JPH03135871A - Air spring control method of railroad vehicle - Google Patents

Air spring control method of railroad vehicle

Info

Publication number
JPH03135871A
JPH03135871A JP27403489A JP27403489A JPH03135871A JP H03135871 A JPH03135871 A JP H03135871A JP 27403489 A JP27403489 A JP 27403489A JP 27403489 A JP27403489 A JP 27403489A JP H03135871 A JPH03135871 A JP H03135871A
Authority
JP
Japan
Prior art keywords
height
air
air spring
vehicle
cant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27403489A
Other languages
Japanese (ja)
Inventor
Koichiro Ishihara
広一郎 石原
Ryutaro Ishikawa
龍太郎 石川
Tomoshi Koizumi
小泉 智志
Shuji Hamamoto
浜本 修二
Mitsusachi Yamamoto
三幸 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP27403489A priority Critical patent/JPH03135871A/en
Publication of JPH03135871A publication Critical patent/JPH03135871A/en
Pending legal-status Critical Current

Links

Landscapes

  • Vehicle Body Suspensions (AREA)

Abstract

PURPOSE:To suppress the variation of the inner pressure of an air spring by detecting the inner pressure and the height of the air spring of a railroad vehicle continuously, deciding whether the vehicle is on a plain part, in a cant section, or in a cant gradually decreasing section of the track, and controlling the height of the air spring depending on the result of the decision. CONSTITUTION:On air springs 1, 2 and 3, 4 provided on the left and the right sides of the front truck 9 and the rear truck 10, height detectors 5 and pressure gauges 17 are provided respectively, while air feeder valves 11 to 14 are provided to air feeding pipes 7, and air discharge valves 21 to 24 are provided to air discharge pipes respectively. The valves 11 to 14 and 21 to 24 are controlled by a control unit 8 responding to the operation condition after deciding in what condition of track the vehicle is. That is, when the difference of the air spring inner pressures at the same side of the front and the rear trucks 9 and 10 is within a specified pressure difference in both the left and the right sides, and the vehicle is in a cant gradually decreasing section, it is controlled to set the average height of the left and the right air springs at the front and the rear trucks within a preset height, and when the vehicle is in a plain part or in a cant section, it is controlled to set the heights of the individual air springs in a preset height respectively.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、空気ばね付き台車を有する鉄道車両の空気
ばねの内圧変動を抑制した制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a control method for suppressing internal pressure fluctuations in air springs of a railway vehicle having a bogie with air springs.

従来の技術 空気ばね付き台車を有する鉄道車両は、個々の空気ばね
高かを連結棒を用いて機械的に検知し、その動きを高さ
調整弁のレバーに伝えて弁の開閉を行ない、高さの修正
、内圧の調整を行なっていた。
Conventional technology Railway vehicles equipped with bogies equipped with air springs mechanically detect the height of each air spring using connecting rods, and transmit the movement to the lever of the height adjustment valve to open and close the valve. They were making adjustments to the internal pressure.

この高さ調整弁は、空気ばね高さを個々に調整するもの
であり、車両がカント逓減区間で停車した場合は、高さ
調整弁が自動的に働き、各空気ばね高さを一定に保とう
とするため、次のようなメカニズムにより内圧の低下が
生じ、輪重抜けが発生することがあった。
This height adjustment valve adjusts the height of each air spring individually. When the vehicle stops in a cant decreasing section, the height adjustment valve automatically operates to maintain the height of each air spring at a constant level. As a result, the following mechanism causes a drop in internal pressure, which can lead to wheel weight loss.

すなわち、カント逓減区間では内軟側と外軌側のレール
高さが異なり軌道ねじれを生じているため、車両がカン
ト逓減区間に停車すれば、前後台車は異なる傾斜角で傾
くので、高さ調整弁の作動により、第7図に示すように
、前台車(9)と後台車(10)では反対方向のモーメ
ントが働き、両者が釣合う角度に車体は傾斜する。その
ため、前後台車の片方の対角線上に位置する空気ばねの
内圧が低下し、他方の対角線上に位置する空気ばねの内
圧との間に不均一が生じ(第4図参照)、各車輪の負担
する荷重に不均一が生じる。その結果、輪重変動が大き
く、荷重分担の少ない車輪は、いわゆる輪重抜けを生じ
、車両の再起動時に脱線する危険がある。
In other words, in the decreasing cant section, the rail heights on the inner soft side and the outer rail side are different, causing track twist, so if the vehicle stops in the decreasing cant section, the front and rear bogies will tilt at different angles of inclination, so height adjustment is required. As shown in FIG. 7, due to the operation of the valve, moments act in opposite directions on the front bogie (9) and the rear bogie (10), and the vehicle body tilts to an angle where both are balanced. As a result, the internal pressure of the air springs located diagonally on one side of the front and rear bogies decreases, creating unevenness between the internal pressures of the air springs located diagonally on the other side (see Figure 4), and the burden on each wheel. There will be unevenness in the load applied. As a result, wheels with large wheel load fluctuations and low load sharing will experience so-called wheel load loss, and there is a risk of derailment when the vehicle is restarted.

従来の空気ばね制御においても、輪重変動を少しでもす
くなくするために、左右空気ばねの間を差圧弁で接続し
ているが、設定差圧値を超える左右空気ばねの内圧差が
生じた場合には差圧弁が連通ずるが、カント区間でのカ
ント負けを防止する観点から、この設定差圧をあまり小
さくできず、また前後台車間では設定差圧値の2倍の圧
力差を許容しているため、輪重変動を十分に小さくでき
なかった。
In conventional air spring control, the left and right air springs are connected by a differential pressure valve in order to minimize wheel load fluctuations, but if the internal pressure difference between the left and right air springs exceeds the set differential pressure value, A differential pressure valve communicates with the vehicle, but from the perspective of preventing cant loss in the cant section, this set differential pressure cannot be made too small, and a pressure difference of twice the set differential pressure value is allowed between the front and rear bogies. Because of this, it was not possible to sufficiently reduce wheel load fluctuations.

発明が解決しようとする課題 上記のごとく、従来の空気ばね付き台車を有する鉄道車
両は、機械的な方法で各空気ばねごとに高さ調整を行う
とともに、左右空気ばねの間を差圧弁で接続して内圧の
不均一を防止してはいるが、十分な制御はできなかった
Problems to be Solved by the Invention As mentioned above, in conventional railway vehicles with bogies equipped with air springs, the height of each air spring is adjusted mechanically, and the left and right air springs are connected by a differential pressure valve. Although the internal pressure was prevented from becoming uneven, sufficient control was not possible.

また、カント逓減区間では空気ばねの内圧変動に起因す
る輪重抜けが発生するので、車両の脱線を防止し、安全
を確保するため空気ばねの内圧変動を小さく押える必要
がある。
Furthermore, in the cant decreasing section, wheel unloading occurs due to fluctuations in the internal pressure of the air springs, so it is necessary to suppress fluctuations in the internal pressure of the air springs to a small level in order to prevent derailment of the vehicle and ensure safety.

この発明は、上記問題点を排除し、空気ばねの内圧変動
、輪重変動を小さく押える制御を安定して行いうる鉄道
車両の空気ばね制御方法を提供するものである。
The present invention eliminates the above-mentioned problems and provides an air spring control method for a railway vehicle that can stably perform control to suppress internal pressure fluctuations of air springs and wheel load fluctuations to a small level.

課題を解決するための手段 空気ばね台車を有する鉄道車両において、前後台車の各
空気ばねに、連続的に計測する高さ検出器、圧力計およ
び給気弁と排気弁を設け、各高さ検出器および圧力計の
検出信号を制御器に入力し、前後台車の同じ側の前後空
気ばね内圧間の設定差圧、左右空気ばね間の設定平均高
さと比較演算して、制御器からの制御信号により各給気
弁および排気弁を開閉操作するように構成し、前後台車
の各空気ばねの内圧と高さを検知して、車両がどのよう
な軌道上にあるかを判断し、前台車と後台車の同じ側に
ある前後空気ばね内圧の差が、左右いずれも設定差圧内
に納まり、かつ車両がカント逓減区間にある場合は前台
車と後台車の左右空気ばね高さの平均が設定高さ内に納
まり、平坦部およびカント区間にある場合は各空気ばね
の高さが個々に設定高さ内に納まるように答弁の給排気
を行うことにある。
Means for solving the problem In a railway vehicle with an air spring bogie, each air spring of the front and rear bogies is equipped with a height detector, a pressure gauge, and an air supply valve and an exhaust valve that continuously measure each height. The detection signals from the pressure gauge and the pressure gauge are input to the controller, and compared with the set differential pressure between the internal pressures of the front and rear air springs on the same side of the front and rear bogies, and the set average height between the left and right air springs, the control signal from the controller is calculated. The system is configured to open and close each air intake valve and exhaust valve, and detects the internal pressure and height of each air spring on the front and rear bogies to determine what kind of track the vehicle is on, and If the difference in the internal pressure of the front and rear air springs on the same side of the rear bogie is within the set differential pressure on both the left and right sides, and the vehicle is in the cant decreasing section, the average height of the left and right air springs of the front bogie and rear bogie is set. If the height of the air spring is within the set height, and if the height of each air spring is in a flat area or cant area, the air supply and exhaust air is carried out so that the height of each air spring is individually within the set height.

作  用 第2図に示すように、前台車(9)の空気ばね(1) 
(2)と後台車(10)の空気ばね(3)(4)のそれ
ぞれの内圧をP+ 、Pg 、Ps 、P4 とし、ま
たばね高さをh+ 、h* 、h−、h4とし、前後台
車の空気ばねの内圧の差が設定差圧ΔP、より小さい、
すなわち、 Pl−Psi<ΔP。
As shown in Figure 2, the air spring (1) of the front bogie (9)
The internal pressures of air springs (3) and (4) of (2) and rear bogie (10) are respectively P+, Pg, Ps, P4, and the spring heights are h+, h*, h-, h4, and the front and rear bogies The difference in the internal pressure of the air spring is smaller than the set differential pressure ΔP,
That is, Pl-Psi<ΔP.

Pl  P4 <ΔP。Pl P4 <ΔP.

を満足するように空気ばねの内圧制御を行えば、空気ば
ねの内圧変動を小さく押えることができる。
If the internal pressure of the air spring is controlled to satisfy the following, fluctuations in the internal pressure of the air spring can be suppressed to a small level.

また、カント区間においては、左右空気ばねの内圧に差
がなければ、第6図に示すように、前台車(9)、後台
車(10)ともに内軟側に向けてモーメントが発生しカ
ント負けが起る。
In addition, in the canting section, if there is no difference in the internal pressure between the left and right air springs, a moment will be generated in both the front bogie (9) and the rear bogie (10) toward the soft side, as shown in Figure 6, resulting in loss of cant. happens.

しかし、例えば第6図の状態で第5図に示すように外軌
側の空気ばね(2) (4)の内圧P*、P+が低く、
内軟側の空気ばね(1) (3)の内圧P+ 、P−が
高いカント区間では、十分に左右空気ばね内圧の間に差
を発生させ、カント負は現象の発生を防止することがで
きる。
However, for example, in the state shown in Fig. 6, the internal pressures P* and P+ of the air springs (2) and (4) on the outer track side are low, as shown in Fig. 5.
In the cant section where the internal pressures P+ and P- of the inner soft side air springs (1) and (3) are high, a sufficient difference is generated between the left and right air spring internal pressures, and negative cant can prevent the phenomenon from occurring. .

空気ばね高さ制御は、連続的に計測できる高さ検出器、
例えば第3図に示すロータリエンコーダ(5)を車体側
に取着し、そのロークリエンコーダ回動角を計るレバー
(16)を台車側に取着した装置により、高さを角度に
変換しデジタル信号として制御器に入力することにより
、ばね高さを連続的に検知し、車両が軌道の平坦部、カ
ント区間あるいはカント逓減区間のいずれにあるかを迅
速に判断することができ、その車***置に応じて微妙な
高さ制御が行われる。すなわち、車両がカント逓減区間
にある場合は、 上記2式を満足していないとき、制御器からの出力によ
り弁が開閉操作され高さ制御が行われる。
Air spring height control uses a height detector that can measure continuously,
For example, a rotary encoder (5) shown in Fig. 3 is attached to the vehicle body, and a lever (16) for measuring the rotating angle of the rotary encoder is attached to the bogie side, and the height is converted into an angle and digitalized. By inputting the spring height as a signal to the controller, it is possible to continuously detect the spring height, quickly determine whether the vehicle is on a flat section of the track, a cant section, or a decreasing cant section, and determine the vehicle body position. Subtle height control is performed depending on the height. That is, when the vehicle is in the cant decreasing section and the above two equations are not satisfied, the valve is opened and closed by the output from the controller to perform height control.

上記のごとく、カント逓減区間では、空気ばねの左右平
均高さを所定範囲内に納める制御を行うことにより、車
体を安定状態に保つことができる。
As described above, in the cant decreasing section, the vehicle body can be maintained in a stable state by controlling the left and right average heights of the air springs to be within a predetermined range.

また、平坦部、カント区間では、各空気ばねの高さがΔ
he内に納まるように個々に制御することにより、車体
のかだむきをより正確に制御することができる。
In addition, in flat areas and cant sections, the height of each air spring is Δ
By individually controlling the angles to fit within he, it is possible to more accurately control the tilting of the vehicle body.

実施例 この発明の実施例を図面に基いて説明する。Example Embodiments of this invention will be described based on the drawings.

第1図に示すように、鉄道車両の前台車(9)  と後
台車(10)の左右側に設けた空気ばね(1) (2)
および(3)(4)の夫々に、高さ検出器として第3図
に示す要領でロータリエンコーダ(5)を設置し、また
圧力計(17)を設ける。
As shown in Figure 1, air springs (1) (2) are installed on the left and right sides of the front bogie (9) and rear bogie (10) of a railway vehicle.
, (3) and (4), a rotary encoder (5) is installed as a height detector as shown in FIG. 3, and a pressure gauge (17) is also installed.

また、元空気溜(6)と各空気ばね(1)〜(4) の
間を接続した配管(7)の途中に、給気弁(11) (
12)(13) (14)を設けるとともに、他に設け
た排気管に排気弁(21) (22) (23) (2
4)を設ける。そして、各ロークリエンコーダ(5) 
の検出信号を制御器(8)に入力するように配線し、ま
た各給気弁および各排気弁を開閉する制御器(8) か
らの出力(を圧あるいは電流)を伝えるための配線をす
る。
In addition, an air supply valve (11) (
12) (13) (14) and also install exhaust valves (21) (22) (23) (2) in other exhaust pipes.
4). And each row reencoder (5)
Wire to input the detection signal to the controller (8), and also wire to transmit the output (pressure or current) from the controller (8) that opens and closes each intake valve and each exhaust valve. .

この発明による空気ばねの電子制御は、先に記載したと
おり、前後台車の各空気ばねの内圧と高さを連続して検
知し、車両がどのような軌道上にあるかを判断し、前台
車(9)と後台車(10)の同じ側にある前後空気ばね
(1) (3)および(2)(4)の内圧のの差IP、
−ps  +およびIP、−P、lが設定差圧ΔP、を
超えているときは、制御器(8) から答弁へ制御信号
全流して答弁の開閉を行ない、前後空気ばねの内圧の差
が左右いずれの側も設定差圧内に納まるように制御し、
かつ車両がカント逓減区間にあれば、前台車後台車の左
右空気ばね(1)(2)および(3)(4)の高さの平
均が設定高さ内に納まるように制御する。
As described above, the electronic control of air springs according to this invention continuously detects the internal pressure and height of each air spring on the front and rear bogies, determines what kind of trajectory the vehicle is on, and then (9) and the difference IP in the internal pressure of the front and rear air springs (1) (3) and (2) (4) on the same side of the rear bogie (10),
-ps +, IP, -P, and l exceed the set differential pressure ΔP, the control signal is fully passed from the controller (8) to the answer valve to open and close the answer valve, and the difference in internal pressure between the front and rear air springs is Controls so that the differential pressure is within the set pressure on either the left or right side,
If the vehicle is in the cant decreasing section, control is performed so that the average height of the left and right air springs (1), (2), (3) and (4) of the front bogie and the rear bogie falls within the set height.

また、車両がカント区間にあれば、各空気ばねの高さを
Δhe内に納まるように個々に制御するので自然に内航
側空気ばねの内圧が外軌側空気ばねの内圧より高くなり
左右空気ばねの内圧の間に差が発生し、カント負は現象
の発生を防止する。
In addition, if the vehicle is in the cant section, the height of each air spring is individually controlled to stay within Δhe, so the internal pressure of the inward side air spring is naturally higher than the internal pressure of the outer track side air spring, and the left and right air springs are A difference occurs between the internal pressures of the springs, and the negative cant prevents the occurrence of the phenomenon.

次に、この発明の空気ばね電子制御方法を鉄道車両(長
さ20m)に実施し、カント105mm を有する曲率
半径150mの曲線路(カント逓減率γ=1/275 
)で試験を行なった。
Next, the air spring electronic control method of the present invention was applied to a railway vehicle (length 20 m) on a curved road with a cant of 105 mm and a radius of curvature of 150 m (cant reduction rate γ = 1/275).
) was tested.

試験は、10Km/h走行中、5Km/h走行中および
カント区間、カント逓減区間における代表地点に車両を
停止して行なった。また、内圧制御によって車両が安定
するまでの時間も測定した。なお、比較のため、従来の
高さ調整弁を用いた方法(左右差圧弁の差圧設定値1.
2Kg/ cm″)でも試験をした。その結果を第1表
に示す。
The test was conducted while the vehicle was traveling at 10 km/h, at 5 km/h, and at representative points in cant sections and decreasing cant sections. We also measured the time it took for the vehicle to stabilize due to internal pressure control. For comparison, a method using a conventional height adjustment valve (differential pressure setting value of left and right differential pressure valves 1.
2Kg/cm'') was also tested. The results are shown in Table 1.

この結果より、この発明の実施によれば、空気ばねの内
圧変動を低く押えることができ、また制。
From this result, according to the implementation of the present invention, the internal pressure fluctuation of the air spring can be suppressed and controlled.

御の収束が速く、安定した制御ができることがわかる。It can be seen that control convergence is fast and stable control is possible.

(以下余白) 第5図は車両がカント区間にある際の空気ばね内圧の高
低を示す説明図、第6図は車両がカント区間にある際の
前台車(3図)および後台車(b図)に作用するモーメ
ントを示す説明図、第7図は車両がカント逓減区間にあ
る際、車体の前部と後部に発生するモーメントを示す説
明図であり、3区はカント逓減区間と車体との関係を、
B図は車体前部のモーメントを、0図は車体後部のモー
メントを、それぞれ示す。
(Left space below) Figure 5 is an explanatory diagram showing the level of internal pressure of the air spring when the vehicle is in the cant section, and Figure 6 is the front bogie (Figure 3) and rear bogie (Figure b) when the vehicle is in the cant zone. ). Figure 7 is an explanatory diagram showing the moment that occurs at the front and rear of the vehicle body when the vehicle is in the decreasing cant section. Section 3 is an explanatory diagram showing the moment acting on the decreasing cant zone and the vehicle body. relationship,
Figure B shows the moment at the front of the vehicle body, and Figure 0 shows the moment at the rear of the vehicle body.

1〜4・・・空気ばね 5・・・ロータリエンコーダ 6・・・元空気溜      7・・・配管8・・・制
御器       9・・・前台車10・・・後台車 11〜14・・・給気弁     15・・・車体17
・・・圧力計 21〜24・・・排気弁
1-4... Air spring 5... Rotary encoder 6... Original air reservoir 7... Piping 8... Controller 9... Front truck 10... Rear truck 11-14... Air supply valve 15...car body 17
...Pressure gauges 21 to 24...Exhaust valve

Claims (1)

【特許請求の範囲】[Claims] 1 空気ばね台車を有する鉄道車両において、前後台車
の各空気ばねに、連続的に計測する高さ検出器、圧力計
および給気弁と排気弁を設け、各高さ検出器および圧力
計の検出信号を制御器に入力し、前後台車の同じ側の前
後空気ばね内圧間の設定差圧、左右空気ばね間の設定平
均高さと比較演算して、制御器からの制御信号により各
給気弁および排気弁を開閉操作するように構成し、前後
台車の各空気ばねの内圧と高さを検知して、車両がどの
ような軌道上にあるかを判断し、前台車と後台車の同じ
側にある前後空気ばね内圧の差が、左右いずれも設定差
圧内に納まり、かつ車両がカント逓減区間にある場合は
前台車と後台車の左右空気ばね高さの平均が設定高さ内
に納まり、平坦部およびカント区間にある場合は各空気
ばねの高さが個々に設定高さ内に納まるように各弁の給
排気を行ない、空気ばね内圧変動、輪重変動を抑制した
ことを特徴とする鉄道車両の空気ばね制御方法。
1. In a railway vehicle with an air spring bogie, each air spring of the front and rear bogies is equipped with a height detector, pressure gauge, and air supply valve and exhaust valve that continuously measure the height, and the detection of each height detector and pressure gauge is provided. The signal is input to the controller and compared with the set differential pressure between the internal pressures of the front and rear air springs on the same side of the front and rear bogies and the set average height between the left and right air springs. It is configured to open and close the exhaust valve, and detects the internal pressure and height of each air spring on the front and rear bogies to determine what kind of track the vehicle is on, and then installs an air spring on the same side of the front and rear bogies. If the difference in the internal pressure of the front and rear air springs is within the set differential pressure on both the left and right sides, and the vehicle is in the cant decreasing section, then the average height of the left and right air springs of the front bogie and the rear bogie is within the set height, When the vehicle is in a flat area or a cant section, each valve is supplied and exhausted so that the height of each air spring is within a set height, thereby suppressing fluctuations in air spring internal pressure and wheel load fluctuations. Air spring control method for railway vehicles.
JP27403489A 1989-10-20 1989-10-20 Air spring control method of railroad vehicle Pending JPH03135871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27403489A JPH03135871A (en) 1989-10-20 1989-10-20 Air spring control method of railroad vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27403489A JPH03135871A (en) 1989-10-20 1989-10-20 Air spring control method of railroad vehicle

Publications (1)

Publication Number Publication Date
JPH03135871A true JPH03135871A (en) 1991-06-10

Family

ID=17536043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27403489A Pending JPH03135871A (en) 1989-10-20 1989-10-20 Air spring control method of railroad vehicle

Country Status (1)

Country Link
JP (1) JPH03135871A (en)

Similar Documents

Publication Publication Date Title
JP7434551B2 (en) Track vehicle tilt system, tilt control method, and track vehicle
EP2692608B1 (en) Method for controlling body lean of railroad car
EP1235707B1 (en) Comfort monitoring method and system for a tilting train
US20040150173A1 (en) Vehicle suspensions
JP3440283B2 (en) Vehicle inclination control method and inclination control device
JPH10287241A (en) Car body tilt control device for rolling stock and its car body tilt control method
JPS5940667B2 (en) rocking suspension system
JP2002316641A (en) Vehicle body inclination control device for rolling stock
JPH05116627A (en) Vehicle body control method for railway rolling stock
JPH03135871A (en) Air spring control method of railroad vehicle
JPH0674041B2 (en) Electronic control method for air springs for railway vehicles
CZ20013442A3 (en) Method for regulating air spring and air spring system for a railway vehicle
JP4292973B2 (en) Railway vehicle body tilt control method and apparatus
JP3391274B2 (en) Air supply / exhaust method for vehicle body tilt control by air spring in railway vehicle
KR100580529B1 (en) pressure regulation system for tire
JP2832329B2 (en) Vehicle body tilt control method for railway vehicles
JPH0415160A (en) Controlling method for attitude of vehicle body of train
JPH0737231B2 (en) Electronic control method for air springs for railway vehicles
JPH03148370A (en) Air spring control method for rolling stock
JPH0382665A (en) Air spring control method for railroad vehicle
JPH03167071A (en) Body control method for rolling stock
JPH0737230B2 (en) Load-bearing electronic control method for railcar air springs
US4041878A (en) Speed and track curvature suspension control system
JPH06270805A (en) Fail-safe method of vehicle body inclination control of rolling stock
JPH03200470A (en) Method of preventing body from colliding with stopper at transition curve