JPH075126A - Intensity correction method for x-ray fluorescence analysis - Google Patents

Intensity correction method for x-ray fluorescence analysis

Info

Publication number
JPH075126A
JPH075126A JP14738793A JP14738793A JPH075126A JP H075126 A JPH075126 A JP H075126A JP 14738793 A JP14738793 A JP 14738793A JP 14738793 A JP14738793 A JP 14738793A JP H075126 A JPH075126 A JP H075126A
Authority
JP
Japan
Prior art keywords
sample
fluorescent
total weight
measured
ray intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14738793A
Other languages
Japanese (ja)
Inventor
Masayuki Matsuo
正之 松尾
Toshiya Habu
俊也 土生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP14738793A priority Critical patent/JPH075126A/en
Publication of JPH075126A publication Critical patent/JPH075126A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To realize highly accurate spectroscopic analysis by correcting the error in the measurement of intensity of fluorescent X-rays caused by the fluctuation in the total weight of samples. CONSTITUTION:The intensity of fluorescent X-rays is measured for a plurality of types of glass bead having identical dilution ratio and different total weight of sample. An approximate formula I/I0=f (w) is previously determined for the total weight (w) of sample and the ratio between the reference intensity I0 of fluorescent X-rays corresponding to a reference total weight w0 of sample and the intensity I of fluorescent X-rays corresponding to an arbitrary total weight of sample. The intensity of fluorescent X-rays actually measured for an objective glass bead is then corrected according to the approximate formula using the total weight of sample actually measured for the glass bead.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、蛍光X線分析に関し、
さらに詳しくは、ガラスビード法によって調製された試
料の蛍光X線分析における蛍光X線強度の補正方法に関
する。
The present invention relates to X-ray fluorescence analysis,
More specifically, it relates to a method for correcting the fluorescent X-ray intensity in the fluorescent X-ray analysis of a sample prepared by the glass bead method.

【0002】[0002]

【従来の技術】従来、蛍光X線分析における粉体試料の
調製方法として、粉体試料を融剤とともに溶融してガラ
ス化し、円盤状のディスク試料であるガラスビードを作
製するガラスビード法がある。このガラスビード法は、
溶融するために、粉体粒度のばらつきや鉱物学的影響学
なくなり、また、粉体試料に多量の融剤を加えるために
共存元素の影響をも軽減することができるといった優れ
た特徴を有するものである。
2. Description of the Related Art Conventionally, as a method for preparing a powder sample in a fluorescent X-ray analysis, there is a glass bead method in which a powder sample is melted with a fluxing agent to be vitrified to prepare a glass bead which is a disc-shaped disk sample. . This glass bead method
Due to melting, there are no variations in powder particle size or mineralogical influences, and because of the addition of a large amount of flux to the powder sample, it is possible to reduce the effect of coexisting elements. Is.

【0003】近年、セメント業界や鉄鋼業界において、
蛍光X線分析の前処理として、ガラスビードの作製を自
動的に行い、作製されたガラスビードを蛍光X線分析装
置でオンラインで分析できるようにしたものがある。
In recent years, in the cement industry and the steel industry,
As a pretreatment for fluorescent X-ray analysis, there is a method in which glass beads are automatically produced and the produced glass beads can be analyzed online by an X-ray fluorescence analyzer.

【0004】かかるガラスビードの作製において、重要
な要素として、次式で示される希釈率がある。
In the production of such glass beads, an important factor is the dilution rate represented by the following formula.

【0005】 希釈率=(試料重量+融剤重量)/試料重量 ガラスビードの作製においては、粉体試料の秤量を行
い、基準(目的)の希釈率となるように、融剤の投入量
を制御し、これによって、希釈率を一定に保ちながらガ
ラスビード化された試料の蛍光X線強度を測定するよう
にしている。
Dilution rate = (sample weight + flux agent weight) / sample weight In the production of glass beads, the powder sample is weighed and the amount of the flux added is adjusted so that the standard (purpose) dilution rate is obtained. It is controlled so that the fluorescent X-ray intensity of the glass-beaded sample is measured while keeping the dilution rate constant.

【0006】[0006]

【発明が解決しようとする課題】このように希釈率を一
定に保つために、粉体試料の重量に応じて融剤の投入量
を制御するので、全体としての試料総重量(=試料重量
+融剤重量)は、変化することになるが、このように分
析の際の試料総重量が変化すると、希釈率が一定であっ
ても蛍光X線強度の測定に誤差を生じる場合があり、高
精度の分光分析に支障を来すことになる。
As described above, in order to keep the dilution ratio constant, the amount of the flux added is controlled according to the weight of the powder sample, so that the total sample total weight (= sample weight + The weight of the flux will change. However, if the total weight of the sample during the analysis changes in this way, an error may occur in the measurement of the fluorescent X-ray intensity even if the dilution ratio is constant, which is high. This will interfere with the accuracy of the spectroscopic analysis.

【0007】本発明は、上述の点に鑑みて為されたもの
であって、試料総重量が変動しても、これが蛍光X線強
度に与える影響を補正して分光分析を高精度で行えるよ
うにすることを目的とする。
The present invention has been made in view of the above-mentioned points, and even if the total weight of the sample fluctuates, it is possible to correct the influence of this on the fluorescent X-ray intensity and perform the spectroscopic analysis with high accuracy. The purpose is to

【0008】[0008]

【課題を解決するための手段】本発明では、上述の目的
を達成するために、次のように構成している。
In order to achieve the above-mentioned object, the present invention is constructed as follows.

【0009】先ず、測定対象となる粉体試料と同一品種
の粉体試料について、希釈率を同一とし、かつ試料総重
量を異にした複数種類のガラスビードを予め作製し、各
ガラスビードについて、蛍光X線強度を測定し、試料総
重量と、基準試料総重量に対応した基準蛍光X線強度に
対する任意の試料総重量に対応した蛍光X線強度の比
と、の間に成立する近似式を予め求めておく。
First, a plurality of types of glass beads having the same dilution rate and different total sample weight are prepared in advance for powder samples of the same type as the powder sample to be measured, and for each glass bead, The fluorescent X-ray intensity is measured, and an approximate expression that holds between the sample total weight and the ratio of the fluorescent X-ray intensity corresponding to the arbitrary fluorescent sample total weight to the reference fluorescent X-ray intensity corresponding to the reference sample total weight is given. Get in advance.

【0010】次に、前記粉体試料について、測定対象と
なるガラスビードを作製するとともに、そのガラスビー
ドにおける実測試料総重量を求める。
Next, with respect to the powder sample, a glass bead to be measured is produced, and the total weight of the measured sample in the glass bead is obtained.

【0011】そして、測定対象となるガラスビードにつ
いて、蛍光X線強度を測定し、得られた実測蛍光X線強
度を、実測試料総重量を用いて、前記近似式に従って補
正して補正蛍光X線強度を算出するものである。
Then, the fluorescent X-ray intensity of the glass bead to be measured is measured, and the actually measured fluorescent X-ray intensity is corrected according to the above approximate expression by using the actually measured sample total weight to correct the fluorescent X-ray. The strength is calculated.

【0012】[0012]

【作用】上記構成によれば、試料総重量の変動による蛍
光X線強度の測定誤差を、予め求めた近似式に従って補
正するので、高精度の分光分析が行われる。
According to the above construction, the measurement error of the fluorescent X-ray intensity due to the fluctuation of the total weight of the sample is corrected according to the approximate formula obtained in advance, so that the highly accurate spectroscopic analysis can be performed.

【0013】[0013]

【実施例】以下、図面によって本発明の実施例について
詳細に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0014】図1は、本発明の一実施例の蛍光X線強度
補正方法が適用される自動分析システムの構成図であ
り、1は粉体試料を採取する試料サンプリング装置、2
は設定された条件でガラスビードを作製するガラスビー
ド作製装置、3は作製されたガラスビードを搬送する試
料搬送装置、4は蛍光X線分析装置である。
FIG. 1 is a block diagram of an automatic analysis system to which the fluorescent X-ray intensity correction method according to one embodiment of the present invention is applied. 1 is a sample sampling device for collecting powder samples, 2 is a sample sampling device.
Is a glass bead producing apparatus for producing glass beads under set conditions, 3 is a sample conveying apparatus for conveying the produced glass beads, and 4 is an X-ray fluorescence analyzer.

【0015】かかる自動分析システムでは、試料サンプ
リング装置1によって採取された粉体試料は、ガラスビ
ード作製装置2に供給されて白金るつぼに投入され、無
水四ホウ酸ナトリウムなどの融剤が設定した希釈率とな
るように投入され、溶融される。その後冷却されて白金
るつぼから取り出され、真空吸着式の試料搬送装置3で
蛍光X線分析装置4に搬送されて蛍光X線分析装置4の
試料容器にセットされ、蛍光X線分析が行われる。測定
値は、ガラスビード作製装置2から伝送されたデータに
基づいて、イグロス補正や希釈率補正が従来と同様に行
われる。
In such an automatic analysis system, the powder sample collected by the sample sampling device 1 is supplied to the glass bead making device 2 and put into a platinum crucible, and a diluting agent such as anhydrous sodium tetraborate is set. It is charged and melted at a rate. Then, the sample is cooled and taken out from the platinum crucible, and is transported to the fluorescent X-ray analysis device 4 by the vacuum adsorption type sample transport device 3 and set in the sample container of the fluorescent X-ray analysis device 4 to perform the fluorescent X-ray analysis. The measured values are subjected to the igross correction and the dilution rate correction based on the data transmitted from the glass bead manufacturing apparatus 2 in the same manner as in the past.

【0016】この実施例の自動分析システムでは、さら
に、試料総重量の変動による蛍光X線強度の測定誤差の
補正を次のようにして行うものである。
In the automatic analysis system of this embodiment, the measurement error of the fluorescent X-ray intensity due to the change in the total sample weight is further corrected as follows.

【0017】先ず、測定対象となる粉体試料と同一品種
の粉体試料について、一定の希釈率(基準希釈率)であ
って、試料総重量が、基準試料総重量w0となるガラス
ビードを作製し、そのガラスビードについて、各元素の
蛍光X線強度である基準蛍光X線強度I0を測定する。
First, for a powder sample of the same type as the powder sample to be measured, a glass bead having a constant dilution rate (reference dilution rate) and a total sample weight of the reference sample total weight w 0 is used. The prepared glass beads are measured for reference fluorescent X-ray intensity I 0 , which is the fluorescent X-ray intensity of each element.

【0018】さらに、前記同一品種の粉体試料につい
て、基準希釈率で試料総重量が任意の試料総重量wのガ
ラスビードを複数作製し、それらガラスビードについ
て、各元素の蛍光X線強度Iを測定する。
Further, with respect to the powder samples of the same type, a plurality of glass beads having a sample total weight w at a reference dilution ratio and an arbitrary sample total weight w were prepared, and the fluorescent X-ray intensity I of each element was measured for these glass beads. taking measurement.

【0019】次に、図2に示されるように、横軸に試料
総重量w、縦軸に基準蛍光X線強度I0に対する蛍光X
線強度Iの比をとってプロットし、このプロットされた
曲線の近似式を求める。なお、図2においては、1つの
元素についてのみ代表的に示している。
Next, as shown in FIG. 2, the horizontal axis represents the total sample weight w, and the vertical axis represents the fluorescence X with respect to the reference fluorescence X-ray intensity I 0 .
The ratio of the line intensities I is taken and plotted, and an approximate expression of this plotted curve is obtained. In FIG. 2, only one element is representatively shown.

【0020】この実施例では、a,b,cを正の定数と
すると、 I/I0=a−exp{−b(w−w0)−c} で近似できることが分かった。
In this embodiment, it was found that I / I 0 = a-exp {-b (w-w 0 ) -c} can be approximated when a, b and c are positive constants.

【0021】また、I/I0をwの関数と見ると、 I/I0=f(w)=a−exp{−b(w−w0)−
c} と表すことができる。
Looking at I / I 0 as a function of w, I / I 0 = f (w) = a-exp {-b (w-w 0 )-
c}.

【0022】以上のようにして、試料総重量wと、基準
蛍光X線強度I0に対する蛍光X線強度Iの比と、の間
に成立する近似式を予め実験によって求めておく。
As described above, an approximate expression established between the total sample weight w and the ratio of the fluorescent X-ray intensity I to the reference fluorescent X-ray intensity I 0 is previously obtained by experiments.

【0023】次に、試料サンプリング装置1からオンラ
インで流れてくる測定すべき粉体試料を秤量し、基準希
釈率となるように融剤を投入する。このときの試料総重
量を実測試料総重量w’として求めておく。
Next, the powder sample to be measured which flows online from the sample sampling device 1 is weighed, and the flux is added so that the standard dilution ratio is obtained. The total weight of the sample at this time is obtained as the actually measured total weight w '.

【0024】次に、粉体試料および融剤を混合溶融した
後、冷却固化したガラスビードを取り出して試料搬送装
置3を介して蛍光X線分析装置4にセットして分光分析
を行う。
Next, after mixing and melting the powder sample and the flux, the cooled and solidified glass beads are taken out and set in the fluorescent X-ray analyzer 4 through the sample transport device 3 to perform spectroscopic analysis.

【0025】この分光分析の結果得られた実測蛍光X線
強度をI0’とすると、正しい補正蛍光X線強度I’
は、上述の近似式に、w=w’,I0=I0’を代入して
求めることができる。
When the measured fluorescent X-ray intensity obtained as a result of this spectroscopic analysis is I 0 ′, the corrected corrected fluorescent X-ray intensity I ′ is
Can be obtained by substituting w = w ′ and I 0 = I 0 ′ into the above approximation formula.

【0026】すなわち、 I’=f(w’)×I0’=a−exp{−b(w’−
0)−c}×I0’ このようにして蛍光X線分析装置4では、試料総重量の
変動による蛍光X線強度の誤差を補正するので、精度の
高い分光分析が可能となる。
[0026] That is, I '= f (w' ) × I 0 '= a-exp {-b (w'-
w 0 ) −c} × I 0 ′ As described above, the fluorescent X-ray analyzer 4 corrects the error in the fluorescent X-ray intensity due to the change in the total weight of the sample, so that highly accurate spectroscopic analysis can be performed.

【0027】なお、上述の実施例では、近似式を、 f(w)=a−exp{−b(w−w0)−c} としたけれども、誤差が許容できる場合には、例えば、 f(w)=a(w−w0)+1 としてもよい。[0027] In the above-described embodiment, an approximate expression, but was f (w) = a-exp {-b (w-w 0) -c}, if the error is acceptable, for example, f (W) = a (w−w 0 ) +1 may be used.

【0028】[0028]

【発明の効果】以上のように本発明によれば、希釈率が
同一で、試料総重量が異なる複数のガラスビードについ
て蛍光X線強度を測定し、試料総重量と、基準試料総重
量に対応した基準蛍光X線強度に対する任意の試料総重
量に対応した蛍光X線強度の比と、の間に成立する近似
式を予め求めておき、測定対象となるガラスビードにつ
いて実測された蛍光X線強度を、そのガラスビードの実
測された試料総重量を用いて、前記近似式に従って補正
するので、試料総重量の変動による蛍光X線強度の測定
誤差が補正され、高精度の分光分析が行われる。
As described above, according to the present invention, the fluorescent X-ray intensities of a plurality of glass beads having the same dilution rate but different total sample weights are measured, and the total sample weight and the reference sample total weight are measured. The ratio of the fluorescent X-ray intensity corresponding to the total weight of the sample to the reference fluorescent X-ray intensity and an approximate expression that holds between are obtained in advance, and the fluorescent X-ray intensity actually measured for the glass bead to be measured. Is corrected according to the approximate expression using the actually measured total sample weight of the glass beads, and therefore, the measurement error of the fluorescent X-ray intensity due to the variation of the total sample weight is corrected, and high-precision spectroscopic analysis is performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例が適用された自動分析システ
ムの概略構成図である。
FIG. 1 is a schematic configuration diagram of an automatic analysis system to which an embodiment of the present invention is applied.

【図2】試料総重量と蛍光X線強度比との相関関係を示
す図である。
FIG. 2 is a diagram showing a correlation between a total sample weight and a fluorescent X-ray intensity ratio.

【符号の説明】[Explanation of symbols]

1 試料サンプリング装置 2 ガラスビード作製装置 3 試料搬送装置 4 蛍光X線分析装置 1 Sample Sampling Device 2 Glass Bead Manufacturing Device 3 Sample Transfer Device 4 X-ray Fluorescence Analyzer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 測定対象となる粉体試料と同一品種の粉
体試料について、希釈率を同一とし、かつ試料総重量を
異にした複数種類のガラスビードを予め作製し、各ガラ
スビードについて、蛍光X線強度を測定し、試料総重量
と、基準試料総重量に対応した基準蛍光X線強度に対す
る任意の試料総重量に対応した蛍光X線強度の比と、の
間に成立する近似式を予め求める工程と、 前記粉体試料について、測定対象となるガラスビードを
作製するとともに、そのガラスビードにおける実測試料
総重量を求める工程と、 前記測定対象となるガラスビードについて、蛍光X線強
度を測定し、得られた実測蛍光X線強度を、前記実測試
料総重量を用いて、前記近似式に従って補正して補正蛍
光X線強度を算出する工程と、 を含むことを特徴とする蛍光X線分析における蛍光X線
強度補正方法。
1. A plurality of types of glass beads having the same dilution rate and different total sample weight are prepared in advance for powder samples of the same type as the powder sample to be measured, and each glass bead is The fluorescent X-ray intensity is measured, and an approximate expression that holds between the sample total weight and the ratio of the fluorescent X-ray intensity corresponding to the reference fluorescent X-ray intensity corresponding to the reference sample total weight to the arbitrary sample total weight is given. A step of obtaining in advance, a step of producing a glass bead to be measured for the powder sample, and a step of obtaining a measured sample total weight of the glass bead, and measuring a fluorescent X-ray intensity of the glass bead to be measured And then calculating the corrected fluorescent X-ray intensity by correcting the obtained measured fluorescent X-ray intensity according to the approximation formula using the measured sample total weight. X-ray intensity correction method in X-ray analysis.
JP14738793A 1993-06-18 1993-06-18 Intensity correction method for x-ray fluorescence analysis Pending JPH075126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14738793A JPH075126A (en) 1993-06-18 1993-06-18 Intensity correction method for x-ray fluorescence analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14738793A JPH075126A (en) 1993-06-18 1993-06-18 Intensity correction method for x-ray fluorescence analysis

Publications (1)

Publication Number Publication Date
JPH075126A true JPH075126A (en) 1995-01-10

Family

ID=15429111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14738793A Pending JPH075126A (en) 1993-06-18 1993-06-18 Intensity correction method for x-ray fluorescence analysis

Country Status (1)

Country Link
JP (1) JPH075126A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103901065A (en) * 2012-12-26 2014-07-02 中国建材检验认证集团股份有限公司 Determination method for fuse piece dilution ratio in X-ray fluorescence analysis and application thereof
CN103969272A (en) * 2013-01-30 2014-08-06 中国建材检验认证集团股份有限公司 Method and system for determination of cement components by X ray fluorescence analysis

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103901065A (en) * 2012-12-26 2014-07-02 中国建材检验认证集团股份有限公司 Determination method for fuse piece dilution ratio in X-ray fluorescence analysis and application thereof
CN103969272A (en) * 2013-01-30 2014-08-06 中国建材检验认证集团股份有限公司 Method and system for determination of cement components by X ray fluorescence analysis

Similar Documents

Publication Publication Date Title
CN101526488A (en) Method for analyzing components of iron ore by using X-ray fluorescence spectrum
Georgakopoulou et al. Development and calibration of a WDXRF routine applied to provenance studies on archaeological ceramics
CN102539207B (en) Method for preparing standard sample for testing content of hard-alloy components and method for testing content of hard-alloy components
Amosova et al. Determination of major elements by wavelength-dispersive X-ray fluorescence spectrometry and trace elements by inductively coupled plasma mass spectrometry in igneous rocks from the same fused sample (110 mg)
CN107290375A (en) The method for determining calcirm-fluoride in fluorite, calcium carbonate, sulphur, iron and dioxide-containing silica
CN103969272A (en) Method and system for determination of cement components by X ray fluorescence analysis
CN105651799A (en) X fluorescence detection method of impurity content in quartz sand
CN109557118A (en) A kind of method of each component content in x-ray fluorescence spectrometry ferro-titanium
JPH075126A (en) Intensity correction method for x-ray fluorescence analysis
CN106290438B (en) A kind of method that X-ray fluorescence spectra fusion method measures Calcium Fluoride Content in fluorite
CN106338534B (en) The method of Calcium Fluoride Content in fluorite is quickly measured using Xray fluorescence spectrometer
CN107179330A (en) The method of impurity in x-ray fluorescence spectrometry iron ore
CN107389716A (en) The method of impurity in x-ray fluorescence spectrometry Copper Ores
JP2513094B2 (en) X-ray fluorescence intensity correction method in X-ray fluorescence analysis method
Hosking et al. Errors in the atomic absorption determination of calcium by the standard addition method
CN105784746A (en) Method for detecting ferrosilicon element by combing graphite crucible sample melting with X-ray fluorescence
JPH05322810A (en) X-ray fluorescence analyzing method using glass bead
JP3108683B2 (en) X-ray fluorescence analyzer
CN107543807A (en) Detect TiO in high titanium powder2Method of content
CN113155879A (en) Method for measuring contents of silicon dioxide and calcium fluoride in fluorite
JP3284195B2 (en) X-ray fluorescence analysis system by glass bead method
JPH0763712A (en) Method and apparatus for bias correction in fluorescent x-ray analysis
CN105158284A (en) Method for determining main components and secondary components in vanadium pentoxide through wavelength dispersion X fluorescence spectrometry
JP2012063224A (en) Fluorescent x-ray analyzer
Kim et al. Quantitative analysis of trace pp'-dde in corn oil by isotope dilution mass spectrometry: uncertainty evaluations