JP3092755B2 - Temperature compensation device for differential magnetic sensor - Google Patents

Temperature compensation device for differential magnetic sensor

Info

Publication number
JP3092755B2
JP3092755B2 JP04194238A JP19423892A JP3092755B2 JP 3092755 B2 JP3092755 B2 JP 3092755B2 JP 04194238 A JP04194238 A JP 04194238A JP 19423892 A JP19423892 A JP 19423892A JP 3092755 B2 JP3092755 B2 JP 3092755B2
Authority
JP
Japan
Prior art keywords
temperature
coils
coil
pair
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04194238A
Other languages
Japanese (ja)
Other versions
JPH0634457A (en
Inventor
佳年雄 毛利
浩之 犬塚
博史 深作
陽一郎 柏木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP04194238A priority Critical patent/JP3092755B2/en
Publication of JPH0634457A publication Critical patent/JPH0634457A/en
Application granted granted Critical
Publication of JP3092755B2 publication Critical patent/JP3092755B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measuring Magnetic Variables (AREA)
  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、差動磁気式センサの温
度補償装置に関し、例えば磁歪式トルクセンサの温度補
償装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature compensator for a differential magnetic sensor, and more particularly to a temperature compensator for a magnetostrictive torque sensor.

【0002】[0002]

【従来の技術】特開平3ー183924号公報は、磁歪
膜に温度変化が生じると励磁コイルの励磁電流が変化
し、その結果として両磁歪膜の透磁率を個別に検出する
一対の検出コイルの誘導電圧に差が生じる問題を解決す
るために、励磁コイルに通電する励磁電流の変化により
磁歪膜近傍の温度を検出し、検出結果に基づいて上記誘
導電圧の差を補償する磁歪式トルクセンサを開示してい
る。これにより誘導電圧差に比例する検出トルクの零点
が温度変動によって変化するのが補償される。
2. Description of the Related Art Japanese Unexamined Patent Publication No. Hei 3-183924 discloses that when a temperature change occurs in a magnetostrictive film, an exciting current of an exciting coil changes, and as a result, a pair of detection coils for individually detecting the magnetic permeability of both magnetostrictive films. In order to solve the problem that a difference occurs in the induced voltage, a magnetostrictive torque sensor that detects the temperature in the vicinity of the magnetostrictive film by a change in the exciting current supplied to the exciting coil and compensates for the difference in the induced voltage based on the detection result. Has been disclosed. This compensates for a change in the zero point of the detected torque proportional to the induced voltage difference due to the temperature fluctuation.

【0003】[0003]

【発明が解決しようとする課題】しかしながら上記した
零点補償方式では、回転軸の軸方向の温度勾配による二
つの磁歪膜間の透磁率の差により生じる出力電圧の零点
変動までは補償することができなかった。また、両磁歪
膜近傍間に温度差があると両磁歪膜と回転軸との間の熱
膨張率の差などにより歪みが生じ、その結果、両磁歪膜
間の透磁率に差が生じ、両検出コイルの誘導電圧の差出
力の零点は変動する。なおこの零点とはトルク0時にお
けるセンサの出力電位をいう。また同様の理由により、
両検出コイルの温度変化に対する感度(単位トルク量当
たりの出力電圧変化量)変化の割合が異なるので、上記
温度勾配があると感度誤差が生じる。
However, the above-mentioned zero point compensation method can compensate for the zero point fluctuation of the output voltage caused by the difference in the magnetic permeability between the two magnetostrictive films due to the temperature gradient in the axial direction of the rotating shaft. Did not . Also, if there is a temperature difference between the vicinity of the two magnetostrictive films, distortion occurs due to a difference in thermal expansion coefficient between the two magnetostrictive films and the rotation axis, and as a result, a difference occurs in the magnetic permeability between the two magnetostrictive films, The zero point of the difference output of the induced voltage of the detection coil fluctuates. The zero point refers to the output potential of the sensor when the torque is 0. Also for the same reason,
Since the rate of change in the sensitivity (output voltage change per unit torque) of the two detection coils with respect to the temperature change is different, a sensitivity error occurs if the temperature gradient exists.

【0004】このような問題は、磁歪式トルクセンサだ
けでなく一対の検出コイルの誘導電圧の差に基づいて被
測定量を検出する差動磁気式センサに共通する問題であ
る。本発明は、上記実情に鑑みてなされたものであり、
一対の検出コイルの誘導電圧の差に基づいて被測定量を
検出する差動磁気式センサにおける両検出コイル間の温
度差に基づく出力誤差を低減する温度補償装置を提供す
ることを、解決すべき技術課題とする。
[0004] Such a problem is a problem common to not only the magnetostrictive torque sensor but also a differential magnetic sensor that detects an amount to be measured based on a difference between induced voltages of a pair of detection coils. The present invention has been made in view of the above circumstances,
To provide a temperature compensating device for reducing an output error based on a temperature difference between two detection coils in a differential magnetic sensor that detects a measured quantity based on a difference between induced voltages of a pair of detection coils. Technical issues.

【0005】[0005]

【課題を解決するための手段】本発明の差動磁気式セン
サの温度補償装置は、回転軸表面に軸方向へ互いに所定
間隔を隔てて被着され磁歪特性が異なる一対の磁歪膜
と、該両磁歪膜を交流磁化させる励磁コイルと、前記両
磁歪膜近傍に配設され前記回転軸のトルクにより変調さ
れた誘導電圧を個別に出力する一対の検出コイルと、前
記誘導電圧の差に基づいて前記トルクを検出する回路部
とを備える差動磁気式センサに配設され、前記検出コ
イルに対応するように配置され前記両検出コイル近傍の
温度を検出する一対の温度検出手段と、前記両検出コイ
ル間の温度差により生じる前記回路部の出力誤差を補償
する補償手段とを備える差動磁気式センサの温度補償装
において、前記一対の温度検出手段は、前記各検出コ
イルに対応する位置にて前記回転軸に非接触に巻回され
た一対の無誘導コイルからなることを特徴としている。
A temperature compensating device for a differential magnetic sensor according to the present invention is provided with a pair of magnetostrictive films having different magnetostrictive characteristics which are attached to the surface of a rotating shaft at predetermined intervals in the axial direction.
An exciting coil for AC magnetizing the magnetostrictive films;
It is arranged near the magnetostrictive film and is modulated by the torque of the rotating shaft.
A pair of detection coils that individually output the induced voltage is disposed in the differential magnetic sensor and a circuit unit for detecting the torque based on a difference of the induced voltage, corresponding to the respective detection coils Differential magnetic sensor comprising: a pair of temperature detecting means arranged in such a manner as to detect the temperature in the vicinity of the two detecting coils; and a compensating means for compensating for an output error of the circuit portion caused by a temperature difference between the two detecting coils. In the temperature compensating device of the above, the pair of temperature detecting means may be each of the detecting cores.
Wound around the rotary shaft in a non-contact manner at the position corresponding to the
And a pair of non-inductive coils.

【0006】好適な態様において、前記無誘導コイル
は、前記励磁コイル及び検出コイルの径方向内側かつ前
記磁歪膜の径方向外側で、かつ、前記励磁コイル、検出
コイル及び磁歪膜と軸方向に重なる位置に配置されてい
ることを特徴としている。
In a preferred aspect, the non-inductive coil is
Is located radially inside and in front of the excitation coil and the detection coil.
Radially outside the magnetostrictive film, and the excitation coil,
It is located at a position that overlaps the coil and the magnetostrictive film in the axial direction.
It is characterized by that.

【0007】[0007]

【0008】[0008]

【作用】被測定部位に互いに所定間隔を隔てて配設され
た一対の検出コイルは、信号磁界の変化によりそれぞれ
誘導電圧を誘起し、回路部は両誘導電圧の差に関連する
被測定量を検出する。両検出コイルに個別に近接配置さ
れる一対の温度検出手段は両検出コイル近傍の温度を個
別に検出し、補償手段は両検出コイル近傍の間の温度差
に基づく回路部の出力誤差を補償する。
A pair of detection coils, which are arranged at a predetermined distance from each other at a portion to be measured, each induce an induced voltage due to a change in a signal magnetic field, and a circuit section detects a measured quantity related to a difference between the two induced voltages. To detect. A pair of temperature detecting means individually disposed close to the two detecting coils individually detect the temperature near the two detecting coils, and the compensating means compensates for an output error of the circuit unit based on a temperature difference between the two detecting coils. .

【0009】[0009]

【発明の効果】以上説明したように本発明の磁気式セン
サの温度補償装置は、両検出コイル近傍の温度を個別に
検出する一対の温度検出手段と、これら検出温度の差に
より生じるセンサの出力誤差を補償する補償手段とを備
、これら温度検出手段は、磁歪式トルクセンサの検出
コイルに対応する位置にて回転軸に非接触に巻回された
一対の無誘導コイルからなるので、両検出コイル間の温
度差により生じる零点誤差や感度誤差などの出力誤差の
補償を実現することができ、従来より格段に高精度な差
動磁気式センサを実現することができる。
As described above, the temperature compensating device for a magnetic sensor according to the present invention comprises a pair of temperature detecting means for individually detecting temperatures near both detecting coils, and an output of the sensor caused by a difference between the detected temperatures. Compensating means for compensating for the error , and these temperature detecting means detect the temperature of the magnetostrictive torque sensor.
Wound non-contact with the rotating shaft at the position corresponding to the coil
Because it consists of a pair of non-inductive coils, it is possible to compensate for output errors such as zero point errors and sensitivity errors caused by temperature differences between the two detection coils, realizing a differential magnetic sensor with much higher accuracy than before. can do.

【0010】[0010]

【実施例】【Example】

(実施例1)以下、図面を参照して本発明の一実施例を
図1のブロック回路図及び図2のコイル部分の斜視図を
参照して説明する。この磁歪式トルクセンサ(本発明で
いう差動磁気式センサ)は、図1に示すように、回転軸
1の表面に軸方向へ所定間隔を隔てて被着される磁歪膜
2a、2bと、磁歪膜2a、2bを交流磁化させる励磁
コイル3a,3bと、磁歪膜2a、2b表面に小間隔を
隔てて個別に巻装された検出コイル4a、4bと、検出
コイル4a、4bの誘導電圧の差からトルクを検出する
回路部5と、磁歪膜2a、2bの表面に小間隔を隔てて
個別に巻装された無誘導コイル(本発明でいう温度検出
手段)6a、6bと、無誘導コイル6a、6bから出力
される温度検出信号の差により回路部5の出力を補償す
る補償回路(本発明でいう補償手段)7とを備えてい
る。
(Embodiment 1) An embodiment of the present invention will be described below with reference to the block circuit diagram of FIG. 1 and a perspective view of a coil portion of FIG. 2 with reference to the drawings. As shown in FIG. 1, the magnetostrictive torque sensor (differential magnetic sensor according to the present invention) includes magnetostrictive films 2a and 2b attached to the surface of a rotating shaft 1 at predetermined intervals in an axial direction. Excitation coils 3a and 3b for AC-magnetizing the magnetostrictive films 2a and 2b, detection coils 4a and 4b individually wound on the surfaces of the magnetostrictive films 2a and 2b at small intervals, and induced voltages of the detection coils 4a and 4b. A circuit section 5 for detecting torque from the difference, non-inductive coils (temperature detecting means in the present invention) 6a and 6b individually wound on the surfaces of the magnetostrictive films 2a and 2b at small intervals, and a non-inductive coil A compensation circuit (compensation means in the present invention) 7 for compensating the output of the circuit section 5 based on the difference between the temperature detection signals output from 6a and 6b.

【0011】回転軸1として直径20mmのS45C焼
き入れ鋼を用い、その表面に減圧溶射法により磁歪膜2
a、2bを被着した。磁歪膜2a、2bは、Fe,N
i,Crが40,56,4の重量組成比をもち、回転軸
1にほぼ等しい熱膨張率をもつ鉄ニッケル合金からな
る。この合金の飽和磁束密度は11kG、電気抵抗率は
70μΩ・cmである。磁歪膜2a、2bはそれぞれ軸
方向に40mmの幅をもち、磁歪膜2a、2b間の軸方
向間隔は10mmとし、厚さは数百μmとした。被着
後、磁気異方性を付与するために機械加工により軸方向
に対し±45度のスパイラル溝を形成した。スパイラル
溝の幅は約1mm、そのピッチは約4.5mmとした。
As the rotating shaft 1, a hardened S45C steel having a diameter of 20 mm is used, and a magnetostrictive film 2 is formed on its surface by a low pressure spraying method.
a, 2b were applied. The magnetostrictive films 2a and 2b are made of Fe, N
i, Cr is composed of an iron-nickel alloy having a weight composition ratio of 40, 56, 4 and a thermal expansion coefficient substantially equal to that of the rotating shaft 1. This alloy has a saturation magnetic flux density of 11 kG and an electric resistivity of 70 μΩ · cm. Each of the magnetostrictive films 2a and 2b has a width of 40 mm in the axial direction, the axial interval between the magnetostrictive films 2a and 2b is 10 mm, and the thickness is several hundred μm. After the application, spiral grooves of ± 45 degrees with respect to the axial direction were formed by machining to impart magnetic anisotropy. The width of the spiral groove was about 1 mm, and the pitch was about 4.5 mm.

【0012】励磁コイル3a及び検出コイル4aは二本
のエナメル線を磁歪膜2aの位置に巻装して形成され
る。励磁コイル3b及び検出コイル4bも磁歪膜2bの
位置に同様に巻装してなる。これらコイルは図示しない
薄肉の樹脂ボビン表面に巻装され、このボビンが回転軸
1に小空隙を隔てて嵌着されている。励磁コイル3a及
び検出コイル4aの軸方向コイル幅は15mmで内径は
25mm、ターン数はそれぞれ150回とされ、図2
(a),(b)に示すように、まず無誘導コイル6a、
6bを巻装後、励磁コイル3a、3bを巻装し、その上
に検出コイル4a、4bを巻装している。無誘導コイル
6aは二本のエナメル線を互いにペアに隣接する状態で
同時に巻装されて形成され、両エナメル線の一端部は短
絡され、それらの両他端がこの無誘導コイル6aの両端
となる。無誘導コイル6aの軸方向幅は0.8mm、内
径は22mmとした(図3参照)。このように巻装する
ことにより無誘導コイル6aのインダクタンスは実質的
に0となる。無誘導コイル6bも同様に作製され、励磁
コイル3b、検出コイル4b及び無誘導コイル6bも上
記と同様に巻装した。
The excitation coil 3a and the detection coil 4a are formed by winding two enamel wires at the position of the magnetostrictive film 2a.
You. The exciting coil 3b and the detecting coil 4b are similarly wound around the position of the magnetostrictive film 2b. These coils are wound around the surface of a thin resin bobbin (not shown), and the bobbin is fitted to the rotating shaft 1 with a small gap therebetween. The axial coil width of the exciting coil 3a and the detecting coil 4a is 15 mm, the inner diameter is 25 mm, and the number of turns is 150, respectively.
(A), (b), first, the non-inductive coil 6a,
After winding 6b, the exciting coils 3a and 3b are wound, and the detection coils 4a and 4b are wound thereon. The non-inductive coil 6a is formed by simultaneously winding two enamel wires in a state of being adjacent to each other in a pair. Become. The axial width of the non-induction coil 6a was 0.8 mm, and the inner diameter was 22 mm (see FIG. 3). By winding in this manner, the inductance of the non-inductive coil 6a becomes substantially zero. The non-inductive coil 6b was manufactured similarly, and the exciting coil 3b, the detection coil 4b, and the non-inductive coil 6b were wound in the same manner as described above.

【0013】次に回路部5及びこの磁歪式トルクセンサ
のトルク検出動作を説明する。励磁コイル3a,3bは
両者の形成磁界方向が逆方向となるように直列接続さ
れ、交流電源(ここでは50kHz)3から電流制限抵
抗Rを通じて給電される。これにより検出コイル4a、
4bに誘導電圧が発生する。検出コイル4aの巻き終わ
り端及び検出コイル4bの巻き始め端は接地され、検出
コイル4aの巻き始め端及び検出コイル4bの巻き終わ
り端はそれぞれ、検波回路5a、5bにより個別に検波
されて差動アンプ51の正負の入力端に個別に入力され
る。その結果、差動アンプ51は検出コイル4a、4b
の両誘導電圧の検波出力差に比例した信号電圧をローパ
スフィルタ52に出力し、ローパスフィルタ52はこの
信号電圧に重畳するキャリヤ成分や高周波ノイズ成分を
除去して、直流信号成分Vsを出力する。
Next, the circuit section 5 and the torque detecting operation of the magnetostrictive torque sensor will be described. The exciting coils 3a and 3b are connected in series so that the directions of the formed magnetic fields are opposite to each other, and are supplied from an AC power source (here, 50 kHz) 3 through a current limiting resistor R. Thereby, the detection coil 4a,
An induced voltage is generated at 4b. The winding end of the detection coil 4a and the winding start of the detection coil 4b are grounded, and the winding start of the detection coil 4a and the winding end of the detection coil 4b are individually detected by detection circuits 5a and 5b, respectively. The positive and negative input terminals of the amplifier 51 are individually input. As a result, the differential amplifier 51 detects the detection coils 4a, 4b
And outputs a signal voltage proportional to the detection output difference between the two induced voltages to the low-pass filter 52. The low-pass filter 52 removes a carrier component and a high-frequency noise component superimposed on the signal voltage and outputs a DC signal component Vs.

【0014】いま回転軸1にトルクを与えると回転軸1
に捩じれが生じ、この捩じれにより磁歪膜2a、2bの
透磁率が変化する。磁歪膜2a、2bのトルク−透磁率
特性(磁歪特性)は互いに逆の特性となっているので、
検出コイル4a、4bの誘導電圧の差はトルクの大きさ
及び方向に応じた値となる。図4の(a)に室温(摂氏
15度)時のトルク−出力電圧特性を示し、図4の
(b)に回転軸1の一端を摂氏80度に加熱した場合の
トルク−出力電圧(Eo)特性を示す。図4の(a)、
(b)からわかるように、磁歪膜2a、2b間に温度差
が生じると、トルク変動に対する出力電圧変化に比べて
大きな零点ドリフトE’が発生する。
When a torque is applied to the rotating shaft 1, the rotating shaft 1
Is twisted, and the twist changes the magnetic permeability of the magnetostrictive films 2a and 2b. Since the torque-permeability characteristics (magnetostriction characteristics) of the magnetostrictive films 2a and 2b are opposite to each other,
The difference between the induced voltages of the detection coils 4a and 4b is a value corresponding to the magnitude and direction of the torque. FIG. 4A shows a torque-output voltage characteristic at room temperature (15 degrees Celsius), and FIG. 4B shows a torque-output voltage (Eo) when one end of the rotating shaft 1 is heated to 80 degrees Celsius. ) Characteristic. FIG. 4A,
As can be seen from (b), when a temperature difference occurs between the magnetostrictive films 2a and 2b, a large zero point drift E 'occurs as compared with the output voltage change due to the torque fluctuation.

【0015】磁歪膜2a、2b間の温度差と出力電位V
sの変動(零点ドリフト)との関係を図5に示す。な
お、この温度差は回転軸1に熱電対を固定して測定し
た。図5のヒステリシスは温度伝播遅れによるものと推
定される。次に、無誘導コイル6a,6b及び補償回路
(補償手段)7の構成と動作を説明する。
The temperature difference between the magnetostrictive films 2a and 2b and the output potential V
FIG. 5 shows the relationship with the variation of s (zero point drift). This temperature difference was measured with a thermocouple fixed to the rotating shaft 1. The hysteresis in FIG. 5 is presumed to be due to a temperature propagation delay. Next, the configuration and operation of the non-inductive coils 6a and 6b and the compensation circuit (compensation means) 7 will be described.

【0016】無誘導コイル6a、6bは直列接続され、
無誘導コイル6aの高位端aは、定電流電源Eから電位
Vaを給電され、無誘導コイル6bの低位端cは接地さ
れ、無誘導コイル6aの低位端と無誘導コイル6bの高
位端とは直列接続節点bとなっている。以下、各点a、
b、cの電位をVa、Vb、Vcとする。電位Va、V
b、Vcは、補償回路7に入力される。
The non-inductive coils 6a and 6b are connected in series,
High end a free induction coil 6a is powered potential Va from the constant current power supply E, lower end c of non-inductive coil 6b is grounded, lower end of the non-inductive coil 6a and the high end of the non-inductive coil 6b Is a series connection node b. Hereinafter, each point a,
Let the potentials of b and c be Va, Vb and Vc. Potentials Va, V
b and Vc are input to the compensation circuit 7.

【0017】補償回路7は、電位Va、Vb、Vc間の
加減算を行うアナログ加減算器71と、ローパスフィル
タ52の出力電圧Vsからアナログ減算器72の出力電
圧Vdを減算するアナログ減算器72とからなる。この
ような加減算器71及び減算器72は周知のオペアンプ
回路で作製できる。ここで、無誘導コイル6aの抵抗を
R1、その両端の電位差をV1、無誘導コイル6bの抵
抗をR2、その両端の電位差をV2、R1及びR2に通
電される電流をiとすれば、 i×(R1−R2)=V1−V2=(Va−Vb)−(Vb−Vc) =Va+Vb−2Vc したがって、無誘導コイル6a、6bの抵抗差(R1−
R2)を求めるには、(Va+Vb−2Vc)の加減算
をアナログ加減算器71で行えばよい。その結果、アナ
ログ加減算器71の出力電圧Vdは抵抗差(R1−R
2)に比例し、抵抗差(R1−R2)は検出コイル4
a、4bの温度差にほぼ比例するので、信号電圧Vsか
らこの温度補償電圧Vdを減算すれば、温度差による検
出コイル4a、4bの零点ドリフトを無誘導コイル6a
の抵抗差で相殺することができる。なお当然、電圧Vd
と電圧Vsとの比率は加減算器71及び減算器72など
の増幅率調節により適当な値に設定される。
The compensating circuit 7 comprises an analog adder / subtractor 71 for performing addition and subtraction between the potentials Va, Vb and Vc, and an analog subtractor 72 for subtracting the output voltage Vd of the analog subtractor 72 from the output voltage Vs of the low-pass filter 52. Become. Such an adder / subtractor 71 and a subtractor 72 can be manufactured by a well-known operational amplifier circuit. Here, assuming that the resistance of the non-inductive coil 6a is R1, the potential difference between both ends is V1, the resistance of the non-inductive coil 6b is R2, the potential difference between both ends is V2, and the current supplied to R1 and R2 is i. × (R1−R2) = V1−V2 = (Va−Vb) − (Vb−Vc) = Va + Vb−2Vc Therefore, the resistance difference between the non-inductive coils 6a and 6b (R1−
In order to obtain (R2), the addition / subtraction of (Va + Vb−2Vc) may be performed by the analog adder / subtractor 71. As a result, the output voltage Vd of the analog adder / subtractor 71 becomes equal to the resistance difference (R1-R
2), the resistance difference (R1-R2) is
Since the temperature compensation voltage Vd is substantially proportional to the temperature difference between the detection coils 4a and 4b, the zero point drift of the detection coils 4a and 4b due to the temperature difference can be reduced by subtracting the temperature compensation voltage Vd from the signal voltage Vs.
Can be offset by the difference in resistance. Of course, the voltage Vd
The ratio between the voltage and the voltage Vs is set to an appropriate value by adjusting the amplification factor of the adder / subtractor 71 and the subtractor 72.

【0018】温度Tと無誘導コイル6a、6bの抵抗値
Rとの関係を表す特性図を図6に示し、無誘導コイル6
a、6bの抵抗差(R1−R2)と出力信号電圧Vsの
零点ドリフト量E’との関係を図7に示す。更に、回転
軸1の一端を摂氏22から80度の範囲で加熱した場合
の出力信号電圧Vsの零点ドリフト量E’との補償前後
の関係を図8に示す。ただし室温は摂氏22度とした。
また、回転軸1の一端を摂氏80度に加熱した場合のト
ルクと補償後の出力信号電圧Vscとの関係を図4の
(c)に示す。
FIG. 6 is a characteristic diagram showing the relationship between the temperature T and the resistance value R of the non-inductive coils 6a and 6b.
FIG. 7 shows the relationship between the resistance difference (R1−R2) between a and 6b and the zero-point drift amount E ′ of the output signal voltage Vs. Further, FIG. 8 shows the relationship before and after the compensation with the zero-point drift amount E ′ of the output signal voltage Vs when one end of the rotating shaft 1 is heated in the range of 22 to 80 degrees Celsius. However, the room temperature was 22 degrees Celsius.
FIG. 4C shows the relationship between the torque when the one end of the rotating shaft 1 is heated to 80 degrees Celsius and the compensated output signal voltage Vsc.

【0019】上記説明から、無誘導コイル6a、6bと
補償回路7との簡単な構成により磁歪式トルクセンサの
零点補償を実現でき、精度を大幅に改善できることがわ
かる。 (実施例2)本発明の他の実施例を図9により説明す
る。
From the above description, it can be seen that the zero point compensation of the magnetostrictive torque sensor can be realized by a simple configuration of the non-inductive coils 6a and 6b and the compensation circuit 7, and the accuracy can be greatly improved. (Embodiment 2) Another embodiment of the present invention will be described with reference to FIG.

【0020】この実施例は図1の補償回路7から出力さ
れる電圧Vd、Vscを用いて上記温度勾配により生じ
る感度誤差を補償する回路であって、増幅率Kのアンプ
73と、アンプ73の出力電圧Vd’と零点補償出力電
圧Vscとを掛けるアナログ乗算回路(又は可変利得回
路)74とからなる。磁歪膜2a、2b間の温度勾配に
比例する無誘導コイル6a、6b間の抵抗差(R1ーR
2)と電圧Vscの感度との関係を図10に示す。温度
勾配の増大によりセンサが高感度化することがわかる。
すなわち、単位トルク変動当たりの出力電圧Vsの大
きさ(感度)は、温度差0の場合に比べて温度差すなわ
ち抵抗差(R1−R2)が増加するほど増大する。
This embodiment is a circuit for compensating for a sensitivity error caused by the above-mentioned temperature gradient by using the voltages Vd and Vsc output from the compensation circuit 7 shown in FIG. An analog multiplication circuit (or variable gain circuit) 74 multiplies the output voltage Vd 'by the zero point compensation output voltage Vsc. The resistance difference (R1-R) between the non-inductive coils 6a, 6b is proportional to the temperature gradient between the magnetostrictive films 2a, 2b.
FIG. 10 shows the relationship between 2) and the sensitivity of the voltage Vsc. It can be seen that the sensitivity of the sensor is increased by increasing the temperature gradient.
That is, the magnitude (sensitivity) of the output voltage Vs per unit torque change increases as the temperature difference, that is, the resistance difference (R1−R2) increases, as compared with the case where the temperature difference is zero.

【0021】したがって図10の感度変化曲線を一本の
直線Mで代表し、この直線Mの勾配mと逆数関係にある
勾配(1/m)となるようにアンプ73の増幅率K(=
1/m)を設定すれば、アナログ乗算回路(又は可変利
得回路)74の出力電圧Voは温度勾配により感度が変
化しないようにできる。なお、アンプ73を折れ線アン
プ(すなわちオペアンプにダイオード、抵抗、直流電源
により折れ線カーブの増幅率が設定されたアンプ)を用
いれば更に高精度で感度補償することができる。また、
図10の特性と逆特性のマップをマイコンのロムに内蔵
しておき、ソフトウエアにより同じ処理を行うこともで
きる。 (実施例3)他の実施例を図11により説明する。
Therefore, the sensitivity change curve shown in FIG. 10 is represented by a single straight line M, and the amplification factor K (= m) of the amplifier 73 is set so that the slope (1 / m) is inversely related to the slope m of the straight line M.
1 / m), the sensitivity of the output voltage Vo of the analog multiplication circuit (or variable gain circuit) 74 does not change due to the temperature gradient. If the amplifier 73 is a polygonal amplifier (that is, an amplifier in which the amplification factor of the polygonal curve is set by an operational amplifier with a diode, a resistor, and a DC power supply), the sensitivity can be compensated with higher accuracy. Also,
The map of the characteristic opposite to the characteristic shown in FIG. 10 may be built in the ROM of the microcomputer, and the same processing may be performed by software. (Embodiment 3) Another embodiment will be described with reference to FIG.

【0022】この実施例は実施例1(図1)の処理を他
の回路で実施したものである。81、82、83は減算
器、84は加算器である。
In this embodiment, the processing of the first embodiment (FIG. 1) is performed by another circuit. 81, 82 and 83 are subtractors, and 84 is an adder.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1の磁歪式トルクセンサのブロック回路
図、
FIG. 1 is a block circuit diagram of a magnetostrictive torque sensor according to a first embodiment;

【図2】図1の回転軸近傍部分の斜視図、FIG. 2 is a perspective view of a portion near a rotation shaft of FIG. 1;

【図3】図1の無誘導コイルの斜視図、FIG. 3 is a perspective view of the non-induction coil of FIG. 1;

【図4】図1のセンサのトルクー出力電圧との関係を示
す特性図、
FIG. 4 is a characteristic diagram showing a relationship between a torque and an output voltage of the sensor of FIG. 1;

【図5】図1のセンサの温度差と零点ドリフトとの関係
を示す特性図、
FIG. 5 is a characteristic diagram showing a relationship between a temperature difference and a zero point drift of the sensor of FIG. 1;

【図6】図1の無誘導コイルのコイル温度とコイル抵抗
との関係を示す特性図、
FIG. 6 is a characteristic diagram showing a relationship between a coil temperature and a coil resistance of the non-inductive coil of FIG. 1;

【図7】図1の無誘導コイルの抵抗差とセンサの出力電
圧の零点ドリフトとの関係を示す特性図、
FIG. 7 is a characteristic diagram showing a relationship between a resistance difference of the non-inductive coil of FIG. 1 and a zero point drift of an output voltage of the sensor.

【図8】温度勾配と出力電圧誤差の零点変動量との補償
前後の関係を示す特性図、
FIG. 8 is a characteristic diagram showing a relationship between a temperature gradient and a zero-point variation amount of an output voltage error before and after compensation.

【図9】実施例2の補償回路を示すブロック回路図、FIG. 9 is a block circuit diagram illustrating a compensation circuit according to a second embodiment;

【図10】図1のセンサの温度差(抵抗差)と感度変動
との関係を示す特性図、
10 is a characteristic diagram showing a relationship between a temperature difference (resistance difference) and a sensitivity variation of the sensor of FIG.

【図11】他の実施例を示す回路図、FIG. 11 is a circuit diagram showing another embodiment;

【符号の説明】[Explanation of symbols]

1は回転軸、2a、2bは磁歪膜、3a,3bは励磁コ
イル、4a、4bは検出コイル、5は回路部、6a、6
bは無誘導コイル(本発明でいう温度検出手段)、7は
補償回路(補償手段)、
1 is a rotating shaft, 2a and 2b are magnetostrictive films, 3a and 3b are excitation coils, 4a and 4b are detection coils, 5 is a circuit section, 6a and 6
b is a non-inductive coil (temperature detecting means in the present invention), 7 is a compensation circuit (compensating means),

───────────────────────────────────────────────────── フロントページの続き (72)発明者 柏木 陽一郎 愛知県刈谷市豊田町2丁目1番地 株式 会社豊田自動織機製作所内 (56)参考文献 特開 平1−173842(JP,A) 特開 平4−175627(JP,A) 特開 平3−273125(JP,A) 実開 昭63−27842(JP,U) 実開 昭56−23429(JP,U) (58)調査した分野(Int.Cl.7,DB名) G01L 3/10 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoichiro Kashiwagi 2-1-1 Toyota-cho, Kariya-shi, Aichi Prefecture Inside Toyota Industries Corporation (56) References JP-A-1-173842 (JP, A) JP-A Heisei 4-175627 (JP, A) JP-A-3-273125 (JP, A) JP-A 63-27842 (JP, U) JP-A 56-23429 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) G01L 3/10

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】回転軸表面に軸方向へ互いに所定間隔を隔
てて被着され磁歪特性が異なる一対の磁歪膜と、該両磁
歪膜を交流磁化させる励磁コイルと、前記両磁歪膜近傍
に配設され前記回転軸のトルクにより変調された誘導電
圧を個別に出力する一対の検出コイルと、前記誘導電圧
の差に基づいて前記トルクを検出する回路部とを備える
差動磁気式センサに配設され、 前記検出コイルに対応するように配置され前記両検出
コイル近傍の温度を検出する一対の温度検出手段と、前
記両検出コイル間の温度差により生じる前記回路部の出
力誤差を補償する補償手段とを備える差動磁気式センサ
の温度補償装置において、 前記一対の温度検出手段は、前記各検出コイルに対応す
る位置にて前記回転軸に非接触に巻回された一対の無誘
導コイルからなることを特徴とする差動磁気式センサの
温度補償装置。
1. A pair of magnetostrictive films having different magnetostriction characteristics, which are attached to the surface of a rotating shaft at predetermined intervals in the axial direction and have different magnetostriction characteristics.
An excitation coil for AC-magnetizing the strained film, and near the two magnetostrictive films.
A differential magnetic sensor comprising: a pair of detection coils that are individually disposed to output an induced voltage modulated by the torque of the rotating shaft, and a circuit unit that detects the torque based on a difference between the induced voltages. A pair of temperature detecting means disposed to correspond to each of the detecting coils and detecting a temperature near the two detecting coils, and compensating for an output error of the circuit portion caused by a temperature difference between the two detecting coils. A temperature compensating device for a differential magnetic sensor , comprising: a pair of temperature detecting means corresponding to each of the detecting coils.
A pair of uninvited coils wound around the rotating shaft
A differential magnetic sensor characterized by comprising a conducting coil.
Temperature compensation device.
【請求項2】前記無誘導コイルは、前記励磁コイル及び
検出コイルの径方向内側かつ前記磁歪膜の径方向外側
で、かつ、前記励磁コイル、検出コイル及び磁歪膜と軸
方向に重なる位置に配置されている請求項1記載の差動
磁気式センサの温度補償装置。
2. The non-inductive coil according to claim 1 , wherein
Radially inside the detection coil and radially outside the magnetostrictive film
And the excitation coil, the detection coil, the magnetostrictive film and the shaft
2. The differential according to claim 1, wherein the differential is arranged at a position overlapping in the direction.
Temperature compensation device for magnetic sensors.
JP04194238A 1992-07-21 1992-07-21 Temperature compensation device for differential magnetic sensor Expired - Fee Related JP3092755B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04194238A JP3092755B2 (en) 1992-07-21 1992-07-21 Temperature compensation device for differential magnetic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04194238A JP3092755B2 (en) 1992-07-21 1992-07-21 Temperature compensation device for differential magnetic sensor

Publications (2)

Publication Number Publication Date
JPH0634457A JPH0634457A (en) 1994-02-08
JP3092755B2 true JP3092755B2 (en) 2000-09-25

Family

ID=16321281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04194238A Expired - Fee Related JP3092755B2 (en) 1992-07-21 1992-07-21 Temperature compensation device for differential magnetic sensor

Country Status (1)

Country Link
JP (1) JP3092755B2 (en)

Also Published As

Publication number Publication date
JPH0634457A (en) 1994-02-08

Similar Documents

Publication Publication Date Title
JP3445362B2 (en) AC current sensor
US5307690A (en) Temperature compensating device for torque measuring apparatus
US5431063A (en) Torque detector and torque detecting element
US5914593A (en) Temperature gradient compensation circuit
US5218279A (en) Method and apparatus for detection of physical quantities, servomotor system utilizing the method and apparatus and power steering apparatus using the servomotor system
US5522269A (en) Apparatus and method for transducing torque applied to a magnetostrictive shaft while minimizing temperature induced variations
JPH0560050B2 (en)
JP2002318250A (en) Current detector and overload current protective device using the same
JP2000055999A (en) Magnetic sensor device and current sensor device
JP2002365350A (en) Magnetic detector
JP2673636B2 (en) Processing circuit for magnetostrictive torque sensor
JP3583671B2 (en) Torque detector
JPS61245033A (en) Torque detecting device
JP2890650B2 (en) Current sensor
JP3092755B2 (en) Temperature compensation device for differential magnetic sensor
JPH06347489A (en) Electric current sensor
JP2000002602A (en) Torque detecting device
JP2564049B2 (en) Torque sensor temperature compensation device
JP2776693B2 (en) Temperature compensation device for torque measuring device
JP3161867B2 (en) Magnetostrictive torque sensor
JP2021025820A (en) Magnetic field detection sensor
JP2633125B2 (en) Compensation device for temperature characteristics of torque sensor
JPH0663876B2 (en) Method of manufacturing magnetostrictive torque sensor
JP2566687B2 (en) Torque measuring device temperature compensation device
JPS62185136A (en) Magnetostrictive type torque sensor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees