JPH0737231B2 - Electronic control method for air springs for railway vehicles - Google Patents

Electronic control method for air springs for railway vehicles

Info

Publication number
JPH0737231B2
JPH0737231B2 JP30472090A JP30472090A JPH0737231B2 JP H0737231 B2 JPH0737231 B2 JP H0737231B2 JP 30472090 A JP30472090 A JP 30472090A JP 30472090 A JP30472090 A JP 30472090A JP H0737231 B2 JPH0737231 B2 JP H0737231B2
Authority
JP
Japan
Prior art keywords
air spring
height
pressure
air
electronic control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30472090A
Other languages
Japanese (ja)
Other versions
JPH04176773A (en
Inventor
広一郎 石原
龍太郎 石川
智志 小泉
修二 浜本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP30472090A priority Critical patent/JPH0737231B2/en
Publication of JPH04176773A publication Critical patent/JPH04176773A/en
Publication of JPH0737231B2 publication Critical patent/JPH0737231B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Vehicle Body Suspensions (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、鉄道車両用空気ばねの電子制御機構におい
て、高さ計が故障したとき自動的にバックアップ制御で
きる電子制御方法に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electronic control method for an air spring for a railway vehicle, which is capable of automatically performing backup control when a height gauge fails.

従来の技術 空気ばねを有する鉄道車両は、そのときどきの荷重に対
応して圧縮空気量を自動的に調整して、車両の高さを一
定に保つためにリンクとレベリングバルブを組合せた自
動高さ調整機構を備えている。また、左右の空気ばね内
圧を均等に保つための差圧調整弁が左右空気ばねの間に
設けられている。
2. Description of the Related Art A railway vehicle with an air spring automatically adjusts the amount of compressed air according to the load at that time, and an automatic height combining a link and a leveling valve to keep the height of the vehicle constant. Equipped with an adjustment mechanism. Further, a differential pressure adjusting valve for keeping the inner pressures of the left and right air springs even is provided between the left and right air springs.

しかし、鉄道車両が曲線路の緩和曲線すなわちカント逓
減区間で停車した場合は、自動高さ調整機構の機能によ
り、空気ばね高さを一定に保持しようとする。その結
果、車体の前後台車には、互いに逆向きのモーメントが
生じるが、車体のねじり剛性が大きいため、前後台車で
発生するモーメントのつり合う位置で車体は停止する。
However, when the railway vehicle stops on a gentle curve of the curved road, that is, in the gradually decreasing section, the function of the automatic height adjusting mechanism tries to keep the air spring height constant. As a result, opposite moments are generated in the front and rear bogies of the vehicle body, but since the torsional rigidity of the vehicle body is large, the vehicle body stops at a position where the moments generated in the front and rear bogies are balanced.

この状態では、自動高さ調整機構の高さ調整弁の給排気
が継続し、車両の対角方向に位置する空気ばねの圧力が
不均一となり、輪重変動が大きく、荷重負担の少ない車
輪は、いわゆる輪重抜けを生じ、車両の再起動時に脱線
する危険性がある。
In this state, the air supply and exhaust of the height adjustment valve of the automatic height adjustment mechanism continues, the pressure of the air springs located diagonally of the vehicle becomes uneven, and the wheel load fluctuates greatly and There is a risk of so-called wheel loss and derailment when the vehicle is restarted.

上記カント逓減区間における輪重変動を防止し、車両の
再起動時の脱線防止を目的として、出願人は先に、流量
調整弁を使った鉄道車両用空気ばねの電子制御方法(特
願平1−308582号)、ON−OFF制御の電磁弁を使った鉄
道車両用空気ばねの電子制御方法(特開平1−308583
号)および曲線路上での停車時に車体の無傾斜化を図
り、スムーズな乗降ができる鉄道車両の車体制御方法
(特願平1−308184号)等を提案した。
For the purpose of preventing wheel load fluctuations in the cant diminishing section and preventing derailment at the time of restarting the vehicle, the applicant previously described an electronic control method for an air spring for a railway vehicle using a flow control valve (Japanese Patent Application No. -308582), an electronic control method for an air spring for a railroad vehicle using an ON-OFF control solenoid valve (JP-A-1-308583).
No.) and a vehicle body control method for a railway vehicle (Japanese Patent Application No. 1-308184) that allows the vehicle body to be untilted when the vehicle is stopped on a curved road so that the passenger can get on and off smoothly.

発明が解決しようとする課題 上記鉄道車両用空気ばねの電子制御方法は、いずれも高
さ計、圧力計および車体傾斜角計のセンサーを使用し、
これらの各センサーからの検出値をデジタル化し制御器
に入力して演算処理し、その結果を給排気弁へ出力して
弁の開閉を制御するものである。
Problems to be Solved by the Invention The above-described electronic control method for an air spring for a railroad vehicle uses sensors for a height gauge, a pressure gauge, and a body tilt angle gauge,
The detection value from each of these sensors is digitized and input to a controller for arithmetic processing, and the result is output to a supply / exhaust valve to control opening / closing of the valve.

そのため、電子制御装置が長期間使用中に、いずれかの
センサーが寿命で故障した場合、制御器がその故障をい
ちはやく認識して、正常時の通常の制御から故障時のバ
ックアップ制御へ切り換えることが安全性を確保するた
め重要である。
Therefore, if one of the sensors fails during the life of the electronic control unit for a long period of time, the controller can quickly recognize the failure and switch from normal control during normal operation to backup control during failure. It is important to ensure safety.

このセンサーの故障は、営業運転中にも発生する可能性
があるから、常時センサーの検出値の挙動を監視し、異
常と判断したら自動的にバックアップ制御へ迅速に切り
換える必要がある。
Since this sensor failure may occur even during business operation, it is necessary to constantly monitor the behavior of the detected value of the sensor and automatically switch to backup control when it is determined to be abnormal.

上記のごとく、鉄道車両用空気ばねの電子制御装置の長
期使用における故障発生時には迅速な安全対策が必要で
あるが、従来の装置ではその安全対策がとられていなか
った。
As described above, a quick safety measure is required when a failure occurs in the long-term use of the electronic control device for the air spring for a railway vehicle, but the conventional device has not taken the safety measure.

この発明は、かかる現状にかんがみ、鉄道車両用空気ば
ねの電子制御機構における高さ計が故障した場合に、残
った正常な高さ計や圧力計を駆使して、空気ばねの内圧
変動を小さく、つまり輪重変動を可能な限り小さく押え
るため自動的にバックアップ制御に切り換え得る電子制
御方法を提案するものである。
In view of such a current situation, the present invention makes small fluctuations in the internal pressure of the air spring by making full use of the remaining normal height gauge and pressure gauge when the height gauge in the electronic control mechanism of the air spring for railway vehicles fails. That is, it proposes an electronic control method that can automatically switch to backup control in order to suppress wheel load fluctuations as small as possible.

課題を解決するための手段 上記目的を達成するため、この発明の鉄道車両用空気ば
ねの電子制御方法は、空気ばね台車を有する鉄道車両に
おいて、前後台車の各空気ばねに、連続的に計測する高
さ計、圧力計および傾斜角計のセンサーを用いて、各セ
ンサーからの検出信号を制御器に入力して演算処理し、
制御器からの制御信号により各空気ばねの給排気弁を開
閉操作する鉄道車両用空気ばねの電子制御機構におい
て、前台車または後台車のいずれか一方の台車の1個あ
るいは2個の高さ計の故障、高さ変換値の異常が検出さ
れたとき、正常台車の空気ばね高さはそれぞれ不感帯内
に納まるように高さ制御を行ない、故障台車は左右空気
ばね内圧の平均が正常台車の平均内圧以下の一定範囲内
で、かつ左右空気ばね差圧を正常台車と同等以下にバッ
クアップ制御する。
Means for Solving the Problems In order to achieve the above object, an electronic control method for an air spring for a railroad vehicle of the present invention continuously measures each air spring of a front and rear bogie in a railroad vehicle having an air spring bogie. Sensors of height gauge, pressure gauge and inclinometer are used to input detection signals from each sensor to the controller for arithmetic processing.
An electronic control mechanism for an air spring for a railway vehicle that opens and closes an air supply / exhaust valve of each air spring according to a control signal from a controller, and one or two height gauges for either one of a front bogie and a rear bogie. When the failure of the vehicle and the abnormality of the height conversion value are detected, the height of the air springs of the normal truck is controlled so that they are within the dead zone. Back-up control is performed within a certain range below the internal pressure, and the differential pressure of the left and right air springs is equal to or lower than that of a normal truck.

また、前台車と後台車の両方の台車の高さ計が共に故障
したとき、または高さ換算値の異常を共に検出したとき
前後台車のすべての空気ばね内圧を正常な空車状態にお
ける適正空気圧以下で、かつ圧力の不感帯幅の範囲内に
制御維持する。
Also, when the height gauges of both the front and rear bogies have both failed, or when an abnormality in the height conversion values is detected, all the air spring internal pressures of the front and rear bogies are below the proper air pressure in a normal empty state. And maintain control within the dead band width of the pressure.

作用 前後台車の各空気ばねに、連続して計測する高さ計、圧
力計および傾斜角計のセンサーを用いて、各センサーか
らの検出信号を制御器に入力して演算処理し、制御器か
らの制御信号により各空気ばねの給排気弁を開閉操作す
る電子制御機構による制御は次の要領により行なわれ
る。
Action The sensors of the height gauge, pressure gauge, and inclinometer, which measure continuously, are used for each air spring of the front and rear bogies, and the detection signals from each sensor are input to the controller for arithmetic processing, and then from the controller. The electronic control mechanism for opening and closing the air supply / exhaust valve of each air spring in response to the control signal is controlled as follows.

第2図に示すように、前台車(9)の空気ばね(1)
(2)と後台車(10)の空気ばね(3)(4)のそれぞ
れの内圧をP1、P2、P3、P4とし、またばね高さをh1
h2、h3、h4とし、前後台車の空気ばねの内圧の差の絶対
値が設定差圧△Peより小さい、すなわち、 |P1−P3|<△Pe |P2−P4|<△Pe を満足するように空気ばねの内圧制御を行なうか、また
は前後台車の対角線上にある空気ばねの内圧の和の差の
絶対値が設定差圧△Peより小さい、すなわち、 |(P1+P4)−(P2+P3)|<△Pe を満足するように空気ばねの内圧制御を行なえば、空気
ばねの内圧変動を小さく押えることができる。
As shown in FIG. 2, the air spring (1) of the front bogie (9)
The inner pressures of (2) and the air springs (3) and (4) of the rear bogie (10) are P 1 , P 2 , P 3 , and P 4 , and the spring height is h 1 ,
and h 2, h 3, h 4 , the absolute value of target pressure difference △ Pe is smaller than the difference between the internal pressure of the air spring of the front and rear bogie, i.e., | P 1 -P 3 | < △ Pe | P 2 -P 4 | The internal pressure of the air spring is controlled so that <ΔPe is satisfied, or the absolute value of the sum of the internal pressures of the air springs on the diagonal lines of the front and rear bogies is smaller than the set differential pressure ΔPe, that is, | (P 1 + P 4) - (P 2 + P 3) | < so as to satisfy the △ Pe be performed internal pressure control of the air spring, can be suppressed small variation in the internal pressure of the air spring.

また、カント区間では左右空気ばねの内圧に差がなけれ
ば、前台車、後台車ともに内軌側に向けてモーメントが
発生しカント負けが起る。
Also, in the cant section, if there is no difference in the internal pressure of the left and right air springs, both the front bogie and the rear bogie generate moments toward the inner gauge side, and the cant loses.

しかし、外軌側の空気ばねの内圧が低く、内軌側の空気
ばねの内圧が高いカント区間では、十分に左右空気ばね
内圧の間に差を発生させ、カント負け現象の発生を防止
することができる。
However, in the cant section where the inner pressure of the outer track side air spring is low and the inner track side air spring has a high inner pressure, a sufficient difference between the inner pressures of the left and right air springs should be generated to prevent the cant losing phenomenon. You can

空気ばね高さ制御は、連続的に計測できる高さ計、例え
ば第1図に示すロータリエンコーダ(5)を車体側に取
着し、そのロータリエンコーダ回転角を計るレバーを台
車側に取着した装置により、高さを角度に変換しデジタ
ル信号として制御器に入力することにより、ばね高さを
連続的に検知し、車両が軌道の平坦部、カント区間ある
いはカント逓減区間のいずれにあるかを迅速に判断する
ことができ、その車***置に応じて微妙な高さ制御が行
なわれる。すなわち、車両が低速走行時や停車時(例え
ばv≦5km/h)にある場合は、次の2式を満足するよう
に制御され、車体傾斜角を水平に近づける、無傾斜制御
となる。
For air spring height control, a height meter that can be continuously measured, for example, a rotary encoder (5) shown in FIG. 1 is attached to the vehicle body side, and a lever for measuring the rotary encoder rotation angle is attached to the truck side. The device converts the height into an angle and inputs it to the controller as a digital signal to continuously detect the spring height and determine whether the vehicle is in the flat part of the track, the cant section or the cant diminishing section. It is possible to make a quick decision, and delicate height control is performed according to the vehicle body position. That is, when the vehicle is running at a low speed or is stopped (for example, v ≦ 5 km / h), the vehicle is controlled so as to satisfy the following two expressions, and the lean angle control is performed so that the vehicle body lean angle becomes closer to horizontal.

ただし、△heは設定高さに対する不感帯幅、上記2式を
満足していないとき、制御器からの出力により開閉操作
され高さ制御が行なわれる。
However, Δhe is the dead zone width with respect to the set height, and when the above two expressions are not satisfied, the height is controlled by opening / closing operation by the output from the controller.

上記のごとく、無傾斜制御時では空気ばねの左右平均高
さを所定範囲内に納める制御を行なうことにより、車体
を安定状態に保つことができる。
As described above, during non-tilt control, the vehicle body can be kept in a stable state by performing control so that the average height of the left and right air springs falls within a predetermined range.

また、高速走行時(例えばv≦5km/h)には、各空気ば
ねの高さが△he内に納まるように個々に制御することに
より、車体の傾きをレールに平行により正確に制御でき
る。
Further, when traveling at high speed (for example, v ≦ 5 km / h), the height of each air spring is individually controlled so as to be within Δhe, so that the inclination of the vehicle body can be controlled more accurately in parallel with the rail.

上記空気ばねの電子制御機構において、高さ計が故障し
た場合には次の要領でバックアップ制御が行なわれる。
In the electronic control mechanism of the air spring, when the height gauge fails, backup control is performed as follows.

前台車または後台車のいずれか一方の台車の高さ計
が故障した場合 例えば後台車(10)の高さ計が故障すれば、正常な前台
車(9)の空気ばね(1)(2)の高さは、 |h1|≦△he、|h2|≦△he ……(1)式 ただし、△he:不感帯幅、 のように制御する。
When the height gauge of one of the front bogie or the rear bogie fails. For example, if the height gauge of the rear bogie (10) fails, the air springs (1) (2) of the normal front bogie (9) The height of | h 1 | ≦ Δhe, | h 2 | ≦ Δhe Equation (1) where Δhe is the dead band width.

また、次式により平均圧Pnを検知する。Further, the average pressure Pn is detected by the following equation.

そして、故障台車の平均圧Paすなわち、 とすると、次の(2)(3)式を共に満足するように制
御する。
And the average pressure Pa of the broken truck, that is, Then, control is performed so that the following expressions (2) and (3) are both satisfied.

Pn−△Pu−△Pe≦Pa≦Pn−△Pu+△Pe …(2)式 ただし、△Pe:不感帯幅 Pa≧P0 (P0:最小設定圧) かつ、 |P3−P4|≦|P1−P2| …(3)式 となるように制御する。Pn− △ Pu− △ Pe ≦ Pa ≦ Pn− △ Pu + △ Pe (2) where ΔPe: Dead band width Pa ≧ P 0 (P 0 : minimum set pressure) and | P 3 −P 4 | ≦ | P 1 −P 2 |… Controls so as to become the expression (3).

なお、△Puは(2)式において、PaがPnを超えないため
に△Pu≧△Peであるようにし、通常不感帯幅△Peは0.3
気圧程度なので特定しないが0.5気圧程度を選定し、不
感帯幅△Peは制御の安定上設ける。
It should be noted that ΔPu should be ΔPu ≧ ΔPe in formula (2) because Pa does not exceed Pn, and the dead band width ΔPe is usually 0.3.
Since it is about atmospheric pressure, it is not specified, but about 0.5 atm is selected, and the dead zone width ΔPe is set for stable control.

また、(2)式の関係を図示すると第3図のようにな
る。このような圧力に制御することによって、故障台車
の正確な高さは不明であっても、正常な場合に近い空気
ばねの内圧に制御でき、しかも空気ばねが浮き上らない
ので、異常な車体傾斜を招くことがない。
Further, the relationship of the equation (2) is shown in FIG. By controlling to such a pressure, even if the exact height of the faulty carriage is unknown, it can be controlled to the internal pressure of the air spring that is close to the normal case, and since the air spring does not float, abnormal vehicle body There is no inclination.

また、(3)式を設定したのは、カント区間やカント逓
減区間では左右差圧が発生して、初めて車体の傾斜モー
メントのつり合いがとれるため左右差圧の発生を許容す
る必要があるが、過度な差圧の発生を防止し正常な台車
並とするためである。さらに、最小設定圧P0は空車時の
最低圧を保障するために取り入れたものである。
Further, the formula (3) is set because it is necessary to allow the generation of the left-right differential pressure because the left-right differential pressure is generated in the cant section or the cant gradually decreasing section, and the tilt moment of the vehicle body is balanced for the first time. This is to prevent an excessive differential pressure from occurring and to make the truck as normal as possible. Furthermore, the minimum set pressure P 0 is adopted to ensure the minimum pressure when the vehicle is empty.

前後台車の両方の高さ計が故障した場合、 前後台車の両方の高さ計が故障した場合には、中立高さ
を得るための適正な内圧を検知できないので、乗算率に
応じた内圧制御が不可能である。したがって、空車状態
でも空気ばねが異常に上昇しない空気圧に4個の空気ば
ね内圧を保持し、しかも最低限の輪重を各車輪に与える
ための制御することを行なう。すなわち、 Pv−△Pe≦Pi≦Pv+△Pe ただし、i:1〜4、 なお、Pvは空車時に空気ばねが浮き上らない範囲の最大
圧で、車両の重量、空気ばねの受圧面積に依存するが、
通常は約2気圧程度である。
If both height gauges of the front and rear bogies fail, if both height gauges of the front and rear bogies fail, the proper internal pressure to obtain the neutral height cannot be detected, so the internal pressure control according to the multiplication rate Is impossible. Therefore, the control is performed to maintain the four air spring internal pressures at the air pressure at which the air spring does not rise abnormally even when the vehicle is empty, and to give a minimum wheel load to each wheel. That is, Pv− △ Pe ≦ Pi ≦ Pv + △ Pe where i: 1 to 4, where Pv is the maximum pressure in the range where the air spring does not float up when the vehicle is empty, and depends on the weight of the vehicle and the pressure receiving area of the air spring. But
Usually, it is about 2 atm.

以上のように次善のバックアップ制御を行なうことによ
り、高さ計の故障により正確な高さを検知できなくと
も、空気ばねを下ストッパー当り(故障台車の左右空気
ばね高さは同じ)に保つので、車体の異常な傾斜を生じ
ないことが保障される。しかも、その条件の下で正常な
状態の内圧に最も近くて高い圧力に空気ばね内圧を保持
し輪重抜けを防止する制御が実現できる。
By performing the suboptimal backup control as described above, the air spring is kept at the lower stopper (the height of the left and right air springs of the faulty carriage is the same) even if the height cannot be detected accurately due to the failure of the height gauge. Therefore, it is guaranteed that the vehicle body does not have an abnormal inclination. Moreover, under the conditions, control can be realized that keeps the air spring internal pressure at a high pressure that is the closest to the normal internal pressure and prevents wheel weight loss.

実 施 例 この発明の鉄道車両用空気ばねの電子制御装置を第1図
に示す鉄道車両の車体制御装置に実施した場合について
説明する。
Example A case in which the electronic control unit for an air spring for a railway vehicle according to the present invention is applied to the vehicle body control unit for a railway vehicle shown in FIG. 1 will be described.

鉄道車両の前台車(9)と後台車(10)の左右側に設け
た空気ばね(1)(2)および(3)(4)のそれぞれ
に、高さ計としてロータリエンコーダ(5)を設置す
る。
A rotary encoder (5) is installed as a height gauge on each of the air springs (1), (2) and (3) (4) provided on the left and right sides of the front bogie (9) and the rear bogie (10) of the railway vehicle. To do.

また、元空気溜(6)と空気ばね(1)〜(4)の間を
接続した配管(7)の途中に、各空気ばねに対する給気
弁(11)(12)(13)(14)を設けるとともに、他に設
けた排気管に排気弁(21)(22)(23)(24)を設け、
さらに圧力計(16)を設ける。
Further, in the middle of the pipe (7) connecting the source air reservoir (6) and the air springs (1) to (4), air supply valves (11) (12) (13) (14) for the respective air springs are provided. And the exhaust valves (21) (22) (23) (24) provided in the exhaust pipes provided in addition to
Furthermore, a pressure gauge (16) is provided.

そして、各ロータリエンコーダ(5)、圧力計(16)の
検出信号とともに、傾斜角センサー(15)の車体傾斜角
検出信号を制御器(8)に入力するように設け、また各
給気弁および排気弁を開閉する制御器(8)からの出力
を伝えるための配線をする。
The rotary encoder (5) and the pressure gauge (16) detection signals as well as the vehicle body tilt angle detection signal of the tilt angle sensor (15) are provided to be input to the controller (8). Wiring is provided for transmitting the output from the controller (8) that opens and closes the exhaust valve.

上記装置による空気ばねの内圧制御は、前台車(9)と
後台車(10)の対角線上にある空気ばね(1)(4)ま
たは(2)(3)の内圧の和の差の絶対値が設定差圧よ
り大きいときのみ、制御器(8)から各弁へ制御信号を
流し、給気弁、排気弁を開閉し、各空気ばねの内圧が設
定された目標値内に納まるように制御する。
The internal pressure control of the air spring by the above-mentioned device is the absolute value of the difference in the internal pressures of the air springs (1) (4) or (2) (3) on the diagonal line of the front carriage (9) and the rear carriage (10). The control signal is sent from the controller (8) to each valve, the air supply valve and the exhaust valve are opened and closed, and the internal pressure of each air spring is controlled to be within the set target value only when is larger than the set differential pressure. To do.

差圧が目標値内に納まっているときは、内圧調整を行な
うことなく、次の傾斜角制御と高さ制御に移行する。
If the differential pressure is within the target value, the internal pressure is not adjusted and the control proceeds to the next tilt angle control and height control.

差圧が目標値を外れている場合は、前台車と後台車の対
角線上にある空気ばねの内圧の和の差を判断し、空気ば
ね(1)(4)を給気し空気ばね(2)(3)を排気す
るか、または逆に空気ばね(2)(3)を給気し、空気
ばね(1)(4)を排気して、内圧が目標値内に納まる
ように制御する。
If the differential pressure is out of the target value, the difference in the sum of the internal pressures of the air springs on the diagonal lines of the front bogie and the rear bogie is judged, and the air springs (1) and (4) are supplied with air. ) (3) is exhausted, or conversely, the air springs (2) and (3) are supplied, and the air springs (1) and (4) are exhausted so that the internal pressure is controlled to fall within the target value.

引続き行なわれる傾斜角制御は、車体の傾斜角が設定値
より大きいかどうかを判断し、設定値内に納まっている
ときは、空気ばねの給排気を行なうことなく次の段階へ
移行する。また、設定値を外れているときは、空気ばね
の給排気の制御信号を出す。
In the tilt angle control that is continuously performed, it is determined whether or not the tilt angle of the vehicle body is larger than the set value, and if it is within the set value, the process proceeds to the next step without supplying / exhausting the air spring. When the value is out of the set value, a control signal for air supply / exhaust of the air spring is output.

さらに、左右空気ばねの平均高さの検出信号は設定平均
高さと比較演算して、外れているときは設定平均高さ内
に納まるように空気ばねの給排気制御が行なわれる。
Further, the detection signal of the average height of the left and right air springs is calculated and compared with the set average height, and when they are out of order, the air supply / exhaust control of the air springs is performed so as to be within the set average height.

上記は、各センサーが正常に働いているときの制御であ
るが、高さ計が故障した場合は、この発明の実施により
前記した要領によりバックアップ制御が行なわれる。
The above is the control when each sensor is operating normally. However, when the height gauge fails, the backup control is performed according to the above-mentioned procedure by implementing the present invention.

次にそのバックアップ制御の具体例をあげる。Next, a specific example of the backup control will be given.

後台車(10)の空気ばね(3)(4)のいずれか一
方または両方の高さ計が故障した場合、 空車時に空気ばね(3)の検出値h3′をh3′=130mm>h
maxの異常状態に意識的に設定し、バックアップ制御の
自動的な起動をテストすると、各空気ばねの内圧は次の
ようになった。
If one or both of the height gauges of the air springs (3) and (4) of the rear bogie (10) breaks down, the detection value h 3 ′ of the air spring (3) becomes h 3 ′ = 130 mm> h when the vehicle is empty.
When consciously set to an abnormal state of max and tested automatic activation of backup control, the internal pressure of each air spring was as follows.

ただし、△Pu=0.5気圧、△Pe=0.3気圧、hmax=100m
m、P0=1.5気圧である。
However, △ Pu = 0.5 atm, △ Pe = 0.3 atm, hmax = 100 m
m, P0 = 1.5 atm.

〔前台車(9)〕 h1=−3mm、P1=2.2気圧 h2=−2mm、P2=2.1気圧 〔後台車(10)〕 h3=−30mm(真の値、検出値はh3′ =130mm)、P3=1.7気圧 h4=−30mm、P4=1.8気圧 上記結果より、前台車(9)の正常な空気ばねの内圧は
不感帯内(△he=6mm)にあり、後台車(10)の高さ計
が故障した空気ばねの高さh3とh4は下ストッパー当りの
−30mmであった。
[Front bogie (9)] h 1 = −3 mm, P 1 = 2.2 atm h 2 = −2 mm, P 2 = 2.1 atm [Rear bogie (10)] h 3 = −30 mm (true value, detected value is h 3 '= 130mm), P 3 = 1.7 atm h 4 = -30 mm, from P 4 = 1.8 atm above results, there before carriage (9 normal internal pressure of the air spring within the dead band) (△ he = 6mm), the height h 3 and h 4 of the air spring height gauge of the rear carriage (10) has failed was -30mm per lower stopper.

また、積車時に上記空車時と同様の設定を行なったとこ
ろ次のようになった。
When the same settings as when the vehicle was empty were set when the vehicle was loaded, the result was as follows.

〔前台車(9)〕 h1=−2mm、P1=5.4気圧 h2=−1mm、P2=5.5気圧 〔後台車(10)〕 h3=−30mm、P3=5.0気圧 h4=−30mm、P4=4.9気圧 この結果、乗車率に応じて故障台車の空気ばね内圧は、
下ストッパー当りの範囲内で最も高く保持、制御されて
いることがわかり、本発明の目的が達成されている。
[Front bogie (9)] h 1 = −2 mm, P 1 = 5.4 atm h 2 = −1 mm, P 2 = 5.5 atm [Rear bogie (10)] h 3 = −30 mm, P 3 = 5.0 atm h 4 = -30 mm, P 4 = 4.9 atm Consequently, air spring pressure failure bogie according to occupancy, the
It has been found that the highest holding and controlling is achieved within the range of the lower stopper, and the object of the present invention is achieved.

前台車(9)の空気ばねと後台車(10)の高さ計の
両方が故障した場合、 h1>hmaxかつh3′>hmaxで、前後台車が両方とも故障状
態とする。すると、次のように圧力制御を行ない、空気
ばね圧力を設定値Pv(=2.0気圧)近傍に制御し、最低
限の内圧と輪重が確保、保障されることが明らかとなっ
た。
If both front height gauge bogie (9) air springs and a rear carriage (10) fails, h 1> hmax and at h 3 '> hmax, the front and rear truck and both fault condition. Then, it became clear that the pressure control was performed as follows and the air spring pressure was controlled near the set value Pv (= 2.0 atm) to secure and guarantee the minimum internal pressure and wheel load.

〔前台車(9)〕 h1=−30mm、P1=1.9気圧 h2=−30mm、P2=2.0気圧 〔後台車(10)〕 h3=−30mm、P3=1.9気圧 h4=−30mm、P4=1.8気圧 上記結果より、故障発生時に乗車率が高く、その後乗客
が減るという運転条件下でも、空気ばねが異常に上昇し
たり、車体が傾くということは起らないことがわかる。
[Previous truck (9)] h 1 = -30mm, P 1 = 1.9 atm h 2 = -30mm, P 2 = 2.0 atm [rear carriage (10)] h 3 = -30mm, P 3 = 1.9 atm h 4 = -30mm, P 4 = 1.8 atmosphere From the above results, it is possible that the air spring will not rise abnormally or the car body will tilt even under operating conditions in which the occupancy rate is high when a failure occurs and the number of passengers decreases thereafter. Recognize.

なお、前台車または後台車のいずれか一方の台車の左右
空気ばねの高さ計がともに故障した場合および前台車と
後台車の両方の空気ばね3個または4個の高さ計が故障
した場合も上記と同じ制御となる。
In addition, when the height gauges of the left and right air springs of either one of the front bogie or the rear bogie fail, or when the height gauges of three or four air springs of both the front bogie and the rear bogie fail. Also becomes the same control as above.

発明の効果 この発明によると、鉄道車両の空気ばね電子制御機構に
おいて、高さ計が故障した場合に制御を中止することな
く、残りの健全な高さ計および圧力計を駆使して、車体
が異常に傾くことがない範囲において可能な限り正常状
態に近く、かつばね内圧を最も高く保持する、バックア
ップ制御が行なわれるから、つねに輪重変動を小さく抑
制できる。したがって、運転中の故障発生に対し、安全
に迅速に対応できるなど大きな効果がある。
EFFECTS OF THE INVENTION According to the present invention, in the air spring electronic control mechanism of a railroad vehicle, the vehicle body can be operated by making full use of the remaining healthy height gauge and pressure gauge without stopping the control when the height gauge fails. Since the backup control is performed so that the spring internal pressure is kept as high as possible and the spring internal pressure is kept as high as possible within the range where there is no abnormal inclination, the wheel load fluctuation can always be suppressed small. Therefore, there is a great effect that a failure occurring during operation can be safely and promptly dealt with.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の実施によるバックアップ制御を有す
る鉄道車両用空気ばね電子制御装置の要部を示す斜視
図、第2図は鉄道車両の前後台車の空気ばね高さ(h1
h4)および圧力(P1〜P4)の説明図、第3図は高さ計が
正常な台車の空気ばねの平均圧Pnと高さ計が故障した異
常台車の空気ばねの平均圧Paとの関係を示すグラフであ
る。 1、2、3、4……空気ばね 5……ロータリエンコーダ 6……元空気溜、7……配管 8……制御器 9……前台車、10……後台車 11、12、13、14……給気弁 15……傾斜角センサー、16……圧力計 21、22、23、24……排気弁
FIG. 1 is a perspective view showing a main part of an air spring electronic control unit for a railroad vehicle having backup control according to an embodiment of the present invention, and FIG. 2 is an air spring height (h 1-
h 4 ) and pressure (P 1 to P 4 ), Fig. 3 shows the average pressure Pn of the air spring of a truck with a normal height gauge and the average pressure Pa of the air spring of an abnormal truck with a height gauge failure. It is a graph which shows the relationship with. 1, 2, 3, 4 ... Air spring 5 ... Rotary encoder 6 ... Original air reservoir, 7 ... Piping 8 ... Controller 9 ... Front bogie, 10 ... Rear bogie 11, 12, 13, 14 …… Air supply valve 15 …… Tilt angle sensor, 16 …… Pressure gauge 21, 22, 23, 24 …… Exhaust valve

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】空気ばね台車を有する鉄道車両において、
前後台車の各空気ばねに、連続的に計測する高さ計、圧
力計および傾斜角計のセンサーを用いて、各センサーか
らの検出信号を制御器に入力して演算処理し、制御器か
らの制御信号により各空気ばねの給排気弁を開閉操作す
る電子制御機構において、前台車または後台車のいずれ
か一方の台車の1個あるいは2個の高さ計の故障、高さ
変換値の異常が検出されたとき、正常台車の空気ばね高
さはそれぞれ不感帯内に納まるように高さ制御を行な
い、故障台車は左右空気ばね内圧の平均が正常台車の平
均内圧以下の一定範囲内で、かつ左右空気ばね差圧を正
常台車と同等以下にバックアップ制御する鉄道車両用空
気ばねの電子制御方法。
1. A railway vehicle having an air spring trolley,
The sensors of the height gauge, pressure gauge, and inclinometer that continuously measure are used for each air spring of the front and rear bogies, and the detection signals from each sensor are input to the controller for arithmetic processing, and In the electronic control mechanism that opens / closes the air supply / exhaust valve of each air spring by a control signal, one or two height gauges of either one of the front bogie or the rear bogie is broken, or the height conversion value is abnormal. When detected, the height of the air spring of the normal truck is controlled so that it is within the dead zone, and the faulty truck has a left and right air spring internal pressure within a certain range below the average internal pressure of the normal truck and left and right. An electronic control method for an air spring for a railway vehicle, in which the differential pressure of the air spring is backed up to a level equal to or lower than that of a normal truck.
【請求項2】空気ばね台車を有する鉄道車両において、
前後台車各空気ばねに、連続的に計測する高さ計、圧力
計および傾斜角計のセンサーを用いて、各センサーから
の検出信号により各空気のばねの給排気弁を開閉操作す
る電子制御機構において、前台車と後台車の両方の台車
の高さ計が共に故障したとき、または高さ換算値の異常
を共に検出したとき前後台車のすべての空気ばね内圧を
正常な空車状態における適正空気圧以下で、かつ圧力の
不感帯幅の範囲内に制御維持する鉄道車両用空気ばねの
電子制御方法。
2. A railway vehicle having an air spring trolley,
Front and rear bogies Electronic control mechanism that opens and closes the air supply / exhaust valve of each air spring by the detection signal from each sensor using continuously measuring height gauge, pressure gauge and tilt angle sensor for each air spring. When both the height gauges of both the front and rear bogies have failed, or when both height conversion values have been detected abnormally, all the air spring internal pressures of the front and rear bogies are below the proper air pressure in a normal empty state. And a method for electronically controlling an air spring for a railway vehicle, which is controlled and maintained within a dead zone width of pressure.
JP30472090A 1990-11-09 1990-11-09 Electronic control method for air springs for railway vehicles Expired - Lifetime JPH0737231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30472090A JPH0737231B2 (en) 1990-11-09 1990-11-09 Electronic control method for air springs for railway vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30472090A JPH0737231B2 (en) 1990-11-09 1990-11-09 Electronic control method for air springs for railway vehicles

Publications (2)

Publication Number Publication Date
JPH04176773A JPH04176773A (en) 1992-06-24
JPH0737231B2 true JPH0737231B2 (en) 1995-04-26

Family

ID=17936407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30472090A Expired - Lifetime JPH0737231B2 (en) 1990-11-09 1990-11-09 Electronic control method for air springs for railway vehicles

Country Status (1)

Country Link
JP (1) JPH0737231B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6468246A (en) * 1987-08-19 1989-03-14 Philips Nv Magnetic resonance apparatus including integrated rf coil for inclined magnetic field

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2827842C (en) * 2011-04-28 2015-09-08 Nippon Sharyo, Ltd. Railway vehicle body tilting system
CN114620086A (en) * 2022-03-14 2022-06-14 武汉铁路职业技术学院 Height adjusting assembly and adjusting method thereof
CN115097749A (en) * 2022-05-16 2022-09-23 中国第一汽车股份有限公司 Automatic leveling method for dynamometer iron floor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6468246A (en) * 1987-08-19 1989-03-14 Philips Nv Magnetic resonance apparatus including integrated rf coil for inclined magnetic field

Also Published As

Publication number Publication date
JPH04176773A (en) 1992-06-24

Similar Documents

Publication Publication Date Title
US9238471B2 (en) Method for control of vehicle body tilting of railway vehicle
JP7434551B2 (en) Track vehicle tilt system, tilt control method, and track vehicle
EP1235707B1 (en) Comfort monitoring method and system for a tilting train
JP5513175B2 (en) Railway vehicle body tilting device
JP6833477B2 (en) Railroad vehicle height adjustment device
JPH0737231B2 (en) Electronic control method for air springs for railway vehicles
FI109673B (en) Arrangement for tilting the rail vehicle in curves on the line
US5501512A (en) System and method for automatically calibrating transducers in electro-pneumatic freight brake control systems
CZ20013442A3 (en) Method for regulating air spring and air spring system for a railway vehicle
US5544057A (en) Load setting device for railway cars
JP2007131125A (en) Method of detecting abnormal condition of vehicle body inclination device
JP6564292B2 (en) Railway vehicle with train body tilting device and train organization
US3757702A (en) Railway car roll controlled by fluid spring controller assembly
JPH05116627A (en) Vehicle body control method for railway rolling stock
JPH0674041B2 (en) Electronic control method for air springs for railway vehicles
JP2005096724A (en) Method and device for controlling inclination of car body
JPH0737232B2 (en) Failure detection method for air spring electronic control mechanism for railway vehicles
JP3513974B2 (en) Fail-safe mechanism of bogie for railway vehicle with control device
JP3832184B2 (en) Body tilt control device
JP7027297B2 (en) Anomaly detection method for air springs for railway vehicles
JPH03135871A (en) Air spring control method of railroad vehicle
JPH0415160A (en) Controlling method for attitude of vehicle body of train
JPH0659825B2 (en) Railway vehicle air spring control method
JPH0737230B2 (en) Load-bearing electronic control method for railcar air springs
JPH0788170B2 (en) Diagnostic method for air spring electronic control mechanism for railway vehicle