JPH0758636B2 - Electroluminescent lamp - Google Patents

Electroluminescent lamp

Info

Publication number
JPH0758636B2
JPH0758636B2 JP2319126A JP31912690A JPH0758636B2 JP H0758636 B2 JPH0758636 B2 JP H0758636B2 JP 2319126 A JP2319126 A JP 2319126A JP 31912690 A JP31912690 A JP 31912690A JP H0758636 B2 JPH0758636 B2 JP H0758636B2
Authority
JP
Japan
Prior art keywords
phosphor
light emitting
particle size
emitting layer
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2319126A
Other languages
Japanese (ja)
Other versions
JPH04190586A (en
Inventor
尚之 森
光弘 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Nippon Electric Co Ltd
Original Assignee
Kansai Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Nippon Electric Co Ltd filed Critical Kansai Nippon Electric Co Ltd
Priority to JP2319126A priority Critical patent/JPH0758636B2/en
Publication of JPH04190586A publication Critical patent/JPH04190586A/en
Publication of JPH0758636B2 publication Critical patent/JPH0758636B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電界発光灯に関し、特に液晶ディスプレイの光
源等に利用される有機分散型電界発光灯に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electroluminescent lamp, and more particularly to an organic dispersed electroluminescent lamp used as a light source of a liquid crystal display.

従来の技術 従来の有機分散型電界発光灯の構造について図面を参照
して説明する。
2. Description of the Related Art The structure of a conventional organic dispersed electroluminescent lamp will be described with reference to the drawings.

第7図は従来の電界発光灯の要部拡大断面図である。図
のようにアルミ箔からなる背面電極1上に絶縁物(例え
ば、チタン酸バリウムのような高誘電体粉末)及び蛍光
体(例えば、硫化亜鉛を銅で活性化した発光体)を有機
バインダ(例えば、シアノエチルセルロース)中にそれ
ぞれ分散したものを順次塗布して絶縁層2、発光層3を
形成し、その上に集電帯(図示せず)を印刷した透明導
電フィルム等からなる透明電極4を設け、上下より吸湿
フィルム(例えば、ナイロン(デュポン社商標))5,5
で覆い形成された電界発光素子7を更に上下から防湿性
の外皮フィルム(例えば、フッ素フィルム)6,6で密閉
封止した構造を有する。
FIG. 7 is an enlarged cross-sectional view of a main part of a conventional electroluminescent lamp. As shown in the figure, an organic binder (an insulator (for example, a high-dielectric powder such as barium titanate)) and a fluorescent substance (for example, a light-emitting body obtained by activating zinc sulfide with copper) are formed on the back electrode 1 made of aluminum foil. For example, a transparent electrode 4 made of a transparent conductive film or the like in which an insulating layer 2 and a light emitting layer 3 are formed by sequentially coating the respective dispersions in cyanoethyl cellulose) and printing a current collecting band (not shown) thereon. And a moisture absorption film (for example, nylon (trademark of DuPont)) 5,5 from above and below
The electroluminescent element 7 formed by being covered with is further hermetically sealed from above and below with moisture-proof outer skin films (for example, fluorine films) 6,6.

ここで発光層は有機溶剤中に蛍光体及び有機バインダを
適量溶かしたインクをスクリーン印刷、ドクターブレー
ド等で印刷している。
Here, the light emitting layer is printed by screen printing, doctor blade, or the like with an ink in which an appropriate amount of a phosphor and an organic binder are dissolved in an organic solvent.

発明が解決しようとする課題 上記構造の電界発光灯において発光層は平均粒径30〜40
μmの蛍光体に対して50〜60μmの膜厚で形成されてい
た。しかし、これらの発光層は第6図に示すように表面
状態が平滑にならず、透明導電フィルムと接着させたと
きに蛍光体が直接導電面に接触するためリーク電流が生
じ、電界発光灯の発光効率低下させる原因となってい
た。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention In the electroluminescent lamp having the above structure, the light emitting layer has an average particle diameter of 30 to 40.
It was formed with a film thickness of 50 to 60 μm for a phosphor of μm. However, as shown in FIG. 6, the surface state of these light emitting layers is not smooth, and when they are adhered to the transparent conductive film, the phosphor is in direct contact with the conductive surface, so that a leak current is generated and the light emitting layer of the electroluminescent lamp is not generated. This was a cause of lowering the luminous efficiency.

課題を解決するための手段 そこで、本発明は上記課題を解決することを目的とした
もので、蛍光体と絶縁物の有機バインダ中にそれぞれ分
散させた発光層と絶縁層とを、透明電極と背面電極とに
より挟持した電界発光灯において、前記蛍光体の最大粒
径は平均粒径の2〜3倍であり、蛍光体とバインダとの
重量比が(蛍光体/バインダ)≧3.0であり、かつ、発
光層の膜厚が蛍光体の平均粒径の2.0〜3.5倍であること
を特徴とする。
Therefore, the present invention is intended to solve the above problems, a light emitting layer and an insulating layer respectively dispersed in an organic binder of a phosphor and an insulator, a transparent electrode and In the electroluminescent lamp sandwiched by the back electrode, the maximum particle size of the phosphor is 2 to 3 times the average particle size, and the weight ratio of the phosphor and the binder is (phosphor / binder) ≧ 3.0. The thickness of the light emitting layer is 2.0 to 3.5 times the average particle size of the phosphor.

作用 上記の手段によれば、発光層の膜厚が最適となり発光層
の表面状態が平滑になり、透明導電フィルムを接着させ
たときに蛍光体が直接導電面に接触してリーク電流が生
じることが防止され、様々な粒径を有する蛍光体に対し
て発光効率を最大とする。
Action According to the above means, the thickness of the light emitting layer is optimized and the surface state of the light emitting layer becomes smooth, and when the transparent conductive film is adhered, the phosphor directly contacts the conductive surface to cause a leak current. Is prevented, and the luminous efficiency is maximized for phosphors having various particle sizes.

実施例 以下、本発明を説明する実験結果を示す。Examples Hereinafter, experimental results for explaining the present invention will be shown.

a.発光層膜厚と発光効率、蛍光体/バインダー比と発光
効率の関係。
Relationship between luminous layer thickness and luminous efficiency, and phosphor / binder ratio and luminous efficiency.

下記実験1〜3において、蛍光体の平均粒径が小
(A),中(B),大(C)それぞれ粒径分布は最大粒
径が平均粒径の約3倍のロットを選び、蛍光体/バイン
ダー比及び発光膜厚を変更して電界発光灯を試作し、発
光効率を評価した。
In Experiments 1 to 3 below, the lots with the average particle size of the phosphors of small (A), medium (B), and large (C) were selected such that the maximum particle size was about 3 times the average particle size. Electroluminescent lamps were manufactured by changing the body / binder ratio and the luminescent film thickness, and the luminous efficiency was evaluated.

尚、データは周波数800Hz,輝度200cd/m2におけるもので
ある。
The data are at a frequency of 800 Hz and a brightness of 200 cd / m 2 .

但し、小粒径(A)は最大粒径/平均粒径=2.2である
が、3倍のロットが見つからなかったので代用した。
However, the small particle size (A) was the maximum particle size / average particle size = 2.2, but a triple lot was not found, so it was substituted.

(実験1) 蛍光体:A−平均粒径 15.5(μm) 粒度分布 5〜34(μm) バインダ:信越化学製 シアノレジン CR−M 調合:蛍光体/バインダ比(重量比)=2.0,3.0,4.0,5.
0 発光層膜厚:20〜80(μm) (実験2) 蛍光体:B−平均粒径 22.0(μm) 粒度分布 10〜62(μm) バインダ:信越化学製 シアノレジン CR−M 調合:蛍光体/バインダ比(重量比)=2.0,3.0,4.0,5.
0 発光層膜厚:15〜75(μm) (実験3) 蛍光体:C−平均粒径 35.0(μm) 粒度分布 12〜95(μm) バインダ:信越化学製 シアノレジン CR−M 調合:蛍光体/バインダ比(重量比)=2.0,3.0,4.0,5.
0 発光層膜厚:25〜95(μm) 上記の(実験1),(実験2),(実験3)の結果をそ
れぞれ第1図,第2図,第3図に示す。
(Experiment 1) Phosphor: A-average particle size 15.5 (μm) Particle size distribution 5 to 34 (μm) Binder: Shin-Etsu Chemical cyanoresin CR-M Formulation: Phosphor / binder ratio (weight ratio) = 2.0,3.0,4.0 ,Five.
0 Light emitting layer film thickness: 20 to 80 (μm) (Experiment 2) Phosphor: B-average particle size 22.0 (μm) Particle size distribution 10 to 62 (μm) Binder: Shin-Etsu Chemical Cyanoresin CR-M Formulation: Phosphor / Binder ratio (weight ratio) = 2.0,3.0,4.0,5.
0 Light-emitting layer film thickness: 15 to 75 (μm) (Experiment 3) Phosphor: C-average particle size 35.0 (μm) Particle size distribution 12 to 95 (μm) Binder: Shin-Etsu Chemical Cyanoresin CR-M Formulation: Phosphor / Binder ratio (weight ratio) = 2.0,3.0,4.0,5.
0 Light emitting layer film thickness: 25 to 95 (μm) The results of (Experiment 1), (Experiment 2), and (Experiment 3) are shown in FIGS. 1, 2, and 3, respectively.

実験1〜3より発光効率と発光層膜厚の関係は蛍光体/
バインダ比が3.0以上であれば比率によらないことがわ
かる。また第4図に第1図〜第3図より求めた発光効率
を最大にする発光層の膜厚と平均粒径の関係を示す。詳
しく説明すると、第1図においては、発光層膜厚が略30
〜60μm(発光層膜厚/平均粒径比率は1.9〜3.9に相
当)の範囲で高い発光効率が得られる。また、第2図に
おいては、発光層膜厚が略40〜80μm(発光層膜厚/平
均粒径比率は1.8〜3.6に相当)の範囲で高い発光効率が
得られる。また、第3図においては、発光層膜厚が略65
〜95μm(発光層膜厚/平均粒径比率は1.9〜2.7に相
当)の範囲で高い発光効率が得られる。これらより最大
粒子径が平均粒径の約3倍(より詳しくは2〜3倍)の
粒度分布を有する蛍光体において発光効率を最大にする
ためには発光層を平均粒径の2.0〜3.5倍の膜厚に設計す
ればよいことになる。
From Experiments 1 to 3, the relationship between the luminous efficiency and the thickness of the light emitting layer is phosphor /
It can be seen that if the binder ratio is 3.0 or more, it does not depend on the ratio. Further, FIG. 4 shows the relationship between the film thickness of the light emitting layer and the average particle diameter, which maximizes the light emission efficiency obtained from FIGS. 1 to 3. More specifically, in FIG. 1, the thickness of the light emitting layer is about 30.
A high luminous efficiency is obtained in the range of -60 μm (emission layer thickness / average particle size ratio corresponds to 1.9 to 3.9). Further, in FIG. 2, high luminous efficiency is obtained when the thickness of the light emitting layer is approximately 40 to 80 μm (the ratio of the thickness of the light emitting layer / the average particle diameter corresponds to 1.8 to 3.6). Further, in FIG. 3, the thickness of the light emitting layer is about 65.
High luminous efficiency can be obtained in the range of up to 95 μm (emission layer thickness / average particle size ratio corresponds to 1.9 to 2.7). In order to maximize the luminous efficiency of a phosphor having a particle size distribution in which the maximum particle size is about 3 times the average particle size (more specifically, 2 to 3 times), the light emitting layer is 2.0 to 3.5 times the average particle size. The film thickness should be designed to be.

b.蛍光体の粒径分布と発光効率を最大とする発光層の膜
厚の関係 上記実験3に用いた蛍光体Cの平均粒径に略等しい下記
の蛍光体D,Eを用いて実験1〜3と同様な実験4,実験5
を行った。
b. Relationship between the particle size distribution of the phosphor and the film thickness of the light emitting layer that maximizes the light emission efficiency. Experiment 1 was performed using the following phosphors D and E that are approximately equal to the average particle diameter of the phosphor C used in Experiment 3 above. Experiment 4, Experiment 5 similar to ~ 3
I went.

蛍光体:D−平均粒径 38.2(μm) 粒度分布 28〜145(μm) E−平均粒径 33.4(μm) 粒度分布 8〜65(μm) 実験1〜3と同様に第1図〜第3図と同じような発光層
膜厚と発光効率の関係を求め(図示せず)、第3図(蛍
光体C)を含め発光効率を最大にする発光層の膜厚を比
較した。
Phosphor: D-average particle size 38.2 (μm) particle size distribution 28 to 145 (μm) E-average particle size 33.4 (μm) particle size distribution 8 to 65 (μm) As in Experiments 1 to 3, FIGS. The same relationship between the thickness of the light emitting layer and the light emitting efficiency as shown in the figure was obtained (not shown), and the thicknesses of the light emitting layers that maximize the light emitting efficiency including FIG. 3 (phosphor C) were compared.

第5図にその結果を示す、蛍光体の最大粒子径が平均粒
径の3倍以上のときはその最大粒子径よりも同厚に発光
層膜厚を設計すれば発光効率は最大になる。
The results are shown in FIG. 5. When the maximum particle diameter of the phosphor is 3 times or more the average particle diameter, the luminous efficiency is maximized if the thickness of the light emitting layer is designed to be the same as the maximum particle diameter.

以上のことは、発光層の膜厚が薄いときには発光層の表
面に蛍光体が析出し、その部分に表面電極である透明導
電フィルムが接触することによりリーク電流が流れロス
が生じることになる。また発光層の膜厚が粒子径よりも
格段に厚いときには表面側にバインダの層ができ透過率
を低下させることにより発光の取り出し効率が悪くなり
ロスが生じることであり、発光層の膜厚には蛍光体に応
じた最適膜厚が存在することになる。
As described above, when the thickness of the light emitting layer is thin, the fluorescent substance is deposited on the surface of the light emitting layer, and the transparent conductive film as the surface electrode comes into contact with the portion, causing leakage current and loss. Further, when the thickness of the light emitting layer is significantly thicker than the particle diameter, a binder layer is formed on the surface side and the transmittance is lowered, so that the extraction efficiency of light emission is deteriorated and loss occurs. Means that there is an optimum film thickness according to the phosphor.

発明の効果 以上説明してきたように、本発明によれば最大粒子径が
平均粒径の2〜3倍の粒度分布を有する蛍光体において
はバインダに対する蛍光体の重量比を3以上とし、発光
層を平均粒径の2.0〜3.5倍の膜厚に設計することにより
その蛍光体の発光効率を最大限利用することが可能とな
り、電界発光灯の高輝度・高効率化を実現できる。
EFFECTS OF THE INVENTION As described above, according to the present invention, in a phosphor having a particle size distribution in which the maximum particle size is 2 to 3 times the average particle size, the weight ratio of the phosphor to the binder is 3 or more, and the light emitting layer is By designing the film thickness to be 2.0 to 3.5 times the average particle size, it becomes possible to maximize the luminous efficiency of the phosphor, and to realize high brightness and high efficiency of the electroluminescent lamp.

【図面の簡単な説明】[Brief description of drawings]

第1図〜第3図は発光層膜厚と発光効率の関係、第4図
は蛍光体の平均粒子径と最大発光効率を示すときの発光
層膜厚の関係、第5図は同程度の平均粒子径を有し粒度
分布が異なる蛍光体の効率を最大にする発光層膜厚を示
す。 第6図は従来の電界発光灯の要部拡大断面図、第7図は
従来の電界発光灯の縦断面図である。 1……背面電極,2……絶縁層,3……発光層,4……透明導
電層,5……吸湿フィルム,6……外皮フィルム。
1 to 3 show the relationship between the thickness of the light emitting layer and the light emitting efficiency, FIG. 4 shows the relationship between the average particle diameter of the phosphor and the thickness of the light emitting layer when the maximum light emitting efficiency is shown, and FIG. The film thickness of the light emitting layer that maximizes the efficiency of a phosphor having an average particle size and a different particle size distribution is shown. FIG. 6 is an enlarged sectional view of a main part of a conventional electroluminescent lamp, and FIG. 7 is a vertical sectional view of a conventional electroluminescent lamp. 1 ... Back electrode, 2 ... Insulating layer, 3 ... Emitting layer, 4 ... Transparent conductive layer, 5 ... Moisture absorbing film, 6 ... Skin film.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】蛍光体と絶縁物を有機バインダ中にそれぞ
れ分散させた発光層と絶縁層とを、透明電極と背面電極
とにより挟持した電界発光灯において、 前記蛍光体の最大粒径は平均粒径の2〜3倍であり、蛍
光体とバインダとの重量比が(蛍光体/バインダ)≧3.
0であり、かつ、発光層の膜厚が蛍光体の平均粒径の2.0
〜3.5倍であることを特徴とする電界発光灯。
1. An electroluminescent lamp comprising a transparent electrode and a back electrode sandwiching a light emitting layer and an insulating layer, in which a phosphor and an insulator are dispersed in an organic binder, respectively. It is 2 to 3 times the particle size, and the weight ratio of the phosphor and the binder is (phosphor / binder) ≧ 3.
0, and the thickness of the light emitting layer is 2.0 of the average particle diameter of the phosphor.
Electroluminescent lamp characterized by up to 3.5 times.
JP2319126A 1990-11-22 1990-11-22 Electroluminescent lamp Expired - Lifetime JPH0758636B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2319126A JPH0758636B2 (en) 1990-11-22 1990-11-22 Electroluminescent lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2319126A JPH0758636B2 (en) 1990-11-22 1990-11-22 Electroluminescent lamp

Publications (2)

Publication Number Publication Date
JPH04190586A JPH04190586A (en) 1992-07-08
JPH0758636B2 true JPH0758636B2 (en) 1995-06-21

Family

ID=18106756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2319126A Expired - Lifetime JPH0758636B2 (en) 1990-11-22 1990-11-22 Electroluminescent lamp

Country Status (1)

Country Link
JP (1) JPH0758636B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1300751C (en) * 2003-10-31 2007-02-14 三星Sdi株式会社 Flat panel display device
WO2009142173A1 (en) 2008-05-22 2009-11-26 リンテック株式会社 Luminescent composition and inorganic electroluminescent sheet using the same
WO2011021448A1 (en) 2009-08-19 2011-02-24 リンテック株式会社 Light emitting sheet
WO2011052432A1 (en) 2009-10-29 2011-05-05 リンテック株式会社 Light-emitting composition, electroluminescent sheet, and method for producing same
EP2809131A1 (en) 2009-08-19 2014-12-03 Lintec Corporation Light-emitting sheet and method for producing thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06310274A (en) * 1993-04-27 1994-11-04 Seikosha Co Ltd El element
JP2779373B2 (en) * 1993-03-29 1998-07-23 セイコープレシジョン株式会社 EL element
JP5325608B2 (en) 2008-05-22 2013-10-23 リンテック株式会社 Luminescent composition, electroluminescent sheet using the same, and method for producing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5650083A (en) * 1979-09-29 1981-05-07 Nippon Electric Co Light emitting layer for electric field light emitting lamp
JPS58188094A (en) * 1982-04-28 1983-11-02 アルプス電気株式会社 Method of producing el display element
JPS60235394A (en) * 1984-05-08 1985-11-22 松下電器産業株式会社 Dispersive el light emitting element
JPH0782462B2 (en) * 1986-08-13 1995-09-06 富士通テン株式会社 Multi-byte data protection system in standby RAM
JPH01204391A (en) * 1988-02-08 1989-08-16 Hitachi Maxell Ltd Electroluminescence element
JPH0247078A (en) * 1988-08-10 1990-02-16 Canon Inc Printer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1300751C (en) * 2003-10-31 2007-02-14 三星Sdi株式会社 Flat panel display device
WO2009142173A1 (en) 2008-05-22 2009-11-26 リンテック株式会社 Luminescent composition and inorganic electroluminescent sheet using the same
JP2010003670A (en) * 2008-05-22 2010-01-07 Lintec Corp Light-emitting composition, inorganic system electroluminescent sheet using it, and its manufacturing method
WO2011021448A1 (en) 2009-08-19 2011-02-24 リンテック株式会社 Light emitting sheet
EP2809131A1 (en) 2009-08-19 2014-12-03 Lintec Corporation Light-emitting sheet and method for producing thereof
WO2011052432A1 (en) 2009-10-29 2011-05-05 リンテック株式会社 Light-emitting composition, electroluminescent sheet, and method for producing same

Also Published As

Publication number Publication date
JPH04190586A (en) 1992-07-08

Similar Documents

Publication Publication Date Title
JPH0758636B2 (en) Electroluminescent lamp
JP2005322623A (en) Electroluminescent element
WO2005099315A1 (en) Electro-luminescence element
US6107735A (en) Electroluminescent lamp
EP0188881B1 (en) Electroluminescence device
US6011352A (en) Flat fluorescent lamp
JPH08148278A (en) El apparatus
JPH07142173A (en) Organic dispersion el panel
JPH04298989A (en) Organic thin film type electroluminescence element
JPS587477A (en) Light emitting element in electrical field
JPH08288066A (en) Dispersed powder type electroluminescent element
JPH0514477Y2 (en)
JPH0224995A (en) Electroluminescence element
JP2795132B2 (en) EL device
JPH047558B2 (en)
JPH06223969A (en) Organic dispersion type el panel
JPH0745369A (en) El element
JPH0824073B2 (en) Electroluminescent device and method of manufacturing the same
JP2000100571A (en) Distributed type electroluminescent device
JPH0547474A (en) Electroluminescence element
JP2000113986A (en) Electroluminescent lamp
KR930008250B1 (en) Scattering el element
JPH012297A (en) Manufacturing method of electroluminescent device
JP2532607Y2 (en) Electroluminescent lamp
JPH0888087A (en) El element