 17, and as shown in FIG. Using the relationship between the change in the chemical) injection rate and the raw water pH, the sulfuric acid (pH adjustment chemical) injection rate Sf for changing the raw water pH measured value in the raw water alkalinity measured value to the target value is obtained by calculation. .
[0038]
Next, the second calculation method will be described. In this calculation method, the injection rate Sf is obtained from the raw water pH and the estimated buffer capacity of water intake.
[0039]
If any two of the three types of water temperature, alkalinity, pH, and total carbonic acid concentration are known using the calculation of water quality described in the feedback control section above, the remaining one is calculated. Take advantage of what is required.
[0040]
The procedure in this case is as follows:
(1) Calculate the raw water alkalinity estimated value from the injection rate of sulfuric acid currently injected and the alkalinity of the landing well, taking into account the time difference
[0041]
(2) Calculate the total carbonic acid concentration C of the landing well.
[0042]
(3) Assuming that the total carbonic acid concentration of the landing well is the same as that of the raw water, the total carbonic acid concentration of the landing well determined in (2), the estimated raw water alkalinity calculated in (1), and the measured raw water pH From the measured values, the buffer capacity β of the raw water is calculated.
[0043]
The sulfuric acid injection rate Sf is obtained by the following equation (16).
[0044]
Sf = β × (pH raw water pv−pHsvff) × Kb ---------- (16)
here,
pH raw water pv: Raw water pH measured value n minutes average
pHsvff: Feedforward pH target value (PAC, a value that is set in consideration of subsequent pH changes due to chlorine)
Thus, in the second calculation method, the buffer capacity of the raw water is calculated from the total carbonic acid concentration in the landing well, the alkalinity of the raw water, and the raw water pH, and the difference between the buffer capacity and the measured value of the raw water pH and the target value is calculated. From these, the optimum injection rate Sf of the chemical for pH adjustment is calculated.
[0045]
Next, a third calculation method will be described. This calculation method is a method of calculating by replacing the pH set value of the rapid stirring pond 13 with the rapid stirring alkalinity.
[0046]
This method also uses the water quality calculation described in the above-mentioned feedback control section, and if any two of the three types of water temperature, alkalinity, pH, and total carbonic acid concentration are known, the remaining The fact that one type of is obtained by calculation is used.
[0047]
The procedure in this case is as follows:
(1) Calculate the total carbonic acid concentration of the landing well.
[0048]
(2) From the injection rate of the currently injected chlorine and sulfuric acid sulfate, which is a coagulant, and the alkalinity of the landing well, the quick pond alkalinity estimated value ALKxx is calculated in consideration of the time difference.
[0049]
(3) On the other hand, the alkalinity ALKsvff that should be the target of the rapid turbidity basin from the pH setting value of the rapid turbidity basin, the measured value of residual chlorine concentration in the rapid turbidity basin 13 and the total carbonate concentration of the landing well determined in (1) Is estimated.
[0050]
(4) From ΔALK = ALKxx-ALKsvff
Sf = ΔALK · Kb + Sn−1 (17)
As described above, in the third calculation method, the alkalinity ALKxx of the water to be treated in the rapid turbulence basin 13 is estimated from the alkalinity in the landing well 11 and the injection rate of chlorine and flocculant currently injected, Estimate the target alkalinity ALKsvff calculated using the total carbonic acid concentration C of the landing well 11 based on the pH setting value of the treated water, and determine the optimum pH adjustment chemical from the difference ΔALK between these two alkalinity estimates. The injection rate Sf is calculated.
[0051]
【The invention's effect】
According to the present invention, the pH adjustment chemical is automatically injected according to the raw water quality change, and the optimization of the pH adjustment chemical injection is realized by synthesizing the feedforward control and the feedback control. The labor cost is reduced, and the effect of maintenance management such as chemical costs is great.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an embodiment of a pH control apparatus in a water purification plant according to the present invention.
FIG. 2 is a graph showing characteristics used for feedforward calculation according to the embodiment;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 Landing well 12 Water source 13 Rapid stirring pond 16 Chemical adjustment equipment 17 for pH adjustment Raw water quality meter 18 Water quality meter 19 Landing well water quality meter 22 Feed forward computing means 23 Feedback computing means 24 Synthetic control means

Claims (3)

取水された原水に対し着水井でpH調整用薬品を注入し、pHを目標値に調整して、塩素や凝集剤を注入する浄水場におけるpH制御装置であって、
前記塩素や凝集剤注入後における被処理水のpH実測値と目標とする設定値との差分からpH調整用薬品の注入率を求めるフィードバック演算手段と、
原水pH及び原水アルカリ度の実測値を入力し、予め求められた、複数のアルカリ度におけるpH調整用薬品注入率と原水pHとの変化の関係を用い、前記原水アルカリ度実測値における原水pH実測値を目標値に変化させるためのpH調整用薬品注入率を演算により求めるフィードフォワード演算手段と、
前記フィードバック演算手段及びフィードフォワード演算手段により求めた各注入率に対して所定の重み係数をかけて合成し、pH調整用薬品の今回注入率として出力する合成制御手段と、
を備えたことを特徴とする浄水場におけるpH制御装置。
A pH control device in a water purification plant that injects a chemical for pH adjustment into the intake water in the incoming water, adjusts the pH to a target value, and injects chlorine and a flocculant,
Feedback calculation means for obtaining the injection rate of the chemical for pH adjustment from the difference between the actual measured pH value of the treated water after the chlorine and flocculant injection and the target set value;
The measured values of raw water pH and raw water alkalinity are inputted, and the raw water pH measured in the measured values of raw water alkalinity are calculated using the relationship between the injection rate of chemicals for pH adjustment and the pH of raw water obtained in advance. Feedforward calculation means for calculating a pH adjustment chemical injection rate for changing the value to a target value by calculation ;
A synthesis control unit that synthesizes each injection rate determined by the feedback calculation unit and the feedforward calculation unit by applying a predetermined weighting factor, and outputs the injection rate as a current injection rate of the chemical for pH adjustment,
A pH control device in a water purification plant, comprising:
取水された原水に対し着水井でpH調整用薬品を注入し、pHを目標値に調整して、塩素や凝集剤を注入する浄水場におけるpH制御装置であって、
前記塩素や凝集剤注入後における被処理水のpH実測値と目標とする設定値との差分からpH調整用薬品の注入率を求めるフィードバック演算手段と、
着水井での全炭酸濃度と原水のアルカリ度及び原水pHから原水の緩衝能を演算し、この緩衝能と、原水pHの実測値と目標値との差とから、pH調整用薬品の最適注入率を算出するフィードフォワード演算手段と、
前記フィードバック演算手段及びフィードフォワード演算手段により求めた各注入率に対して所定の重み係数をかけて合成し、pH調整用薬品の今回注入率として出力する合成制御手段と、
を備えたことを特徴とする浄水場におけるpH制御装置。
A pH control device in a water purification plant that injects a chemical for pH adjustment into the intake water in the incoming water, adjusts the pH to a target value, and injects chlorine and a flocculant,
Feedback calculation means for obtaining the injection rate of the chemical for pH adjustment from the difference between the actual measured pH value of the treated water after the chlorine and flocculant injection and the target set value;
Calculate the buffer capacity of the raw water from the total carbonic acid concentration at the landing well, the alkalinity of the raw water and the pH of the raw water, and the optimal injection of chemicals for pH adjustment from this buffer capacity and the difference between the measured value and the target value of the raw water pH Feedforward calculation means for calculating the rate ;
A synthesis control unit that synthesizes each injection rate determined by the feedback calculation unit and the feedforward calculation unit by applying a predetermined weighting factor, and outputs the injection rate as a current injection rate of the chemical for pH adjustment,
A pH control device in a water purification plant, comprising:
取水された原水に対し着水井でpH調整用薬品を注入し、pHを目標値に調整して、塩素や凝集剤を注入する浄水場におけるpH制御装置であって、
前記塩素や凝集剤注入後における被処理水のpH実測値と目標とする設定値との差分からpH調整用薬品の注入率を求めるフィードバック演算手段と、
着水井でのアルカリ度と現在注入されている塩素や凝集剤の注入率とから、被処理水のアルカリ度を推定し、被処理水のpH設定値に基き着水井の全炭酸濃度を用いて算出される目標とすべきアルカリ度を推定し、これら両アルカリ度推定値の差からpH調整用薬品の最適注入率を算出するフィードフォワード演算手段と、
前記フィードバック演算手段及びフィードフォワード演算手段により求めた各注入率に対して所定の重み係数をかけて合成し、pH調整用薬品の今回注入率として出力する合成制御手段と、
を備えたことを特徴とする浄水場におけるpH制御装置。
A pH control device in a water purification plant that injects a chemical for pH adjustment into the intake water in the incoming water, adjusts the pH to a target value, and injects chlorine and a flocculant,
Feedback calculation means for obtaining the injection rate of the chemical for pH adjustment from the difference between the actual measured pH value of the treated water after the chlorine and flocculant injection and the target set value;
Estimate the alkalinity of the water to be treated from the alkalinity at the landing well and the injection rate of chlorine and flocculant currently injected, and use the total carbonate concentration of the landing well based on the pH setting value of the water to be treated. A feedforward calculation means for estimating the alkalinity to be calculated and calculating the optimum injection rate of the chemical for pH adjustment from the difference between these two alkalinity estimates ;
A synthesis control unit that synthesizes each injection rate determined by the feedback calculation unit and the feedforward calculation unit by applying a predetermined weighting factor, and outputs the injection rate as a current injection rate of the chemical for pH adjustment,
A pH control device in a water purification plant, comprising:
JP2003038381A 2003-02-17 2003-02-17 PH controller in water treatment plant Expired - Fee Related JP4249505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003038381A JP4249505B2 (en) 2003-02-17 2003-02-17 PH controller in water treatment plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003038381A JP4249505B2 (en) 2003-02-17 2003-02-17 PH controller in water treatment plant

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008312666A Division JP5259365B2 (en) 2008-12-08 2008-12-08 PH controller in water treatment plant

Publications (2)

Publication Number Publication Date
JP2004243277A JP2004243277A (en) 2004-09-02
JP4249505B2 true JP4249505B2 (en) 2009-04-02

Family

ID=33022925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003038381A Expired - Fee Related JP4249505B2 (en) 2003-02-17 2003-02-17 PH controller in water treatment plant

Country Status (1)

Country Link
JP (1) JP4249505B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7220863B2 (en) * 2018-05-11 2023-02-13 近畿基礎工事株式会社 pH neutralization treatment device and pH neutralization treatment method

Also Published As

Publication number Publication date
JP2004243277A (en) 2004-09-02

Similar Documents

Publication Publication Date Title
JP4230787B2 (en) Flocculant injection control device
US20180037471A1 (en) Wastewater treatment system
JP2008161809A (en) Coagulant injection control system
JP2012187587A (en) Denitrification process and system
JP4334317B2 (en) Sewage treatment system
JP2007029851A (en) Coagulant injection control device and method
JP5259365B2 (en) PH controller in water treatment plant
JP2005052804A (en) Waste water treatment equipment and operation method for the same
US7005073B2 (en) Residual wastewater chlorine concentration control using a dynamic weir
JP4249505B2 (en) PH controller in water treatment plant
KR20100012535A (en) Chlorine automatic system
JP3707305B2 (en) Water treatment monitoring control method and apparatus
JP4432359B2 (en) Hypochlorite injector
JP5769300B2 (en) Flocculant injection amount determination device and flocculant injection amount control system
JP2017100092A (en) Sewage treatment control device
TWI813437B (en) Water treatment control system and control method of water treatment device
JPH07132293A (en) Chlorine injection controller for filtration plant
JPH074224B2 (en) Membrane separation reactor controller
JP2003047806A (en) Flocculation apparatus and flocculation method
JPH07290072A (en) Method for controlling ozone injection in water purifying plant and device therefor
JPH0768270A (en) Chlorine injection control device
JPS58137488A (en) Method for controlling injection of chlorine in water purifying plant
JP2023023742A (en) Method and apparatus for determining rate of addition of chemical for water treatment
JP2004113853A (en) Regulation and control apparatus for ph value of inflow raw water in water purifying treatment process
JPS598437B2 (en) Chlorine injection control method at water treatment plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050803

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4249505

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140123

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees