JPH075428B2 - Single crystal manufacturing method and apparatus - Google Patents

Single crystal manufacturing method and apparatus

Info

Publication number
JPH075428B2
JPH075428B2 JP8756386A JP8756386A JPH075428B2 JP H075428 B2 JPH075428 B2 JP H075428B2 JP 8756386 A JP8756386 A JP 8756386A JP 8756386 A JP8756386 A JP 8756386A JP H075428 B2 JPH075428 B2 JP H075428B2
Authority
JP
Japan
Prior art keywords
single crystal
crystal
seed crystal
seed
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8756386A
Other languages
Japanese (ja)
Other versions
JPS62246893A (en
Inventor
繁 青柳
修平 小塩
Original Assignee
九州電子金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 九州電子金属株式会社 filed Critical 九州電子金属株式会社
Priority to JP8756386A priority Critical patent/JPH075428B2/en
Publication of JPS62246893A publication Critical patent/JPS62246893A/en
Publication of JPH075428B2 publication Critical patent/JPH075428B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はシリコン等の単結晶の製造方法及びその装置に
関するものである。
TECHNICAL FIELD The present invention relates to a method for producing a single crystal of silicon or the like and an apparatus therefor.

〔従来技術〕 一般にこの種の単結晶の製造方法は浮遊帯域溶融法(FZ
法)、引上法(CZ法)に分けられる。浮遊帯域溶融法は
チャンバ内で多結晶柱状材料の下端を高周波加熱して溶
融し、ここに種結晶を接触させ種結晶を回転させつつ加
熱溶融域を順次上方に移動せしめて種結晶に単結晶を成
長せしめるようになっている。
[Prior Art] Generally, a method for producing a single crystal of this type is a floating zone melting method (FZ
Method) and pull-up method (CZ method). In the floating zone melting method, the lower end of the polycrystalline columnar material is heated and melted in the chamber by high-frequency heating, and the seed crystal is brought into contact with this, while the seed crystal is rotated, and the heating and melting region is sequentially moved upward to form a single crystal into the seed crystal. Is designed to grow.

ところでこのような単結晶の製造工程中、円錐形をな
す、所謂肩部形成時に熱的不均衡、或いは異物の混入等
に起因して結晶格子が有転位化し、或いは多結晶化して
半導体用基板として供し得ない不都合がまま発生する。
By the way, during the process of manufacturing such a single crystal, the crystal lattice becomes dislocation-induced or polycrystallized due to thermal imbalance during formation of a so-called shoulder portion, inclusion of a foreign substance, or the like, and a semiconductor substrate is formed. As a result, inconvenience that cannot be provided occurs.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

結晶が有転位化し或いは多結晶化したときは通常は一旦
加熱作業を中止し、真空チャンバを開いて有転位化、或
いは多結晶化した部分を含めて種結晶に成長している単
結晶を種結晶と共にチャックから外してチャンバ外に取
り出し、再度種結晶をチャックに固定しチャンバを閉
じ、真空引きした後、内部を不活性ガスと置換し、更に
シリコンへのパワー入れを行った後、再び単結晶の製造
を再開するが、この間略40分程度要し、生産性向上を図
るうえでの大きな障害となっていた。
When the crystal has dislocations or polycrystals, the heating operation is usually stopped once, and the vacuum chamber is opened to seed the single crystal that has grown into seed crystals including the dislocation-containing or polycrystallized portion. The crystal was removed from the chuck and taken out of the chamber, the seed crystal was fixed to the chuck again, the chamber was closed, the chamber was evacuated, the interior was replaced with an inert gas, and the silicon was turned on again. Although the production of crystals was restarted, it took about 40 minutes during this period, which was a major obstacle to improving productivity.

本発明はかかる事情に鑑みなされたものであって、その
目的とするところは単結晶の製造途中において有転位
化、或いは多結晶化した場合にもチャンバを開放するこ
となく、簡単な作業で結晶の製造作業を再開することが
出来、大幅な時間の短縮が可能となり、生産性の向上を
図れるようにした単結晶の製造方法及びその装置を提供
するにある。
The present invention has been made in view of such circumstances, and an object of the present invention is to perform a simple operation without opening the chamber even when dislocations occur or polycrystallization occurs during the production of a single crystal. The present invention provides a method for producing a single crystal and an apparatus therefor capable of resuming the production work of (1), significantly shortening the time, and improving the productivity.

〔問題点を解決するための手段〕[Means for solving problems]

本発明にあっては有転位化し、多結晶化した際、カッタ
刃,レーザビーム等を用いて種結晶に連なる単結晶の小
径部分を破断、或いは溶断して有転位化、多結晶化した
部分を含む単結晶を真空チャンバ内の受具上に切り落と
した後、種結晶を再度上昇せしめて多結晶柱状材料の下
端における溶融状態となっている部分に接触させ、その
まま単結晶の製造を再開する。
According to the present invention, when a polycrystal is formed with dislocations, a small-diameter portion of a single crystal connected to a seed crystal is broken or melted by using a cutter blade, a laser beam, etc. After cutting off the single crystal containing the diamond on the receiver in the vacuum chamber, the seed crystal is raised again and brought into contact with the molten portion at the lower end of the polycrystalline columnar material, and the production of the single crystal is restarted as it is. .

〔作用〕[Action]

本発明方法にあっては単結晶の製造途中において熱的不
均衡、異物の混入等に起因して有転位化し、多結晶化が
生じた場合も、成長途中の単結晶を種結晶から分離する
簡単な作業でそのまま再び単結晶の製造を再開出来て、
真空チャンバの開閉等に伴う作業時間を大幅に短縮出
来、生産能率の大幅な向上が図れることとなる。
In the method of the present invention, the single crystal in the process of growth is separated from the seed crystal even when polycrystallization occurs due to dislocation due to thermal imbalance, inclusion of foreign matter, etc. during the production of the single crystal. With a simple operation, we can restart the production of single crystals,
The work time associated with opening and closing the vacuum chamber can be greatly shortened, and the production efficiency can be greatly improved.

〔実施例〕〔Example〕

以下本発明をその実施状態を示す図面に基づき具体的に
説明する。第1図は本発明の実施状態を示す模式的断面
図であり、図中1は真空チャンバ、2は昇降可能な支持
軸、3は種結晶、11は柱状材料たるシリコン多結晶、12
はシリコン単結晶を示している。
Hereinafter, the present invention will be specifically described with reference to the drawings showing its implementation state. FIG. 1 is a schematic cross-sectional view showing an embodiment of the present invention. In the figure, 1 is a vacuum chamber, 2 is a support shaft capable of moving up and down, 3 is a seed crystal, 11 is a silicon polycrystal as a columnar material, 12
Indicates a silicon single crystal.

真空チャンバ1は、上,下端を閉じた円筒形に形成され
ており、その底壁中央を気密状態に貫通させて支持軸2
が回転、並びに昇降可能に枢支され、またこれと対向す
る上部壁中央にはチャック1aがリフト1bにて昇降可能に
配設されている。前記支持軸2の下端はチャンバ1の下
方において図示しない回転駆動部及び昇降駆動部に連繋
され、また上端には種結晶3の固定具2a、並びに該固定
具2aの直下に位置して後述する製造途中の不良単結晶の
受具たる受皿4が固定されており、前記固定具2aには種
結晶3が着脱可能に装着されるようになっている。一方
真空チャンバ1内上方に設けたチャック1aには柱状をな
すシリコン多結晶11がその上端を固定して垂下されてい
る。また真空チャンバ1内にはチャック1aから垂設され
たシリコン多結晶11の軸心線に沿って昇降する高周波コ
イル5が設けられており、シリコン多結晶11を溶融しつ
つ上昇し、その下方にシリコン単結晶12を成長せしめて
ゆくようになっている。
The vacuum chamber 1 is formed in a cylindrical shape whose upper and lower ends are closed, and the support shaft 2 is formed by penetrating the center of the bottom wall thereof in an airtight state.
Is rotatably and vertically movable, and a chuck 1a is arranged at a center of an upper wall facing the movable body so as to be vertically movable by a lift 1b. The lower end of the support shaft 2 is connected to a rotation drive unit and an elevation drive unit (not shown) below the chamber 1, and the upper end is located below the fixture 2a of the seed crystal 3 and the fixture 2a, which will be described later. A saucer 4, which is a receiving device for a defective single crystal during manufacturing, is fixed, and a seed crystal 3 is detachably mounted on the fixing device 2a. On the other hand, a columnar silicon polycrystal 11 is suspended from the chuck 1a provided above the vacuum chamber 1 with its upper end fixed. Further, inside the vacuum chamber 1, there is provided a high-frequency coil 5 which moves up and down along the axis of the silicon polycrystal 11 suspended from the chuck 1a. It is designed to grow the silicon single crystal 12.

9はカッタであり、アーム9aの先端にカッタ刃9bを固定
すると共に、アーム9aの基端を真空チャンバ1の底壁の
周縁部寄りの位置を気密状態に貫通して前記支持軸2と
平行に枢支された操作軸9cの上端にこれと直角に固定す
ると共に、操作軸9cの下端には回動用のハンドル9dを設
けて構成してあり、ハンドル9dの回動操作によってアー
ム9aを第2図に実線で示す如きチャンバ1の周壁寄りの
退避位置と想像線で示す如き種結晶3に連なるシリコン
単結晶12の小径部12aに当接する位置とに回動されるよ
うになっている。
Reference numeral 9 denotes a cutter. The cutter blade 9b is fixed to the tip of the arm 9a, and the base end of the arm 9a penetrates a position near the peripheral edge of the bottom wall of the vacuum chamber 1 in an airtight state and is parallel to the support shaft 2. The operation shaft 9c is pivotally supported on the upper end of the operation shaft 9c at a right angle to the upper end of the operation shaft 9c, and the operation shaft 9c has a lower end provided with a turning handle 9d. As shown by the solid line in FIG. 2, the chamber 1 is rotated to a retracted position near the peripheral wall of the chamber 1, and as shown by an imaginary line to a position where it abuts the small diameter portion 12a of the silicon single crystal 12 continuous with the seed crystal 3.

カッタ刃9bの材料としては結晶より硬度の高い材料、例
えばタングステンカーバイド、ダイヤモンド等が用いら
れる。
As a material for the cutter blade 9b, a material having a hardness higher than that of a crystal such as tungsten carbide or diamond is used.

而していま第1図に示す如く高周波加熱用コイル5にて
シリコン多結晶11を加熱溶融し、その溶融下端に種結晶
3を接触させた状態で種結晶3を支持軸2にて軸心線回
りに回転させつつ下降させると種結晶3上に順次的にシ
リコン単結晶12が成長せしめられてゆくこととなる。そ
して熱的不均衡、或いは異物の混入等に起因して有転位
化、或いは多結晶化が始まった場合ハンドル9dを回動し
てカッタ刃9bをシリコン単結晶12の小径部12aに接触さ
せる。単結晶12は支持軸2に支えられて回転しているか
ら、小径部12aの周面に切り傷が形成される。そこでハ
ンドル9dを一旦逆向きに回転させ、第2図に想像線で示
す位置から実線で示す位置に交代させた後、支持軸2を
下降し、カッタ9bと対向する位置にシリコン単結晶12の
肩部12b或いは上端部12cを位置させて停止し、ハンドル
9dを回動してカッタ刃9bにて単結晶12の肩部12b、或い
は上端部12cを叩打する。
Thus, as shown in FIG. 1, the high-frequency heating coil 5 heats and melts the silicon polycrystal 11, and the seed crystal 3 is brought into contact with the lower end of the melting so that the seed crystal 3 is supported by the support shaft 2. If the silicon single crystal 12 is made to descend while being rotated around the line, the silicon single crystal 12 will be successively grown on the seed crystal 3. Then, when dislocation generation or polycrystallization starts due to thermal imbalance, mixing of foreign matter, or the like, the handle 9d is rotated to bring the cutter blade 9b into contact with the small diameter portion 12a of the silicon single crystal 12. Since the single crystal 12 is supported by the support shaft 2 and is rotating, a cut is formed on the peripheral surface of the small diameter portion 12a. Then, the handle 9d is once rotated in the opposite direction to alternate from the position shown by the phantom line in FIG. 2 to the position shown by the solid line, and then the support shaft 2 is lowered to place the silicon single crystal 12 at a position facing the cutter 9b. Position the shoulder part 12b or the upper end part 12c and stop it.
9d is rotated and the shoulder 12b or the upper end 12c of the single crystal 12 is tapped with the cutter blade 9b.

これによって単結晶12は切り傷を入れた部分で破断さ
れ、種結晶3から分離して受皿4上に落下する。再び支
持軸2を回転させつつ上昇し、種結晶3に連なる破断部
分をシリコン多結晶11下端の溶融部分と接触させた後、
再び回転させつつ下降させれば前述した場合と同様にし
てシリコン単結晶12の製造が再開される。
As a result, the single crystal 12 is broken at the cut portion, separated from the seed crystal 3 and dropped onto the saucer 4. After the support shaft 2 is rotated again, the support shaft 2 is lifted up to bring the fractured portion connected to the seed crystal 3 into contact with the molten portion at the lower end of the silicon polycrystal 11,
If it is rotated and lowered again, the production of the silicon single crystal 12 is restarted in the same manner as described above.

なおカッタ9、受皿4の構成については特に上記した態
様にのみ限定するものではなく、例えばカッタ9として
レーザビーム、その他の手段を用いてもよく、また受皿
4は単結晶を種結晶3とシリコン多結晶11との間から除
去して保持し得るものであればよい。
The configurations of the cutter 9 and the saucer 4 are not particularly limited to the above-described embodiment, and for example, a laser beam or other means may be used as the cutter 9, and the saucer 4 may be a single crystal of the seed crystal 3 and silicon. Any material can be used as long as it can be removed from and held between the polycrystals 11.

またカッタ9による切り傷形成位置は特に限定するもの
ではないが、破断の容易性を考慮すれば種結晶3の上端
よりも若干上方であってシリコン単結晶12の肩部12bに
至るまでの小径部(直径3mm程度)とするのが望まし
い。
Although the position of the cut formed by the cutter 9 is not particularly limited, a small-diameter portion slightly above the upper end of the seed crystal 3 up to the shoulder 12b of the silicon single crystal 12 is taken into consideration in view of easiness of fracture. (Diameter about 3mm) is desirable.

更に上述の実施例はシリコン単結晶を製造する場合につ
き説明したが、何らこれらに限定されず他の種類の単結
晶の製造にも適用し得ることは言うまでもない。
Further, although the above-described embodiments have been described with respect to the case of producing a silicon single crystal, it goes without saying that the present invention is not limited to these and can be applied to the production of other types of single crystals.

〔効果〕 以上の如く本発明方法及び装置にあっては、単結晶の製
造途中において結晶欠陥が生じたとき、結晶欠陥を含む
単結晶部分を種結晶から分離し、受具に取り除いて真空
チャンバを開くことなく、そのまま単結晶の製造を再開
することが可能となり、作業能率が良く生産性の大幅な
向上を図れるなど、本発明は優れた効果を奏するもので
ある。
[Effects] As described above, in the method and apparatus of the present invention, when a crystal defect occurs during the production of a single crystal, the single crystal portion containing the crystal defect is separated from the seed crystal, and is removed to a receiver to remove the vacuum chamber. The present invention has excellent effects such as the fact that the production of a single crystal can be restarted as it is without opening, the work efficiency is good, and the productivity is greatly improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例を示す模式的断面図、第2図は
第1図のII−II線による横断面図である。 1……真空チャンバ、2……支持軸、3……種結晶、4
……受皿、5……高周波加熱用コイル、9……カッタ、
11……シリコン多結晶、12……シリコン単結晶
FIG. 1 is a schematic sectional view showing an embodiment of the present invention, and FIG. 2 is a transverse sectional view taken along line II-II of FIG. 1 ... Vacuum chamber, 2 ... Support shaft, 3 ... Seed crystal, 4
... saucer, 5 ... high-frequency heating coil, 9 ... cutter,
11 …… Silicon polycrystal, 12 …… Silicon single crystal

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】真空チャンバ内に垂下した多結晶柱状材料
の下端部を溶融し、ここに種結晶を接続させた後、柱状
材料を順次上端部側に溶融して、前記種結晶に単結晶を
成長せしめる過程で、製造途中の単結晶に結晶欠陥が生
じたとき、真空チャンバを開放することなく欠陥部を含
む単結晶を種結晶から分離し、チャンバ内の受具上に除
去した後、種結晶を再び前記多結晶柱状材料の溶融端に
接触させることを特徴とする単結晶の製造方法。
1. A lower end portion of a polycrystalline columnar material suspended in a vacuum chamber is melted, a seed crystal is connected thereto, and then the columnar material is sequentially melted to an upper end portion side to form a single crystal into the seed crystal. In the process of growing, when a crystal defect occurs in the single crystal in the process of production, the single crystal containing the defect portion is separated from the seed crystal without opening the vacuum chamber, and after removing it on the receiver in the chamber, A method for producing a single crystal, characterized in that a seed crystal is brought into contact with the melting end of the polycrystalline columnar material again.
【請求項2】前記欠陥部を含む単結晶を種結晶から分離
する際、結晶より硬度の高いカッタ刃又はレーザビーム
を用いる特許請求の範囲第1項記載の単結晶の製造方
法。
2. The method for producing a single crystal according to claim 1, wherein a cutter blade having a hardness higher than that of the crystal or a laser beam is used when the single crystal including the defect portion is separated from the seed crystal.
【請求項3】真空チャンバと、該チャンバ内に垂下され
た多結晶柱状材料の上端部を保持する手段と、該多結晶
柱状材料をその下端部側から順次的に上端部側に溶融す
る加熱手段と、多結晶柱状材料の溶融端部に種結晶を接
触保持せしめる手段とを具備する単結晶の製造装置にお
いて、前記チャンバ内に、製造途中の単結晶と種結晶と
を分離する手段と、分離された単結晶を支持する受具と
を具備することを特徴とする単結晶の製造装置。
3. A vacuum chamber, means for holding the upper end of the polycrystalline columnar material suspended in the chamber, and heating for melting the polycrystalline columnar material sequentially from the lower end side to the upper end side. In the apparatus for producing a single crystal comprising means and means for holding the seed crystal in contact with the melted end of the polycrystalline columnar material, in the chamber, means for separating the single crystal in the process of production and the seed crystal, An apparatus for producing a single crystal, comprising: a support for supporting the separated single crystal.
【請求項4】前記種結晶と製造途中の単結晶とを分離す
る手段は、結晶より硬度の高いカッタ刃又はレーザビー
ムである特許請求の範囲第3項記載の単結晶の製造装
置。
4. The apparatus for producing a single crystal according to claim 3, wherein the means for separating the seed crystal and the single crystal in the process of production is a cutter blade or a laser beam having a hardness higher than that of the crystal.
JP8756386A 1986-04-15 1986-04-15 Single crystal manufacturing method and apparatus Expired - Lifetime JPH075428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8756386A JPH075428B2 (en) 1986-04-15 1986-04-15 Single crystal manufacturing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8756386A JPH075428B2 (en) 1986-04-15 1986-04-15 Single crystal manufacturing method and apparatus

Publications (2)

Publication Number Publication Date
JPS62246893A JPS62246893A (en) 1987-10-28
JPH075428B2 true JPH075428B2 (en) 1995-01-25

Family

ID=13918455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8756386A Expired - Lifetime JPH075428B2 (en) 1986-04-15 1986-04-15 Single crystal manufacturing method and apparatus

Country Status (1)

Country Link
JP (1) JPH075428B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103451718B (en) * 2013-09-05 2016-08-17 浙江晶盛机电股份有限公司 Can quantity-produced zone melting furnace device and process control method thereof
CN104178804B (en) * 2014-08-06 2017-05-24 天津市环欧半导体材料技术有限公司 Crystal cutting device for zone melting furnace
CN108486646B (en) * 2018-05-25 2023-08-04 天津中环领先材料技术有限公司 Zone-melting monocrystal small head cutting device and device for improving cutting efficiency

Also Published As

Publication number Publication date
JPS62246893A (en) 1987-10-28

Similar Documents

Publication Publication Date Title
JP5288384B2 (en) Glass crucible cutting method and cutting apparatus
JP6312276B2 (en) Ingot growth apparatus including upper thermal shield
JP4151580B2 (en) Method for producing silicon single crystal and silicon single crystal and silicon wafer
WO2003089697A1 (en) Single crystal silicon producing method, single crystal silicon wafer producing method, seed crystal for producing single crystal silicon, single crystal silicon ingot, and single crystal silicon wafer
JPH075428B2 (en) Single crystal manufacturing method and apparatus
KR20100056640A (en) Single crystal growth apparatus
KR102502863B1 (en) Cylindrical silicon ingot manufacturing method
JPH0631193B2 (en) Recharge device
KR102014927B1 (en) Silicon feeding unit, growing apparatus and method for silicon single srystal including the same
JP3873561B2 (en) Single crystal growth apparatus and silicon melting method using the same
EP4130348A1 (en) Device and method for producing a monocrystalline silicon rod
JPH04362084A (en) Wafer preparation of semiconductor material
JP2783624B2 (en) Single crystal manufacturing method
JPS62182191A (en) Method for controlling shape of pulled-up crystal in cz process and apparatus therefor
JP2009234889A (en) Production method of seed crystal and seed crystal
JP2001259975A (en) Mono-crystal processing method
JP2024096065A (en) Method for producing off-orientation single crystal silicon wafers
JP2783626B2 (en) Single crystal manufacturing equipment
JP4207783B2 (en) Method for producing compound semiconductor single crystal
KR20230016382A (en) Silicon single crystal ingot growth and manufacturing apparatus for semiconductor and manufacturing method
JPH03261699A (en) Growth of znse single crystal
JPH09249493A (en) Seed crystal for pulling-up single crystal and pulling-up of single crystal using the same
JPH1149598A (en) Silicon crystal, device for producing the same and its production using the same device
JPH1036193A (en) Production of single crystal of lithium tantalate
JP2004250297A (en) Method for manufacturing compound semiconductor single crystal