JPH05322810A - X-ray fluorescence analyzing method using glass bead - Google Patents

X-ray fluorescence analyzing method using glass bead

Info

Publication number
JPH05322810A
JPH05322810A JP4148871A JP14887192A JPH05322810A JP H05322810 A JPH05322810 A JP H05322810A JP 4148871 A JP4148871 A JP 4148871A JP 14887192 A JP14887192 A JP 14887192A JP H05322810 A JPH05322810 A JP H05322810A
Authority
JP
Japan
Prior art keywords
sample
glass bead
flux
weight
bead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4148871A
Other languages
Japanese (ja)
Other versions
JP2626857B2 (en
Inventor
Yoshiyuki Kataoka
由行 片岡
Hisamasa Kono
久征 河野
Shizuko Shoji
静子 庄司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rigaku Corp
Original Assignee
Rigaku Industrial Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Industrial Corp filed Critical Rigaku Industrial Corp
Priority to JP4148871A priority Critical patent/JP2626857B2/en
Publication of JPH05322810A publication Critical patent/JPH05322810A/en
Application granted granted Critical
Publication of JP2626857B2 publication Critical patent/JP2626857B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To improve the analyzing accuracy of the title method by analyzing the composition of a sample by taking into account not only the vaporized amount and ignition gain of the sample, but also the vaporized amount of a flux. CONSTITUTION:In the title method, the composition of a sample 1 is analyzed by irradiating a glass bead 4 prepared by heating and melting the sample 1 together with a flux 3 with primary X rays B1 and measuring the intensity of the X-ray fluorescence of each element generated from the bead 4, and then, calculating the concentration rate of each element based on the intensities measured from the X rays B2. At the time of analyzing the sample 1 for composition, analysis errors caused by the vaporized amounts L and DELTAF of the sample 1 and flux 3 are corrected by measuring in advance the weight S of the sample B before preparing the bead 4 and weight B of the bead 4 and utilizing a relation, F1/S={(B/S)-1}+L/S, between the vaporized amount of the sample when the bead 4 is prepared and the weight F1 of the flux after the bead 4 is prepared.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、試料と融剤との混合
物を加熱溶融して調製したガラスビードを用いた蛍光X
線分析方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to fluorescent X using glass beads prepared by heating and melting a mixture of a sample and a flux.
The present invention relates to a line analysis method.

【0002】[0002]

【従来の技術】蛍光X線分析は、試料に一次X線のよう
な放射線を照射し、試料から発生する蛍光X線の強度を
測定して、試料の元素や組成を分析する方法である。こ
の種の蛍光X線分析では、試料が粉状物または粒状物で
ある場合、ガラスビード法を用いる。このガラスビード
法の一例を図2に示す。
2. Description of the Related Art Fluorescent X-ray analysis is a method of irradiating a sample with radiation such as primary X-rays, measuring the intensity of fluorescent X-rays generated from the sample, and analyzing the elements and compositions of the sample. In this type of X-ray fluorescence analysis, the glass bead method is used when the sample is a powder or granular material. An example of this glass bead method is shown in FIG.

【0003】図2(a)のように、試料がたとえば鉄鉱
石である場合、まず、この試料1を100メッシュ以下
の粉状物に粉砕する。ついで、図2(b)のように、極
く微量(0.3mg程度)の試料1を計量器2に載せて
秤量する。この後、図2(a−1)の予め秤量した所定
量の融剤(たとえば、ホウ酸ナトリウム)3を、上記試
料1に加えて、図2(c)のように、試料1と融剤3の
混合物をるつぼ5内で1,000℃〜 1,300℃まで加熱して
溶融する。これにより、試料1と融剤3が均一に混じっ
た図2(d)のガラスビード4を得る。
When the sample is, for example, iron ore, as shown in FIG. 2 (a), the sample 1 is first pulverized into a powdery material having a size of 100 mesh or less. Then, as shown in FIG. 2B, a very small amount (about 0.3 mg) of the sample 1 is placed on the measuring device 2 and weighed. After that, a predetermined amount of a predetermined amount of flux (for example, sodium borate) 3 in FIG. 2 (a-1) is added to the sample 1 described above, and the sample 1 and the flux are added as shown in FIG. 2 (c). The mixture of 3 is heated in the crucible 5 to 1,000 ° C to 1,300 ° C and melted. As a result, the glass beads 4 shown in FIG. 2D in which the sample 1 and the flux 3 are uniformly mixed are obtained.

【0004】このガラスビード4を蛍光X線分析装置に
搬入し、図2(e)のように、図示しないX線源から一
次X線(放射線)B1をガラスビード4に照射し、この
ガラスビード4から発生した各元素固有の蛍光X線B2
をX線検出器6で検出する。検出された蛍光X線B2
は、図示しない計数回路部でX線強度が測定され、これ
らの各元素についての蛍光X線B2の測定強度に基づい
て各元素の濃度比を演算することにより、試料1の組成
が分析される。このガラスビード法は、試料1中の各元
素が均一な分布になることから、鉄鉱石のような酸化物
の粉末についての分析に利用されている。
The glass beads 4 are carried into a fluorescent X-ray analyzer, and as shown in FIG. 2 (e), the glass beads 4 are irradiated with primary X-rays (radiation) B1 from an X-ray source (not shown). X-ray B2 unique to each element
Is detected by the X-ray detector 6. Fluorescent X-ray B2 detected
The X-ray intensity is measured by a counting circuit unit (not shown), and the composition of the sample 1 is analyzed by calculating the concentration ratio of each element based on the measured intensity of the fluorescent X-ray B2 for each of these elements. .. This glass bead method is used for analysis of oxide powder such as iron ore because each element in Sample 1 has a uniform distribution.

【0005】しかし、ガラスビード法は、前述のよう
に、試料1を高い温度で加熱溶融することから、試料1
中の結晶水(H2 O)やCO2 がガラスビード4の調製
時に揮散して、試料1の重量が減少する(以下、この試
料の重量の減少を「LOI」という。)。このLOIを
無視すると、分析精度が低下する。
However, in the glass bead method, since the sample 1 is heated and melted at a high temperature as described above, the sample 1
The water of crystallization (H 2 O) and CO 2 therein volatilize during the preparation of the glass beads 4, and the weight of the sample 1 decreases (hereinafter, the reduction of the weight of this sample is referred to as “LOI”). If this LOI is neglected, the analysis accuracy will decrease.

【0006】また、従来は、一般に、ガラスビード4の
調製前に、試料1に対する融剤3の比F/S(以下、
「希釈率」という。)を一定値にして演算の処理を行っ
ていた。しかし、希釈率F/Sを一定値にすることは、
希釈率F/Sについて極めて高い精度が要求される一方
で、秤量を行う試料1の重量が極めて微量であることか
ら、困難である。
Further, conventionally, generally, before the glass beads 4 are prepared, the ratio F / S of the flux 3 to the sample 1 (hereinafter,
It is called "dilution rate". ) Was set to a constant value and the calculation process was performed. However, to keep the dilution ratio F / S constant,
While extremely high precision is required for the dilution ratio F / S, it is difficult because the weight of the sample 1 to be weighed is extremely small.

【0007】このような問題を解決する方法として、こ
の発明者は、LOIおよび希釈率の補正について、マト
リックス補正(たとえば「鉄鋼の工業けい光X線分析方
法(JISG1256−1973)参照)を用いた分析
方法を発明し、既に学会において発表している。以下、
この公知の分析方法について説明する。
As a method for solving such a problem, the present inventor used matrix correction (for example, "industrial fluorescent X-ray analysis method for iron and steel (JISG 1256-1973)) for correction of LOI and dilution rate. He invented the analytical method and has already presented it at the academic conference.
This known analysis method will be described.

【0008】[0008]

【数1】 [Equation 1]

【0009】[0009]

【数2】 [Equation 2]

【0010】[0010]

【数3】 [Equation 3]

【0011】[0011]

【数4】 [Equation 4]

【0012】[0012]

【数5】 [Equation 5]

【0013】[0013]

【数6】 [Equation 6]

【0014】[0014]

【数7】 [Equation 7]

【0015】[0015]

【数8】 [Equation 8]

【0016】[0016]

【数9】 [Equation 9]

【0017】[0017]

【数10】 [Equation 10]

【0018】[0018]

【発明が解決しようとする課題】ところで、上記公知
(従来)の方法では、前述の下記の(2)式のように、
B=S+F−Lであるとして演算を行っている。 Wj =S・Cj /B=S・Cj /(S+F−L) …(2) Wj :各成分のガラスビード中の濃度比 S:元の粉末試料の重量 Cj :元の粉末試料中の各成分の濃度比 F:元の融剤の重量 B:ビード重量 L:LOIの重量
By the way, in the above-mentioned known (conventional) method, as shown in the following equation (2),
The calculation is performed assuming that B = S + F−L. W j = S · C j / B = S · C j / (S + F−L) (2) W j : Concentration ratio of each component in the glass bead S: Weight of original powder sample C j : Original powder Concentration ratio of each component in the sample F: Weight of original flux B: Weight of bead L: Weight of LOI

【0019】しかし、ガラスビード法は、前述の図2
(c)のように、試料1と融剤3の混合物を高い温度で
加熱溶融するので、試料1中の結晶水だけでなく、融剤
3中の成分も、ガラスビード4の調製時に揮散する。そ
のため、ビード重量Bについて、元の粉末試料1および
融剤3の重量S,Fから、LOIの重量Lの他に融剤3
の揮散量ΔFを減算しなければ、正確なビード重量Bが
得られず、したがって、上記(2)式に基づいて、濃度
比Cj を求めても、正確な濃度比Cj が得られない。
However, the glass bead method is similar to that shown in FIG.
As in (c), since the mixture of the sample 1 and the flux 3 is heated and melted at a high temperature, not only the water of crystallization in the sample 1 but also the components in the flux 3 volatilize during the preparation of the glass beads 4. .. Therefore, regarding the bead weight B, from the weights S and F of the original powder sample 1 and the flux 3, in addition to the weight L of the LOI, the flux 3
An accurate bead weight B cannot be obtained unless the volatilization amount ΔF of the above is subtracted. Therefore, even if the concentration ratio C j is calculated based on the above equation (2), the accurate concentration ratio C j cannot be obtained. ..

【0020】以上は、LOIの場合について述べたが、
試料1と融剤3を加熱溶融する際に、ガラスビード4中
に空気中の元素が化合することでビード重量Bが増加す
る強熱増量(GOI)の場合についても、同様な問題が
生じる。
The case of LOI has been described above.
The same problem occurs in the case of ignition increase (GOI) in which the bead weight B increases due to the combination of elements in the air in the glass beads 4 when the sample 1 and the flux 3 are heated and melted.

【0021】この発明は、上記従来の問題に鑑みてなさ
れたもので、ガラスビード法を用いた蛍光X線分析方法
において、試料の揮散量や強熱増量の他に融剤の揮散量
をも考慮して、試料の組成を分析することで、分析精度
を向上させることを目的とする。
The present invention has been made in view of the above-mentioned conventional problems. In the fluorescent X-ray analysis method using the glass bead method, not only the volatilization amount of the sample and the ignition amount but also the volatilization amount of the flux is measured. By considering the composition of the sample in consideration, it is intended to improve the analysis accuracy.

【0022】[0022]

【課題を解決するための手段】上記目的を達成するため
に、LOIが生じる場合、この発明は、ガラスビード調
製後の融剤の重量をF1としたとき、 F1/S={(B/S)−1}+L/S であることを利用することで、試料および融剤の揮散量
L,ΔFによる分析誤差を補正して、試料の組成を分析
する。一方、GOIが生じる場合には、ガラスビード調
製時のGOIの重量をGとしたとき、上式に代えて、下
記の式を用いる。 F1/S={(B/S)−1}−G/S
In order to achieve the above object, when LOI occurs, the present invention is such that, when the weight of the flux after the glass bead preparation is F1, F1 / S = {(B / S ) −1} + L / S is used to correct the analysis error due to the volatilization amounts L and ΔF of the sample and the flux and analyze the composition of the sample. On the other hand, when GOI occurs, the following formula is used instead of the above formula, where G is the weight of the GOI at the time of glass bead preparation. F1 / S = {(B / S) -1} -G / S

【0023】[0023]

【作用】以下、この発明の原理について説明する。ま
ず、前述のように、ビード重量Bは、 B=S+F−(L+ΔF)=(S−L)+F1 で表される。したがって、希釈率RF =F1/Sは、下
記の(10)式で表される。 F1/S={(B/S)−1}+L/S ={(B/S)−1}+C0 …(10) 但し、C0 :LOIの濃度比
The principle of the present invention will be described below. First, as described above, the bead weight B is represented by B = S + F− (L + ΔF) = (S−L) + F1. Therefore, the dilution ratio R F = F1 / S is expressed by the following equation (10). F1 / S = {(B / S) -1} + L / S = {(B / S) -1} + C 0 (10) where C 0 : LOI concentration ratio

【0024】[0024]

【数11】 [Equation 11]

【0025】[0025]

【数12】 [Equation 12]

【0026】[0026]

【数13】 [Equation 13]

【0027】[0027]

【数14】 [Equation 14]

【0028】[0028]

【実施例】以下、この発明の一実施例を図面にしたがっ
て説明する。まず、図1(a)のように、たとえば鉄鉱
石のような試料1を100メッシュ以下の粉状物に粉砕
する。ついで、図1(b)のように、微量の試料1を計
量器2に載せてガラスビード調製前の試料1の重量Sを
秤量し、一方、図1(a−1)のように、るつぼ5のみ
の重量を秤量する。この秤量後、おおよその量を計った
融剤3を試料1に加えて、図1(c)のように、試料1
と融剤3との混合物をるつぼ5内で 1,000℃〜 1,300℃
まで加熱して溶融する。こうして得たガラスビード4と
るつぼ5の合計重量を、図1(d)のように、計量器2
で計り、図1(a−1)のるつぼ重量を差し引いて、ビ
ード重量Bを得る。この後、図1(e)のように、前述
の従来例で述べたと同様に各元素iについての蛍光X線
B2の強度Ii を測定し、この測定強度Ii に基づい
て、所定の演算式を用いた検量線法により試料1の組成
の分析を行う。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. First, as shown in FIG. 1A, a sample 1 such as an iron ore is pulverized into a powdery substance having 100 mesh or less. Then, as shown in FIG. 1 (b), a small amount of sample 1 is placed on a measuring device 2 and the weight S of sample 1 before glass bead preparation is weighed, while as shown in FIG. Weigh only 5 After this weighing, an approximately measured amount of the flux 3 was added to the sample 1, and as shown in FIG.
1,000 ℃ ~ 1,300 ℃ in the crucible 5
Heat up to melt. The total weight of the glass beads 4 and the crucible 5 thus obtained is measured by the weighing device 2 as shown in FIG.
Then, the weight of the crucible of FIG. 1 (a-1) is subtracted to obtain the bead weight B. Thereafter, as shown in FIG. 1E, the intensity I i of the fluorescent X-ray B2 for each element i is measured in the same manner as described in the above-mentioned conventional example, and a predetermined calculation is performed based on the measured intensity I i. The composition of Sample 1 is analyzed by the calibration curve method using the formula.

【0029】かかる所定の演算式を求めるには、ガラス
ビード調製後の融剤の重量をF1としたとき、前述の
〔作用〕の項で述べたように、 F1/S={(B/S)−1}+L/S であることを利用することで、LOIの重量Lおよび融
剤3の揮散量ΔFによる分析誤差を補正する。ここで、
前述の〔作用〕の項では、下記の(10)式のF1/S
の値を(42)式のF/Sに代入して、前述の補正式
(12),(13−1)および(13−2)を求めた
が、以下、上記補正式を順を追って求め、この発明の原
理を分かり易く説明する。
In order to obtain such a predetermined arithmetic expression, assuming that the weight of the flux after the glass beads are prepared is F1, as described in the above [Operation], F1 / S = {(B / S ) −1} + L / S is used to correct the analysis error due to the weight L of the LOI and the volatilization amount ΔF of the flux 3. here,
In the above [Operation] section, F1 / S of the following equation (10) is used.
The value of is substituted into the F / S of the equation (42) to obtain the above-mentioned correction equations (12), (13-1) and (13-2). The principle of the present invention will be described in an easy-to-understand manner.

【0030】[0030]

【数15】 [Equation 15]

【0031】[0031]

【数16】 [Equation 16]

【0032】[0032]

【数17】 [Equation 17]

【0033】[0033]

【数18】 [Equation 18]

【0034】[0034]

【数19】 [Formula 19]

【0035】[0035]

【数20】 [Equation 20]

【0036】[0036]

【数21】 [Equation 21]

【0037】[0037]

【数22】 [Equation 22]

【0038】[0038]

【数23】 [Equation 23]

【0039】上記(12)式は、濃度が未知のi元素の
数だけ得られ、一方、見かけの希釈率偏差ΔR1F は、
試料1とガラスビード4を秤量することにより前述の
(61)式から分かるので、周知のマトリックス補正を
(12)式の連立方程式に基づいて行うことにより、L
OIおよび見かけの希釈率について補正できる。したが
って、各元素の元の粉末試料1中の濃度比Ci を求める
ことができる。
The above equation (12) is obtained by the number of i elements whose concentration is unknown, while the apparent dilution ratio deviation ΔR1 F is
Since it can be seen from the above equation (61) by weighing the sample 1 and the glass beads 4, by performing well-known matrix correction based on the simultaneous equations of equation (12), L
Can be corrected for OI and apparent dilution. Therefore, the concentration ratio C i of each element in the original powder sample 1 can be obtained.

【0040】ここで、上記のようにして求めた補正式
(12),(13−1),(13−2)式は、(2)式
の融剤3の重量Fに代えて、(21)式および(31)
式のように、ガラスビード4中の融剤の重量F1として
F−ΔF(ΔF:融剤の揮散量)を用いている。また、
ビード重量Bとして、B=S+F−(ΔF+L)を用い
ているから、LOIの他に融剤3の揮散量ΔFによる分
析誤差を補正しているので、各成分のガラスビード中の
濃度比Wj がより正確に求められる。その結果、元の試
料1中の各成分の濃度比Cj も正確に求めることができ
る。
Here, the correction equations (12), (13-1), (13-2) obtained as described above are replaced by (21) instead of the weight F of the flux 3 of the equation (2). ) And (31)
As in the formula, F-ΔF (ΔF: volatilization amount of the flux) is used as the weight F1 of the flux in the glass beads 4. Also,
Since B = S + F- (ΔF + L) is used as the bead weight B, the analysis error due to the volatilization amount ΔF of the flux 3 is corrected in addition to the LOI, so that the concentration ratio W j of each component in the glass bead is corrected. Is required more accurately. As a result, the concentration ratio C j of each component in the original sample 1 can also be accurately obtained.

【0041】また、この発明では、図1のように、融剤
3の重量Fを正確に秤量する必要がなく、おおよその量
を加えればよい。したがって、ガラスビード4を作成す
る工程も簡単になる。
Further, in the present invention, it is not necessary to accurately weigh the weight F of the flux 3 as shown in FIG. 1, but an approximate amount may be added. Therefore, the process of making the glass beads 4 is also simplified.

【0042】ところで、上記実施例では、二次励起を無
視してマトリックス補正式の補正係数αj,αF を求め
た。しかし、この発明は、電子計算機による周知のファ
ンダメンタルパラメータ法を用いて、一次X線B1の分
布と二次励起をも考慮して、補正係数αj,αF を求めて
もよい。
By the way, in the above-mentioned embodiment, the correction coefficients α j and α F of the matrix correction formula are obtained by ignoring the secondary excitation. However, in the present invention, the well-known fundamental parameter method using an electronic computer may be used to obtain the correction coefficients α j and α F in consideration of the distribution of the primary X-ray B1 and the secondary excitation.

【0043】また、上記実施例では、LOI(強熱減
量)の場合について述べたが、強熱増量(GOI)の場
合についても、この発明を同様に適用することができ、
この発明の範囲に含まれる。GOIの場合については、
ガラスビード調製時の増加重量をGとしたとき、F1/
S={(B/S)−1}−G/Sであることを利用する
ことで、試料1の増加重量Gおよび融剤の揮散量ΔFに
よる分析誤差を補正して、試料1の組成を分析する。
In the above embodiment, the case of LOI (loss on ignition) was described, but the present invention can be similarly applied to the case of increase in ignition (GOI).
It is included in the scope of the present invention. For GOI,
When the weight increase at the time of glass bead preparation is G, F1 /
By utilizing the fact that S = {(B / S) -1} -G / S, the compositional error of the sample 1 is corrected by correcting the analytical error due to the increased weight G of the sample 1 and the volatilization amount ΔF of the flux. analyse.

【0044】[0044]

【発明の効果】以上説明したように、この発明によれ
ば、LOIまたはGOIの重量の他に融剤の揮散量によ
る分析誤差を補正するので、ガラスビード法を用いた粉
末試料の分析精度が向上する。
As described above, according to the present invention, since the analysis error due to the volatilization amount of the flux in addition to the LOI or GOI weight is corrected, the analysis accuracy of the powder sample using the glass bead method is improved. improves.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例にかかる分析方法を示す工
程図である。
FIG. 1 is a process diagram showing an analysis method according to an embodiment of the present invention.

【図2】公知の分析方法を示す工程図である。FIG. 2 is a process diagram showing a known analysis method.

【符号の説明】[Explanation of symbols]

1…試料、3…融剤、4…ガラスビード、B1…一次X
線(放射線)、B2…蛍光X線。
1 ... sample, 3 ... flux, 4 ... glass bead, B1 ... primary X
Ray (radiation), B2 ... Fluorescent X-ray.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 試料と融剤との混合物を加熱溶融して調
製したガラスビードに放射線を照射し、このガラスビー
ドから発生した各元素の蛍光X線の強度を測定し、これ
らの蛍光X線の測定強度に基づいて各元素の濃度比を演
算することにより、上記試料の組成を分析するガラスビ
ード法を用いた蛍光X線分析方法において、 ガラスビード調製前の試料の重量Sと、ガラスビードの
重量Bとを予め秤量し、ガラスビード調製時の上記試料
の揮散量をLとし、ガラスビード調製後の上記融剤の重
量をF1としたとき、F1/S={(B/S)−1}+
L/Sであることを利用することで、上記試料および融
剤の揮散量L、ΔFによる分析誤差を補正して上記試料
の組成を分析することを特徴とするガラスビード法を用
いた蛍光X線分析方法。
1. A glass bead prepared by heating and melting a mixture of a sample and a flux is irradiated with radiation, and the intensity of the fluorescent X-ray of each element generated from this glass bead is measured. In the fluorescent X-ray analysis method using the glass bead method for analyzing the composition of the sample by calculating the concentration ratio of each element based on the measured intensity of the sample, the weight S of the sample before the glass bead preparation and the glass bead are prepared. When the amount of volatilization of the sample at the time of glass bead preparation is L and the weight of the flux after the glass bead preparation is F1, F1 / S = {(B / S)- 1} +
L / S is utilized to correct the analysis error due to the volatilization amounts L and ΔF of the sample and the flux to analyze the composition of the sample, and the fluorescent X using the glass bead method is characterized. Line analysis method.
【請求項2】 試料と融剤との混合物を加熱溶融して調
製したガラスビードに放射線を照射し、このガラスビー
ドから発生した各元素の蛍光X線の強度を測定し、これ
らの蛍光X線の測定強度に基づいて各元素の濃度比を演
算することにより、上記試料の組成を分析するガラスビ
ード法を用いた蛍光X線分析方法において、 ガラスビード調製前の試料の重量Sと、ガラスビードの
重量Bとを予め秤量し、ガラスビード調製時の上記試料
の増加重量をGとし、ガラスビード調製後の上記融剤の
重量をF1としたとき、F1/S={(B/S)−1}
−G/Sであることを利用することで、上記試料の増加
重量Gおよび融剤の揮散量ΔFによる分析誤差を補正し
て上記試料の組成を分析することを特徴とするガラスビ
ード法を用いた蛍光X線分析方法。
2. A glass bead prepared by heating and melting a mixture of a sample and a flux is irradiated with radiation, and the intensity of the fluorescent X-ray of each element generated from this glass bead is measured, and these fluorescent X-rays are measured. In the fluorescent X-ray analysis method using the glass bead method for analyzing the composition of the sample by calculating the concentration ratio of each element based on the measured intensity of the sample, the weight S of the sample before the glass bead preparation and the glass bead are prepared. When the weight B of the sample is weighed in advance and the weight increase of the sample at the time of glass bead preparation is G, and the weight of the flux after glass bead preparation is F1, F1 / S = {(B / S)- 1}
-By using the fact that G / S is used, the glass bead method is used, in which the composition of the sample is analyzed by correcting the analytical error due to the increased weight G of the sample and the volatilization amount ΔF of the flux. X-ray fluorescence analysis method.
JP4148871A 1992-05-15 1992-05-15 X-ray fluorescence analysis using glass bead method Expired - Fee Related JP2626857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4148871A JP2626857B2 (en) 1992-05-15 1992-05-15 X-ray fluorescence analysis using glass bead method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4148871A JP2626857B2 (en) 1992-05-15 1992-05-15 X-ray fluorescence analysis using glass bead method

Publications (2)

Publication Number Publication Date
JPH05322810A true JPH05322810A (en) 1993-12-07
JP2626857B2 JP2626857B2 (en) 1997-07-02

Family

ID=15462590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4148871A Expired - Fee Related JP2626857B2 (en) 1992-05-15 1992-05-15 X-ray fluorescence analysis using glass bead method

Country Status (1)

Country Link
JP (1) JP2626857B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0649213A1 (en) 1993-10-15 1995-04-19 Nippondenso Co., Ltd. Electric rotating machine
WO2003035565A3 (en) * 2001-10-24 2003-11-20 3M Innovative Properties Co Glass beads and uses thereof
JP2011089953A (en) * 2009-10-26 2011-05-06 Rigaku Corp Fluorescent x-ray analyzer
JP2011089952A (en) * 2009-10-26 2011-05-06 Rigaku Corp Fluorescent x-ray analyzer
CN103674982A (en) * 2013-12-10 2014-03-26 上海市建筑科学研究院(集团)有限公司 Method for determining heavy metal content in building materials by applying X-fluorescence melting method
US11782000B2 (en) 2020-02-12 2023-10-10 Rigaku Corporation Quantitative analysis method, quantitative analysis program, and X-ray fluorescence spectrometer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5920841A (en) * 1982-07-28 1984-02-02 Sumitomo Metal Ind Ltd X-ray fluorescence analysis method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5920841A (en) * 1982-07-28 1984-02-02 Sumitomo Metal Ind Ltd X-ray fluorescence analysis method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0649213A1 (en) 1993-10-15 1995-04-19 Nippondenso Co., Ltd. Electric rotating machine
WO2003035565A3 (en) * 2001-10-24 2003-11-20 3M Innovative Properties Co Glass beads and uses thereof
US6800574B2 (en) 2001-10-24 2004-10-05 3M Innovative Properties Company Glass beads and uses thereof
US6914024B2 (en) 2001-10-24 2005-07-05 3M Innovative Properties Company Glass beads and uses thereof
US7312168B2 (en) 2001-10-24 2007-12-25 3M Innovative Properties Company Glass beads and uses thereof
JP2011089953A (en) * 2009-10-26 2011-05-06 Rigaku Corp Fluorescent x-ray analyzer
JP2011089952A (en) * 2009-10-26 2011-05-06 Rigaku Corp Fluorescent x-ray analyzer
CN103674982A (en) * 2013-12-10 2014-03-26 上海市建筑科学研究院(集团)有限公司 Method for determining heavy metal content in building materials by applying X-fluorescence melting method
US11782000B2 (en) 2020-02-12 2023-10-10 Rigaku Corporation Quantitative analysis method, quantitative analysis program, and X-ray fluorescence spectrometer

Also Published As

Publication number Publication date
JP2626857B2 (en) 1997-07-02

Similar Documents

Publication Publication Date Title
Harvey et al. An accurate fusion method for the analysis of rocks and chemically related materials by X‐ray fluorescence spectrometry
Georgakopoulou et al. Development and calibration of a WDXRF routine applied to provenance studies on archaeological ceramics
Karathanasis et al. Elemental analysis by X‐ray fluorescence spectroscopy
EP3239702B1 (en) X-ray fluorescence spectrometer
JP3527955B2 (en) X-ray fluorescence analyzer
JP2626857B2 (en) X-ray fluorescence analysis using glass bead method
Han et al. Comparison of the quantitative results corrected by fundamental parameter method and difference calibration specimens in X-ray fluorescence spectrometry
JP3284195B2 (en) X-ray fluorescence analysis system by glass bead method
Nakayama et al. Weight-based synthesized standards preparation for correction-free calibration in X-ray fluorescence determination of tungsten in high-speed steel
Mihajlović et al. Determination of thallium in sulphide geological samples by x‐ray fluorescence spectrometry
Rackwitz et al. Calculation of X‐ray tube spectra by means of photon generation yields and a modified Kramers background for side‐window X‐ray tubes
Radtke et al. Quantification of energy dispersive SRXRF for the certification of reference materials at BAMline
JP5481752B2 (en) X-ray fluorescence analyzer
Badlaa et al. Optimization of X-ray fluorescence calibration through the introduction of synthetic standards for the determination of mineral sands oxides
JP2513094B2 (en) X-ray fluorescence intensity correction method in X-ray fluorescence analysis method
JP6779531B2 (en) X-ray fluorescence analyzer
JP5285572B2 (en) X-ray fluorescence analyzer
Bamford et al. Extending the quantitative analytical capabilities of the EDXRF technique for plant‐based samples
Samanta et al. Optimization of external (in air) particle induced gamma-ray emission (PIGE) methodology for rapid, non-destructive, and simultaneous quantification of fluorine, sodium, and phosphorus in nuclear waste immobilization matrices
Vanden Heuvel Elemental analysis by x‐ray emission spectrography
Caldwell A practical method for the accurate analysis of high alloy steels by X‐ray emission
JP4287073B2 (en) Apparatus and program for calculating dilution rate of glass beads, and X-ray analyzer having the calculation apparatus
Moreira et al. Instrumental neutron activation analysis applied to the determination of the chemical composition of metallic materials with study of interferences
Richter et al. Calibration, linearity, precision, and accuracy of a PIXE system
JP2645227B2 (en) X-ray fluorescence analysis method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080418

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100418

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100418

Year of fee payment: 13

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100418

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100418

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees