JPH0738419A - Complementary optical wiring circuit - Google Patents

Complementary optical wiring circuit

Info

Publication number
JPH0738419A
JPH0738419A JP17573293A JP17573293A JPH0738419A JP H0738419 A JPH0738419 A JP H0738419A JP 17573293 A JP17573293 A JP 17573293A JP 17573293 A JP17573293 A JP 17573293A JP H0738419 A JPH0738419 A JP H0738419A
Authority
JP
Japan
Prior art keywords
light receiving
pulse
output
time
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17573293A
Other languages
Japanese (ja)
Other versions
JP2721475B2 (en
Inventor
Yoshihiko Mizushima
宜彦 水島
Kazutoshi Nakajima
和利 中嶋
Toru Hirohata
徹 廣畑
Takashi Iida
孝 飯田
Sadahisa Warashina
禎久 藁科
Kenichi Sugimoto
賢一 杉本
Tomoko Suzuki
智子 鈴木
Hirobumi Suga
博文 菅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP17573293A priority Critical patent/JP2721475B2/en
Publication of JPH0738419A publication Critical patent/JPH0738419A/en
Application granted granted Critical
Publication of JP2721475B2 publication Critical patent/JP2721475B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)
  • Electronic Switches (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To minimize a code error rate by employing two semiconductor light receiving elements of symmetrical junction structure each formed by arranging a couple of Schottky electrodes opposite to each other for a light receiving circuit so as to make an output voltage waveform nearly equal to an original output waveform. CONSTITUTION:Two positive and negative consecutive current pulses with a time difference tw, from a sender side section circuit 5 are inputted to light emitting diodes 21, 22 in anti-parallel connection. The positive current pulse is converted into an optical signal by the light emitting diode 21 and the negative current pulse is converted into an optical signal with a delay of a time tw by the light emitting diode 22. The optical signals are inputted to semiconductor light receiving elements 11, 12 through separate optical transmission sections 31, 32 at a delay of a time tw. Since the positive bias voltage 41 is applied to the element 11 and a negative bias voltage 42 is applied to the element 12 respectively, a positive current pulse and a negative current pulse with a delay of the time tw are provided as an output from the elements 11, 12 respectively. They are two consecutive current pulses having a difference of the time tw at the connection terminal and the original voltage pulse having the pulse amplitude equivalent to the time difference tw is obtained at an output terminal 8 through an integration circuit 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高速動作可能で、符号
誤り率の低い、相補型光配線回路に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a complementary optical wiring circuit which can operate at high speed and has a low code error rate.

【0002】[0002]

【従来の技術】相補型光配線は、電気回路における相補
型MOS論理回路の信号伝送に相当するもので、相補型
MOS論理回路の場合と同様に、信号伝送に伴う消費電
力の大幅な減少を目的とするものである(例えば、古山
英人、中村 優:応用物理第62巻 1993、4
0)。図3に、この従来例を示す。まず、送信側の素子
の電圧信号を、図示の入力端子7から微分回路5に入力
して電流微分波形を得る。これを、正負両極性に対して
相補的に並列接続された発光ダイオードもしくは半導体
レーザ21、22に入力することによって、最初の電圧
信号のパルス幅分の時間間隔をもった2個の光パルス信
号が得られる。これを、光伝送路31、32を経由し
て、やはり相補的に接続され、必要に応じて電源41、
42でバイアスされた2個の半導体受光素子101、1
02で受光して、連続した2個の正負の電気パルス信号
に変換し、さらに積分回路6で積分することによって元
の電圧信号波形を得ることができる。この際、元の電圧
信号波形(微分波形)、すなわち信号の変化点における
パルス幅の短い信号のみが光信号として伝送されるの
で、信号伝送に伴う消費電力を大幅に減少することが可
能になる。
2. Description of the Related Art Complementary type optical wiring corresponds to signal transmission of a complementary MOS logic circuit in an electric circuit, and as in the case of a complementary MOS logic circuit, the power consumption accompanying the signal transmission is greatly reduced. It is intended (for example, Hideto Furuyama, Yu Nakamura: Applied Physics Vol. 62, 1993, 4).
0). FIG. 3 shows this conventional example. First, the voltage signal of the element on the transmission side is input to the differentiating circuit 5 from the illustrated input terminal 7 to obtain a current differential waveform. By inputting this to the light emitting diodes or the semiconductor lasers 21 and 22 which are connected in parallel complementary to both positive and negative polarities, two optical pulse signals having a time interval corresponding to the pulse width of the first voltage signal are input. Is obtained. These are also connected complementarily via the optical transmission lines 31 and 32, and if necessary, a power source 41,
Two semiconductor light receiving elements 101, 1 biased by 42
The light is received by 02, converted into two continuous positive and negative electric pulse signals, and further integrated by the integrating circuit 6, whereby the original voltage signal waveform can be obtained. At this time, only the original voltage signal waveform (differential waveform), that is, only the signal having a short pulse width at the signal change point is transmitted as the optical signal, so that it is possible to significantly reduce the power consumption accompanying the signal transmission. .

【0003】なお、従来技術では、上記の回路における
半導体受光素子101、102として、通常のpn接合
電極等の非対称構造のフォトダイオードが用いられてい
た。
In the prior art, a photodiode having an asymmetric structure such as a normal pn junction electrode is used as the semiconductor light receiving elements 101 and 102 in the above circuit.

【0004】[0004]

【発明が解決しようとする課題】しかし、従来技術に係
る相補型光配線では、受信側の受光素子101、102
として通常のフォトダイオードを用いているが、その非
対称なPN接合構造のために、両受光素子101、10
2から得られる正負の電流信号波形が、完全に対称な形
とはならなかった。また、通常のフォトダイオードの場
合、受光面積を極端に小さくしない限り応答速度は速く
ならず、特にパルスの立下り部分が裾を引きやすいた
め、送信側の光パルスの時間間隔が短い場合には、得ら
れた2個の電流パルスが重なってしまうことがあった。
これらの理由により、論理振幅におけるノイズマージン
が低減してしまい、符号誤り率が大きくなってしまう問
題があった。
However, in the complementary optical wiring according to the prior art, the light receiving elements 101 and 102 on the receiving side are provided.
Although a normal photodiode is used as the light receiving element 101, because of its asymmetrical PN junction structure,
The positive and negative current signal waveforms obtained from 2 did not have a perfectly symmetrical shape. Also, in the case of a normal photodiode, the response speed does not increase unless the light-receiving area is made extremely small, and the trailing edge of the pulse is easy to draw a tail. , The obtained two current pulses sometimes overlap.
For these reasons, there is a problem that the noise margin in the logical amplitude is reduced and the code error rate is increased.

【0005】そこで、本発明はこれらの問題点を解決す
るために完成されたもので、高速動作可能で符号誤り率
の小さい相補型光配線回路を提供することを目的とす
る。
The present invention has been completed to solve these problems, and an object of the present invention is to provide a complementary optical wiring circuit capable of operating at high speed and having a small code error rate.

【0006】[0006]

【課題を解決するための手段】上記問題点を解決するた
めに、本発明に係る相補型光配線回路は、極性が相補的
に並列接続された2個の発光ダイオードもしくは半導体
レーザに、2個ごとに対をなす電流パルスを入力して2
個の光パルス信号対に変換し、これを、互いに逆極性の
バイアス電圧が印加された、一対のショットキ電極が半
導体基板表面上に向かい合って形成された構造の、2個
の半導体受光素子のそれぞれに入力し、2個の半導体受
光素子の接続点において元のパルス対毎に1個の対応し
た電気パルス信号出力を得るようになされることを特徴
とする。
In order to solve the above problems, a complementary optical wiring circuit according to the present invention has two light emitting diodes or two semiconductor lasers connected in parallel with complementary polarities. Input a pair of current pulses for each 2
Each of the two semiconductor light receiving elements having a structure in which a pair of Schottky electrodes to which bias voltages of opposite polarities are applied are formed so as to face each other on the surface of the semiconductor substrate. Is input to each of the two semiconductor light-receiving elements to obtain one corresponding electric pulse signal output for each original pulse pair.

【0007】また、上記の相補型光配線回路において、
2個の半導体受光素子に印加されるバイアス電圧の極性
を変えることによって、出力される連続した2個の電気
パルス信号の極性を変化させるようになされたことを特
徴とする。
In the above complementary optical wiring circuit,
The present invention is characterized in that the polarities of two consecutive electric pulse signals that are output are changed by changing the polarities of the bias voltages applied to the two semiconductor light receiving elements.

【0008】[0008]

【作用】上記の構成によれば、2個の発光ダイオードも
しくは半導体レーザからの2個の光パルスを、一対のシ
ョットキ電極が半導体基板表面上に向かい合って形成さ
れた構造の、2個の半導体受光素子のそれぞれに入力
し、2個の半導体受光素子の接続点において元のパルス
対毎に1個の対応した電気パルス信号出力を得ているの
で、ショットキ電極が向かい合って形成された構造の両
方の半導体受光素子から、お互いにほぼ完全に対称な、
もしくは等しい電流信号波形が出力される。
According to the above structure, two semiconductor lasers having a structure in which two light pulses from two light emitting diodes or semiconductor lasers are formed with a pair of Schottky electrodes facing each other on the surface of the semiconductor substrate. Since the electric pulse signal is input to each of the elements and one corresponding electric pulse signal output is obtained for each original pulse pair at the connection point of the two semiconductor light receiving elements, the Schottky electrodes of both of the structures formed facing each other are obtained. From the semiconductor photo detector, they are almost completely symmetrical to each other,
Alternatively, the same current signal waveform is output.

【0009】[0009]

【実施例】以下、添付図面を参照して本発明に係る実施
例について説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0010】本発明の実施例に係る相補型光配線回路で
は、受光回路が2個のMSM−PD、すなわち一対のシ
ョットキ電極が向かい合って形成された対称接合構造の
半導体受光素子を2個用いて構成されるために、両方の
MSM−PDから、お互いにほぼ完全に対称な、もしく
は等しい電流信号波形が出力される。これによって、最
終的にこれらの出力電流を積分して得られる電圧波形
が、元の送信側の回路の出力波形とほぼ等しくすること
ができるため、符号誤り率を最小限に抑えた光信号伝送
回路を構成することができる。
In the complementary optical wiring circuit according to the embodiment of the present invention, the light receiving circuit uses two MSM-PDs, that is, two semiconductor light receiving elements having a symmetrical junction structure in which a pair of Schottky electrodes face each other. Due to the configuration, both MSM-PDs output current signal waveforms that are almost completely symmetrical or equal to each other. As a result, the voltage waveform finally obtained by integrating these output currents can be made almost the same as the output waveform of the original circuit on the transmission side, so optical signal transmission with a minimum code error rate is achieved. A circuit can be constructed.

【0011】また、MSM−PDは半導体基板表面上に
平面的に構成されており、電極間容量が少ないため、等
しい受光面積をもつ通常の縦形構造のフォトダイオード
に比べて応答速度が非常に速い。特に、MSM−PDは
立上り、立下り時間が共に短いので、送信側の光パルス
の時間間隔がかなり短い場合でも、得られた2個の電流
パルス波形が重ならないように受信することができる。
従って、本発明による受光回路においては超高速度の信
号処理が可能である。
Further, the MSM-PD is planarly formed on the surface of the semiconductor substrate and has a small inter-electrode capacitance, so that the response speed is much higher than that of a normal vertical photodiode having an equal light receiving area. . In particular, since the MSM-PD has both a rising time and a falling time, the two current pulse waveforms obtained can be received without overlapping even when the time interval of the optical pulse on the transmitting side is considerably short.
Therefore, in the light receiving circuit according to the present invention, ultra high speed signal processing is possible.

【0012】図1は、本発明の第1実施例に係る相補型
光配線回路を示したものである。図の右側の回路が受光
回路であり、ここにおける受光素子としてMSM−PD
11、12が用いられる。MSM−PD11、12は、
半導体基板表面上にショットキ電極が向かい合って形成
された対称接合構造のために、正負両極性のバイアス電
圧を印加することができ、そのどちらの極性においても
常にどちらか一方の電極が逆バイアス電圧状態になるの
で、暗電流は常に少なく保つことができる。また、どち
らの極性のバイアス電圧を印加しても、両電極間の電位
差が等しい限り、素子内部の電位分布ないしエネルギー
状態は等しいので、等しい光入力に対して得られる出力
電流の大きさは常に等しい。よって、入力する光パルス
波形が等しければ、図1の受光回路において、双方のバ
イアス電圧41、42を互いに逆極性で大きさが等しく
なるように設定することにより、波形がほぼ完全に等し
く極性だけが反転した電流パルス列を得ることができ
る。よって、これを積分して得られる出力信号は、元の
送信側の電圧波形にほぼ等しい波形に復元することがで
きる。
FIG. 1 shows a complementary optical wiring circuit according to the first embodiment of the present invention. The circuit on the right side of the figure is a light receiving circuit, and the light receiving element here is MSM-PD.
11 and 12 are used. MSM-PD11,12,
Due to the symmetrical junction structure in which Schottky electrodes are formed on the surface of the semiconductor substrate so that they face each other, it is possible to apply a bias voltage of both positive and negative polarities. Therefore, the dark current can be kept small at all times. In addition, no matter which bias voltage is applied, as long as the potential difference between both electrodes is the same, the potential distribution or energy state inside the element is the same, so the magnitude of the output current obtained for the same optical input is always the same. equal. Therefore, if the input optical pulse waveforms are equal, by setting both bias voltages 41 and 42 in the light receiving circuit of FIG. It is possible to obtain a current pulse train in which is reversed. Therefore, the output signal obtained by integrating this can be restored to a waveform substantially equal to the original voltage waveform on the transmission side.

【0013】次に、本回路の動作について説明する。図
1には、上段の回路図の左側(送信側)、中間(光伝送
路)および右側(受光側)に対応して、それぞれの電圧
および電流波形が下段に示してある。送信側の入力端子
7に入力されたパルス時間幅tw の電圧信号が微分回路
5に入力されることにより、tw の時間差をもった、連
続した正負2個の電流パルスが得られる。これを互いに
極性が逆向きに並列接続された発光ダイオードもしくは
半導体レーザ21、22に入力することにより、正の電
流パルスは発光ダイオードもしくは半導体レーザ21で
光信号に変換され、tw 遅れて負の電流パルスが発光ダ
イオードもしくは半導体レーザ22で光信号に変換され
る。これらは別々の光伝送路31、32を通って、それ
ぞれ対応するMSM−PD11、12にtw の時間差を
もって入力される。MSM−PD11には正のバイアス
電圧41が印加されているので正の電流パルスが出力さ
れ、一方、負のバイアス電圧42が印加されたMSM−
PD12からは負の電流パルスがtw 遅れて出力され
る。これらは接続端子でtw の時間差をもった2個の連
続した電流パルスとなり、積分回路6に入力されること
によって、tw のパルス幅をもった元の送信側の出力信
号に等しい電圧パルスが、出力端子8において得られ
る。
Next, the operation of this circuit will be described. In FIG. 1, voltage and current waveforms are shown in the lower part of the circuit diagram in the upper part, corresponding to the left side (transmitting side), the middle part (optical transmission line) and the right side (light receiving side). By inputting the voltage signal having the pulse time width t w input to the input terminal 7 on the transmission side to the differentiating circuit 5, two continuous positive and negative current pulses having a time difference of t w can be obtained. By entering it into the light-emitting diodes or semiconductor lasers 21 and 22 polarities are connected in parallel in opposite directions, positive current pulses are converted into optical signals by the light emitting diode or a semiconductor laser 21, t w delayed negative The current pulse is converted into an optical signal by the light emitting diode or the semiconductor laser 22. These are input to the corresponding MSM-PDs 11 and 12 respectively with a time difference of t w through separate optical transmission lines 31 and 32. Since the positive bias voltage 41 is applied to the MSM-PD 11, a positive current pulse is output, while the negative bias voltage 42 is applied to the MSM-PD 11.
A negative current pulse is output from the PD 12 with a delay of t w . These are two continuous current pulses having a time difference of t w at the connection terminal, and by being input to the integrating circuit 6, a voltage pulse equal to the original output signal of the transmitting side having a pulse width of t w. At the output terminal 8.

【0014】次に、図2に基づいて本発明の第2実施例
に係る相補型光配線回路について説明する。第2実施例
は、第1実施例に係る相補型光配線回路と基本的には同
一の構成であるが、後段に接続される電子回路に応じ
て、両方のMSM−PD11、12に印加されるバイア
ス電圧41、42の極性を等しくして、出力される2個
の連続した電流パルスの極性を等しくしたものである。
MSM−PD11、12の接続点にはT−フリップフロ
ップ回路(T−FF)6の入力端子Tが接続され、出力
端子Qから端子8に出力信号が出力される。
Next, a complementary optical wiring circuit according to the second embodiment of the present invention will be described with reference to FIG. The second embodiment has basically the same configuration as the complementary optical wiring circuit according to the first embodiment, but is applied to both MSM-PDs 11 and 12 depending on the electronic circuit connected in the subsequent stage. The bias voltages 41 and 42 are set to have the same polarity, and the two consecutive current pulses output have the same polarity.
The input terminal T of the T-flip-flop circuit (T-FF) 6 is connected to the connection point of the MSM-PDs 11 and 12, and an output signal is output from the output terminal Q to the terminal 8.

【0015】これらの過程において、伝送される光信号
は送信側の出力パルスの変化部分においてのみ出力され
るので、波形をそのまま光信号に変換して伝送する場合
と比較して、伝送に伴う消費電力が大幅に減少できる。
しかしこの方法では、微分、積分等の信号波形の変換が
行われるので、これらの過程において、素子や回路の特
性に左右されない正確な信号変換が行われることが、符
号誤りを避けるために必要である。本実施例では、受光
素子として対称接合構造のMSM−PDを用いているた
め、通常の非対称構造のフォトダイオードを用いる場合
とは異なり、正、負の出力電流がほぼ完全な対称波形で
得られる。加えて、MSM−PDの応答速度は通常のフ
ォトダイオードに比べて速いので、より高速の送信レー
トに対しても正確に動作する。これらのことから、高速
かつ符号誤り率の少ない、より正確な信号伝送が可能に
なる。
In these processes, the optical signal to be transmitted is output only in the changing portion of the output pulse on the transmitting side, so that it is consumed in transmission as compared with the case where the waveform is converted into an optical signal as it is and transmitted. Electricity can be greatly reduced.
However, in this method, since signal waveform conversion such as differentiation and integration is performed, it is necessary to perform accurate signal conversion that is not affected by the characteristics of elements and circuits in these processes in order to avoid code errors. is there. In the present embodiment, since the MSM-PD having a symmetrical junction structure is used as the light receiving element, positive and negative output currents can be obtained with substantially perfect symmetrical waveforms, unlike the case where a photodiode having a normal asymmetric structure is used. . In addition, since the response speed of the MSM-PD is faster than that of a normal photodiode, the MSM-PD operates accurately even at a higher transmission rate. For these reasons, more accurate signal transmission at high speed with a small code error rate becomes possible.

【0016】[0016]

【発明の効果】以上、詳細に説明した通り、本発明に係
る相補型光配線回路により、高速で、符号誤り率の低い
相補型光配線が可能になった。これにより、素子間やプ
リント基板間あるいは装置間の光配線において、より高
速で信頼性の高い低消費電力の光配線が可能になる。こ
れらは主としてスーパーコンピュータ等の高速演算シス
テムに応用でき、将来において演算速度を制限すると考
えられる電気配線に代わるものとして期待できる。
As described above in detail, the complementary optical wiring circuit according to the present invention enables high-speed complementary optical wiring with a low code error rate. As a result, in the optical wiring between the elements, between the printed boards, or between the devices, it is possible to realize a faster and more reliable optical wiring with low power consumption. These can be mainly applied to high-speed computing systems such as supercomputers, and can be expected as a substitute for electrical wiring that will limit the computing speed in the future.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係る相補型光配線回路を
示した回路図である。
FIG. 1 is a circuit diagram showing a complementary optical wiring circuit according to a first exemplary embodiment of the present invention.

【図2】本発明の第2実施例に係る相補型光配線回路を
示した回路図である。
FIG. 2 is a circuit diagram showing a complementary optical wiring circuit according to a second exemplary embodiment of the present invention.

【図3】従来例に係る相補型光配線回路を示した回路図
である。
FIG. 3 is a circuit diagram showing a complementary optical wiring circuit according to a conventional example.

【符号の説明】[Explanation of symbols]

11、12…MSM−PD、21、22…発光ダイオー
ドもしくは半導体レーザ、31、32…光伝送路、4
1、42…バイアス電圧源、5…微分回路、6…積分回
路、7…送信回路側の入力端子、8…受信回路側の出力
端子、101、102…通常のフォトダイオード。
11, 12 ... MSM-PD, 21, 22 ... Light emitting diode or semiconductor laser, 31, 32 ... Optical transmission line, 4
1, 42 ... Bias voltage source, 5 ... Differentiating circuit, 6 ... Integrating circuit, 7 ... Transmitting circuit side input terminal, 8 ... Receiving circuit side output terminal, 101, 102 ... Normal photodiode.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H04B 10/26 10/14 10/04 10/06 (72)発明者 飯田 孝 静岡県浜松市市野町1126番地の1 浜松ホ トニクス株式会社内 (72)発明者 藁科 禎久 静岡県浜松市市野町1126番地の1 浜松ホ トニクス株式会社内 (72)発明者 杉本 賢一 静岡県浜松市市野町1126番地の1 浜松ホ トニクス株式会社内 (72)発明者 鈴木 智子 静岡県浜松市市野町1126番地の1 浜松ホ トニクス株式会社内 (72)発明者 菅 博文 静岡県浜松市市野町1126番地の1 浜松ホ トニクス株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical indication location H04B 10/26 10/14 10/04 10/06 (72) Inventor Takashi Iida Ichino, Hamamatsu City, Shizuoka Prefecture 1126, Hamamatsu Photonics Co., Ltd. in Hamamatsu Photonics Co., Ltd. (72) The inventor Sadahisa Warashi, 1126, Ichinocho, Hamamatsu, Shizuoka Prefecture 1 No. 1 in Hamamatsu Photonics Co., Ltd. (72) Kenichi Sugimoto 1 Hamamatsu Photonics Co., Ltd. (72) Inventor Tomoko Suzuki 1126 1 Nono, Ichimachi, Hamamatsu City, Shizuoka Prefecture 1 Hamamatsu Photonics Co., Ltd. (72) Hirofumi Suga 1 126 1 Nono, Ichimachi, Hamamatsu City, Shizuoka Prefecture Hamamatsu Photonics Within the corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 極性が相補的に並列接続された2個の発
光ダイオードもしくは半導体レーザに、2個ごとに対を
なす電流パルスを入力して2個の光パルス信号対に変換
し、この対のうちのそれぞれを、互いに逆極性のバイア
ス電圧が印加された、一対のショットキ電極が半導体基
板表面上に向かい合って形成された構造の、2個の半導
体受光素子のそれぞれに入力し、2個の前記半導体受光
素子の接続点において元のパルス対毎に1個の対応した
電気パルス信号出力を得るようになされることを特徴と
する相補型光配線回路。
1. A pair of light-emitting diodes or semiconductor lasers whose polarities are complementarily connected in parallel, each pair of current pulses are input to be converted into two pairs of optical pulse signals. Each of the two is input to each of two semiconductor light receiving elements having a structure in which a pair of Schottky electrodes to which bias voltages of opposite polarities are applied are formed facing each other on the surface of the semiconductor substrate, A complementary optical wiring circuit, wherein one corresponding electric pulse signal output is obtained for each original pulse pair at a connection point of the semiconductor light receiving element.
【請求項2】 請求項1に記載の相補型光配線回路にお
いて、2個の前記半導体受光素子に印加されるバイアス
電圧の極性を変えることによって、出力される連続した
2個の電気パルス信号の極性を変化させるようになされ
たことを特徴とする相補型光配線回路。
2. The complementary optical wiring circuit according to claim 1, wherein two consecutive electric pulse signals output by changing the polarities of the bias voltages applied to the two semiconductor light receiving elements. A complementary optical wiring circuit characterized in that the polarity is changed.
JP17573293A 1993-07-15 1993-07-15 Complementary optical wiring circuit Expired - Fee Related JP2721475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17573293A JP2721475B2 (en) 1993-07-15 1993-07-15 Complementary optical wiring circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17573293A JP2721475B2 (en) 1993-07-15 1993-07-15 Complementary optical wiring circuit

Publications (2)

Publication Number Publication Date
JPH0738419A true JPH0738419A (en) 1995-02-07
JP2721475B2 JP2721475B2 (en) 1998-03-04

Family

ID=16001276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17573293A Expired - Fee Related JP2721475B2 (en) 1993-07-15 1993-07-15 Complementary optical wiring circuit

Country Status (1)

Country Link
JP (1) JP2721475B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007037212A1 (en) * 2005-09-28 2007-04-05 Nec Corporation Light receiving circuit and digital system
JP2009302703A (en) * 2008-06-11 2009-12-24 Toshiba Corp Complementary optical wiring system
JP2010028751A (en) * 2008-07-24 2010-02-04 Toshiba Corp Complementary optical wiring apparatus
JP2010136244A (en) * 2008-12-08 2010-06-17 Toshiba Corp Transmission circuit and complementary optical wiring system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007037212A1 (en) * 2005-09-28 2007-04-05 Nec Corporation Light receiving circuit and digital system
US8023832B2 (en) 2005-09-28 2011-09-20 Nec Corporation Light receiving circuit and digital system
JP4936071B2 (en) * 2005-09-28 2012-05-23 日本電気株式会社 Light receiving circuit and digital system
JP2009302703A (en) * 2008-06-11 2009-12-24 Toshiba Corp Complementary optical wiring system
JP2010028751A (en) * 2008-07-24 2010-02-04 Toshiba Corp Complementary optical wiring apparatus
JP2010136244A (en) * 2008-12-08 2010-06-17 Toshiba Corp Transmission circuit and complementary optical wiring system

Also Published As

Publication number Publication date
JP2721475B2 (en) 1998-03-04

Similar Documents

Publication Publication Date Title
US20090310978A1 (en) Complementary optical wiring system
US5060306A (en) Optical transmisson system
CA1215138A (en) Latching circuits
US4761060A (en) Optical delay type flipflop and shift register using it
US5644418A (en) Smart pixel optical receiver employing sense amplifier and method of operation thereof
JP2721475B2 (en) Complementary optical wiring circuit
JP4936071B2 (en) Light receiving circuit and digital system
EP0055341B1 (en) Current controlled gate
US5045680A (en) Integrated circuit optoelectronic toggle F/F
JP2006311130A (en) Light receiver
JPH1117625A (en) Light-emitting element drive circuit and optical transmitter using it
JP2738656B2 (en) Optical receiver and method for initializing optical receiver
EP0523747A1 (en) Latch circuit
EP0413916B1 (en) Electro-optical full adder
Takano et al. Monolithic integration of 5-Gb/s optical receiver block for short distance communication
US6956400B2 (en) Converter from ECL to CMOS and network element for transmitting signals
JP2749744B2 (en) Semiconductor optical differentiator
JP3407861B2 (en) Demultiplexer
SU940308A1 (en) Logic gate
JP3220215B2 (en) Photoelectric negation logic circuit
KR930006692Y1 (en) Switching time reducted circuit used for short diode
JP3527973B2 (en) Identification circuit
Kawanishi et al. 2 Gb/s operation of an optical-clock-driven monolithically integrated GaAs D-flip-flop with metal-semiconductor-metal photodetectors for high-speed synchronous circuits
SU1658181A1 (en) Logic image processor
JPH0828653B2 (en) Flip-flop circuit with photoelectric conversion element gate and identification circuit using the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees