JPH0788170B2 - Diagnostic method for air spring electronic control mechanism for railway vehicle - Google Patents

Diagnostic method for air spring electronic control mechanism for railway vehicle

Info

Publication number
JPH0788170B2
JPH0788170B2 JP32397490A JP32397490A JPH0788170B2 JP H0788170 B2 JPH0788170 B2 JP H0788170B2 JP 32397490 A JP32397490 A JP 32397490A JP 32397490 A JP32397490 A JP 32397490A JP H0788170 B2 JPH0788170 B2 JP H0788170B2
Authority
JP
Japan
Prior art keywords
pressure
air
air spring
height
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32397490A
Other languages
Japanese (ja)
Other versions
JPH04191169A (en
Inventor
広一郎 石原
龍太郎 石川
智志 小泉
修二 浜本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP32397490A priority Critical patent/JPH0788170B2/en
Publication of JPH04191169A publication Critical patent/JPH04191169A/en
Publication of JPH0788170B2 publication Critical patent/JPH0788170B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Vehicle Body Suspensions (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、鉄道車両用空気ばね電子制御機構の点検時
に故障診断を行ない定量的かつ客観的に異常を抽出し、
故障の早期発見に役立つ鉄道車両用空気ばね電子制御機
構の診断方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a failure diagnosis at the time of inspecting an air spring electronic control mechanism for a railway vehicle to quantitatively and objectively extract an abnormality,
The present invention relates to a method for diagnosing an air spring electronic control mechanism for railway vehicles, which is useful for early detection of a failure.

従来の技術 空気ばねを有する鉄道車両は、その時々の荷重に対応し
て圧縮空気量を自動的に調整して、車両の高さを一定に
保つためにリンクとレベリングバルブを組合せた自動高
さ調整機構を備えている。また、左右の空気ばね内圧を
均等に保つための差圧調整弁が左右空気ばねの間に設け
られている。
2. Description of the Related Art A railway vehicle with an air spring automatically adjusts the amount of compressed air according to the load at each time, and automatically adjusts the height of the vehicle by combining a link and a leveling valve to maintain a constant height. Equipped with an adjustment mechanism. Further, a differential pressure adjusting valve for keeping the inner pressures of the left and right air springs even is provided between the left and right air springs.

しかし、鉄道車両が曲線路の緩和曲線すなわちカント逓
減区間で停車した場合は、自動高さ調整機構の機能によ
り空気ばね高さを一定に保持しようとする。その結果、
車体の前後台車には、互いに逆向きのモーメントが生じ
るが、車体のねじり剛性が大きいため、前後台車で発生
するモーメントのつり合う位置で車体は停止する。
However, when the railway vehicle stops on the gentle curve of the curved road, that is, in the gradually decreasing section, the air spring height is kept constant by the function of the automatic height adjusting mechanism. as a result,
Although the front and rear bogies of the vehicle body generate mutually opposite moments, since the torsional rigidity of the vehicle body is large, the vehicle body stops at a position where the moments generated by the front and rear bogies are balanced.

この状態では、自動高さ調整機構の高さ調整弁の給排気
が継続し、車両の対角方向に位置する空気ばねの圧力が
不均一となり、輪重変動が大きく、荷重負担の少ない車
輪は、いわゆる輪重抜けを生じ、車両の再起動時に脱線
する危険性がある。
In this state, the air supply and exhaust of the height adjustment valve of the automatic height adjustment mechanism continues, the pressure of the air springs located diagonally of the vehicle becomes uneven, and the wheel load fluctuates greatly and There is a risk of so-called wheel loss and derailment when the vehicle is restarted.

上記カント逓減区間における輪重変動を防止し、車両の
再起動時の脱線防止を目的として、出願人は先に、流量
調整弁を使った鉄道車両用空気ばねの電子制御方法(特
願平1−308582号)、ON−OFF制御の電磁弁を使った鉄
道車両用空気ばねの電子制御方法(特願平1−308583
号)および曲線路上での停車時に車体の無傾斜化を図
り、スムーズな乗降ができる鉄道車両の車体制御方法
(特願平1−308184号)等を提案した。
For the purpose of preventing wheel load fluctuations in the cant diminishing section and preventing derailment at the time of restarting the vehicle, the applicant previously described an electronic control method for an air spring for a railway vehicle using a flow control valve (Japanese Patent Application No. -308582), an electronic control method for an air spring for a railway vehicle using an ON-OFF control solenoid valve (Japanese Patent Application No. 1-308583).
No.) and a vehicle body control method for a railway vehicle (Japanese Patent Application No. 1-308184) that allows the vehicle body to be untilted when the vehicle is stopped on a curved road so that the passenger can get on and off smoothly.

発明が解決しようとする課題 上記鉄道車両用空気ばねの電子制御方法は、いずれも高
さ検出計、圧力計および車体傾斜角計等のセンサーを使
用し、これらの各センサーからの検出値をデジタル化し
制御器に入力して演算処理し、その結果を給排気弁へ出
力して弁の開閉を制御するものである。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention All of the above-described electronic control methods for railroad vehicle air springs use sensors such as a height detector, a pressure gauge, and a vehicle body tilt angle meter, and digitally detect values from these sensors. It is input to a controller and arithmetically processed, and the result is output to the supply / exhaust valve to control opening / closing of the valve.

ところが、電子制御装置が長期間使用中に、機器のいず
れかに異常が生じた場合、制御結果に不安定などの現象
となって現われるが、逆に故障機器を特定することは相
当困難である。
However, if an abnormality occurs in any of the devices during the long-term use of the electronic control device, the control result may show an unstable phenomenon or the like, but it is rather difficult to identify the defective device. .

この発明は、かかる現状にかんがみ、空気ばね電子制御
装置の点検時に機器の異常を定量的な判断基準にしたが
って自動検出する自動診断方法を提供するものである。
In view of the present situation, the present invention provides an automatic diagnosis method for automatically detecting an abnormality of a device according to a quantitative determination standard when inspecting an air spring electronic control device.

課題を解決するための手段 上記目的を達成するため、この発明は、空気ばね台車を
有する鉄道車両において、前後台車の各空気ばねに、連
続的に計測する高さ計、圧力計および傾斜角計等のセン
サーを用いて、各センサーからの検出信号を制御器に入
力して演算処理し、制御器からの制御信号により各空気
ばねの電子制御機構において、車両が水平位置に停止し
ている状態で、初期条件として空気ばね圧力が0.3気圧
以下の零に近い範囲にあること、ばね高さが下ストッパ
ー当りしていること、車体傾斜角の絶対値が0.3゜以下
の零に近い範囲にあることの3条件を満しているとき、
次の〜項のうち1ないし複数の条件から外れている
とき、車両内の空気ばね位置とエラーコードを記憶し、
かつ表示する鉄道車両用空気ばね電子制御機構の診断方
法である。
Means for Solving the Problems In order to achieve the above object, the present invention provides a height gauge, a pressure gauge, and a tilt angle meter for continuously measuring each air spring of a front and rear bogie in a railway vehicle having an air spring bogie. The detection signal from each sensor is input to the controller and arithmetic processing is performed using such sensors, and the vehicle is stopped at the horizontal position in the electronic control mechanism of each air spring by the control signal from the controller. As the initial conditions, the air spring pressure is in the range of less than 0.3 atm near zero, the spring height is in contact with the lower stopper, and the absolute value of the vehicle body inclination angle is in the range of less than 0.3 ° near zero. When all three conditions are met,
When one or more of the following items (1) to (4) are not satisfied, the position of the air spring in the vehicle and the error code are stored,
And, it is a method of diagnosing an air spring electronic control mechanism for a railway vehicle to be displayed.

一定短時間の間、給気弁を開き、排気弁を閉じた状
態に保持し、設定圧力以上となるか、どうか、 前項により設定圧力以上となった状態から、逆に
一定時間の間給気弁を閉じ、排気弁を開いて大気中へ排
気したとき圧力が零となるか、どうか、 一車両内の全空気ばね内圧が零の状態で全空気ばね
の給気弁を開き、排気弁を閉じて各空気ばね高さが設定
高さ以上となるまで給気を続け、その過程で短時間(1
秒程度)内の高さの変化量が設定値を超えるか、どう
か、 一車両内の全空気ばね高さをストッパー当りをしな
い中立レベルに立ち上げたときの空気ばね内圧が設定下
限圧と上限圧の間にあるか、どうか、 前項により空気ばね内圧が設定下限圧と設定上限
圧の間にある状態で車体の片側にある排気弁または給気
弁を開き車体をローリングさせ、そのとき傾斜角センサ
ーから検出される車体傾斜角が、左右の空気ばねの高さ
計から計算される車体傾斜角と誤差の範囲で一致してい
るか、どうか、 作用 鉄道車両用空気ばね電子制御機構に、この発明の診断方
法を実施する場合、制御周期が0.5〜1秒のオーダで制
御の安定度を増加するため、各弁(オン・オフ制御の電
磁弁)には2mmφ程度のオリフィスを挿入し、容量50〜1
00リットルの空気ばねおよび補助空気室へ元溜圧(6〜
8気圧)で給排気を行なう。そして、電子制御機構に組
み込まれた自己診断システムにより次の要領で制御機構
異常の診断が行なわれる。
Open the air supply valve and keep the exhaust valve closed for a certain period of time to see if the pressure exceeds the set pressure or not. Close the valve and open the exhaust valve to see if the pressure becomes zero when exhausted to the atmosphere.Open the air supply valve of all air springs with the internal pressure of all air springs in the vehicle zero and open the exhaust valve. Close the air supply and continue supplying air until the height of each air spring exceeds the set height.
Whether the amount of change in height exceeds the set value, the air spring internal pressure when the height of all the air springs in one vehicle is raised to a neutral level without hitting the stopper Whether the pressure is between the pressure or not, open the exhaust valve or the air supply valve on one side of the vehicle body while the air spring internal pressure is between the set lower limit pressure and the set upper limit pressure according to the preceding paragraph, and roll the vehicle body at that time. Whether or not the vehicle body tilt angle detected by the sensor matches the vehicle body tilt angle calculated from the height gauges of the left and right air springs within the range of error. In order to increase the control stability in the order of 0.5 to 1 second in the control cycle when performing the diagnostic method of No. 2, insert an orifice of about 2 mmφ into each valve (solenoid valve for on / off control) with a capacity of 50 ~ 1
The original accumulated pressure (6 ~
Supply and exhaust air at 8 atm. Then, the self-diagnosis system incorporated in the electronic control mechanism diagnoses the control mechanism abnormality in the following manner.

A〔圧力計・給気弁の診断〕 前記のごとく弁には2mmφ程度のオリフィスを使用して
おり、元溜圧6〜8気圧で容量75リットルの空気ばねへ
空気を供給すると第3図に示すように、時間tと圧力P
との間に5〜60秒の間、空気ばねは立ち上らないので
(P≦2気圧)、時間tと圧力Pとの間に線型な関係が
存在し、精度、再現性が良く、圧力計、給気弁が正常な
ときは、ある一定の設定時間ta後には(1)式を満足す
る。
A [Diagnosis of Pressure Gauge / Air Supply Valve] As mentioned above, the valve uses an orifice of about 2 mmφ, and when air is supplied to an air spring with a capacity of 75 liters at an original reservoir pressure of 6 to 8 atm, it is shown in FIG. As shown, time t and pressure P
Since the air spring does not rise for 5 to 60 seconds (P ≤ 2 atm), there is a linear relationship between the time t and the pressure P, the accuracy and reproducibility are good, and the pressure meter, when the air supply valve is normal, after a certain set time t a, thereby satisfying the expression (1).

Pa≦P(ta) ……(1)式 B〔圧力計・排気弁〕 排気の場合も同様で、第4図に示すように、弁開時間tb
=120秒、下ストッパー当り時の圧力Pb=0.3気圧程度に
選定すれば、線型性の良いところで判断でき、(2)式
を満足しておれば異常がない。
P a ≦ P (t a) ...... (1) Formula B [pressure gauge and exhaust valves] The same applies to the case of the exhaust, as shown in FIG. 4, the valve opening time t b
= 120 seconds, and the pressure at the time of hitting the lower stopper P b = 0.3 atm, it is possible to judge where the linearity is good, and there is no abnormality if the formula (2) is satisfied.

P(tb)≦Pb ……(2)式 C〔高さ計の診断〕 高さ計はロータリエンコーダの多芯のオン・オフの2進
のビット信号で入力することが多く、この発明を実施す
る空気ばね電子制御装置でも採用されている。
P (t b ) ≦ P b (2) Formula C [Height Gauge Diagnosis] The height meter is often input by a multi-core on / off binary bit signal of the rotary encoder. It is also used in the air spring electronic control device that implements.

空気ばねに給気を続け圧力が2気圧前後となるまでに20
秒間程の間に空気ばねは第5図に示すように、パンク時
の高さ−30mmから設定高さhc(=20mm)まで単調に緩や
かに立ち上る。このとき短時間△tc(1秒)の間に変化
量△hが例えばhc=20mmとなることは正常な場合にはあ
り得ず、センサーのビット飛びである可能性が大きい。
Continue supplying air to the air spring until the pressure reaches around 2 atmospheres 20
As shown in Fig. 5, the air spring rises monotonously and gently from the height of -30 mm at the time of puncture to the set height h c (= 20 mm) in about a second. At this time, it is impossible in a normal case that the amount of change Δh becomes, for example, h c = 20 mm in a short time Δt c (1 second), and it is highly possible that the sensor bit skips.

△tc時間の変化量△hは(3)式で表わされ、空気ばね
高さの変化量△hが(4)式を満足しておれば高さ計は
正常である。
The change amount Δh of Δt c time is expressed by the equation (3), and if the change amount Δh of the air spring height satisfies the equation (4), the height meter is normal.

△h=|h(t+△tc)−h(t)| ……(3)式 △h≦△hc ……(4)式 D〔圧力計の診断〕 空車状態で立ち上げに要する圧力は、車体重量によって
決まり、気圧の単位で小数点第一位レベルでは常に同じ
であり(5)式で表わされる。これからずれることは圧
力計の異常である場合が多い。
Δh = | h (t + Δt c ) −h (t) | Equation (3) Δh ≦ Δh c Equation (4) D [Diagnosis of pressure gauge] Pressure required to start up in an empty state Is determined by the weight of the vehicle body, is always the same at the first decimal place in the unit of atmospheric pressure, and is expressed by the equation (5). The deviation from this is often an abnormality of the pressure gauge.

PL<P<Ph ……(5)式 例えば、立ち上げ圧力P=2.0のとき、PL=1.9、Ph=2.
1程度に設定すれば良い。
P L <P <P h (5) For example, when the starting pressure P = 2.0, P L = 1.9, P h = 2.
It should be set to about 1.

E〔傾斜角計・高さ計の診断〕 意識的に車体左右の給排気(給気または排気のみでもよ
い)を行なって車体を片側へ傾斜させ、そのときの傾斜
角を傾斜角計と高さ計の二つの方法で計測し、傾斜角計
により計測された傾斜角θの値と高さ計により算出さ
れた傾斜角θの値を比較し誤差(△θ)範囲内で一
致し、第6図に示す上下破線の範囲内にあれば正常であ
る。ただし、ピット線上で実施する場合は車体が周囲の
構造物と接触しない範囲の傾斜角で実施する必要があ
る。また、傾斜する角度を2.0゜程度に抑えれば車両限
界を満足している位置では問題ない。
E [Diagnosis of inclinometer / height meter] Intentionally perform air supply / exhaust to the left and right of the vehicle (air supply or exhaust only may be used) to incline the vehicle to one side. The angle of inclination θ m measured by the inclinometer is compared with the value of the inclination angle θ h calculated by the height meter, and the error is measured within the error (Δθ e ) range. However, it is normal if it is within the range of the upper and lower broken lines shown in FIG. However, when it is carried out on the pit line, it is necessary to carry out the tilt angle within a range where the vehicle body does not come into contact with surrounding structures. In addition, if the angle of inclination is suppressed to about 2.0 °, there will be no problem at the position where the vehicle limit is satisfied.

なお、高さ計による傾斜角θの算出法は以下のとおり
である。
The method of calculating the tilt angle θ h by the height meter is as follows.

|θ−θm|≦△θ ……(7)式 ただし、 h1、h2:左右空気ばね高さ b:左右空気ばね高さ計間の距離 △θe:設定誤差 例えば、θ=±2゜のとき誤差△θ=0.3゜の範囲
でθと一致しておれば正常である。
│θ h −θ m | ≦ Δθ e (7) where h 1 and h 2 are the heights of the left and right air springs b: The distance between the height gauges of the left and right air springs Δθ e : Setting error For example, θ When h = ± 2 °, it is normal if it coincides with θ m within the range of error Δθ e = 0.3 °.

以上の自己診断を行なう場合には、次の初期条件を満た
していることが必要である。
When performing the above self-diagnosis, it is necessary to satisfy the following initial conditions.

初期空気ばね圧力が零に近いこと(≦Pe:0.3気
圧)、 初期ばね高さが下ストッパー当りしていること
(≦:−25mm)、 初期車体傾斜角の絶対値が零に近いこと(≦θf:0.
3゜)、すなわち、水平レール上に存在すること、 上記3つの条件が満たされていなければ、自己診断シス
テムのスイッチをONしても自動的にロックされる。
The initial air spring pressure is close to zero (≦ P e : 0.3 atm), the initial spring height is against the lower stopper (≦: -25 mm), and the absolute value of the initial vehicle body inclination angle is close to zero ( ≤ θ f : 0.
3 °), that is, it exists on the horizontal rail, and if the above three conditions are not satisfied, it is automatically locked even when the switch of the self-diagnosis system is turned on.

これは、もしこの初期条件が満たされていない状態で自
己診断メニューを開始すると、空気ばね電子制御機構は
正常であるにもかかわらず判断基準内に納まらず、異常
と誤認識されるからである。
This is because if the self-diagnosis menu is started when this initial condition is not satisfied, the air spring electronic control mechanism does not fall within the criteria even though it is normal, and is erroneously recognized as abnormal. .

実 施 例 この発明の鉄道車両用空気ばね電子制御装置の診断方法
を第1図に示す鉄道車両の車体制御装置に実施した場合
について説明する。
Practical Example A case will be described in which the method for diagnosing an air spring electronic control device for a railway vehicle according to the present invention is applied to the vehicle body control device for a railway vehicle shown in FIG.

第1図に示すように、鉄道車両の前台車(9)と後台車
(10)の左右側に設けた空気ばね(1)(2)および
(3)(4)のそれぞれに、高さ計としてロータリエン
コーダ(5)を設置する。
As shown in FIG. 1, a height meter is provided on each of the air springs (1) (2) and (3) (4) provided on the left and right sides of the front bogie (9) and the rear bogie (10) of the railway vehicle. A rotary encoder (5) is installed as.

また、元空気溜(6)と各空気ばね(1)〜(4)の間
を接続した配管(7)との途中に、各空気ばねに対する
給気弁(11)(12)(13)(14)を設けるとともに、他
に設けた排気管に排気弁(21)(22)(23)(24)を設
け、さらに圧力計(16)を設ける。
Further, the air supply valves (11) (12) (13) (for each air spring are provided in the middle of the main air reservoir (6) and the pipe (7) connecting between the air springs (1) to (4). 14), exhaust valves (21), (22), (23) and (24) are installed in the other exhaust pipe, and a pressure gauge (16) is installed.

そして、各ロータリエンコーダ(5)、圧力計(16)の
検出信号とともに、傾斜角計(15)の車体傾斜角検出信
号を制御器(8)に入力するように設け、また各給気弁
および排気弁を開閉する制御器(8)からの出力を伝え
るための配線をする。
The rotary encoder (5) and the pressure gauge (16) detection signals as well as the vehicle body inclination angle detection signal of the inclination angle meter (15) are provided so as to be input to the controller (8). Wiring is provided for transmitting the output from the controller (8) that opens and closes the exhaust valve.

この装置による空気ばねの内圧制御は、前台車と後台車
の対角線上にある空気ばねの内圧の和の差の絶対値が設
定差圧より大きいときのみ、制御器(8)から各弁へ制
御信号を流し、給気弁、排気弁を開閉し、各空気ばねの
内圧が設定された目標値内に納まるように制御する。
The internal pressure control of the air spring by this device is controlled from the controller (8) to each valve only when the absolute value of the difference of the sum of the internal pressures of the air springs on the diagonal line of the front bogie and the rear bogie is larger than the set differential pressure. A signal is flown, the air supply valve and the exhaust valve are opened and closed, and the internal pressure of each air spring is controlled so as to fall within the set target value.

差圧が目標値内に納まっているときは、内圧調整を行な
うことなく、次の傾斜角制御と高さ制御に移行する。
If the differential pressure is within the target value, the internal pressure is not adjusted and the control proceeds to the next tilt angle control and height control.

差圧が目標値を外れている場合は、前台車と後台車の対
角線上にある空気ばねの内圧の和の差を判断し、空気ば
ね(1)(4)を給気し空気ばね(2)(3)を排気す
るか、または逆に空気ばね(2)(3)を給気し空気ば
ね(1)(4)を排気して、内圧が目標値内に納まるよ
うに制御する。
If the differential pressure is out of the target value, the difference in the sum of the internal pressures of the air springs on the diagonal lines of the front bogie and the rear bogie is judged, and the air springs (1) and (4) are supplied with air. ) (3) is exhausted, or conversely, the air springs (2) and (3) are supplied and the air springs (1) and (4) are exhausted so that the internal pressure is controlled to fall within the target value.

引続き行なわれる傾斜角制御は、車体の傾斜角が設定値
より大きいかどうかを判断し、設定値内に納まっている
ときは、空気ばねの給排気を行なうことなく次の段階へ
移行する。また、設定値を外れているときは、空気ばね
の給排気の制御信号を出す。
In the tilt angle control that is continuously performed, it is determined whether or not the tilt angle of the vehicle body is larger than the set value, and if it is within the set value, the process proceeds to the next step without supplying / exhausting the air spring. When the value is out of the set value, a control signal for air supply / exhaust of the air spring is output.

さらに、左右空気ばねの平均高さの検出信号は設定平均
高さと比較演算して、外れているときは設定平均高さ内
に納まるように空気ばねの給排気制御が行なわれる。
Further, the detection signal of the average height of the left and right air springs is calculated and compared with the set average height, and when they are out of order, the air supply / exhaust control of the air springs is performed so as to be within the set average height.

この発明の実施により、各弁の故障および高さ計、圧力
計、傾斜各計の故障などによる異常を検知するための診
断システムを構成し、上記空気ばね電子制御装置に組み
込み、自己診断は全メニューを約5分の短時間に終了す
るように設けた。その自己診断のフローチャートを第2
図に示す。
By implementing the present invention, a diagnostic system for detecting malfunctions of valves and malfunctions of height gauges, pressure gauges, tilt meters, etc. is constructed and incorporated in the air spring electronic control unit, and self-diagnosis is fully performed. The menu was set up to be completed in a short time of about 5 minutes. Second flowchart of the self-diagnosis
Shown in the figure.

すなわち、自己判断を行なう際は、スイッチをONすれば
前記した初期条件、、を満しているとき、引き続
き前記した診断メニューA〜Eにより診断が行なわれ、
基準を外れているときは、関係する機器と車両内位置の
エラーコードを記憶し、かつ表示する。
That is, when performing the self-determination, if the switch is turned ON, the above-mentioned initial conditions are satisfied, and then the diagnosis is continuously performed by the above-mentioned diagnosis menus A to E.
When it is out of the standard, the error code of the related equipment and the position inside the vehicle is stored and displayed.

なお、自己診断を行なわないときは、車両運転時に通常
の電子制御が行なわれる。
If self-diagnosis is not performed, normal electronic control is performed when the vehicle is operating.

発明の効果 この発明の診断方法により鉄道車両用空気ばね電子制御
機構の保守点検が自動化され、短時間の内に健全性の評
価ができる。制御システムを熟知していなくても、故障
の種類、故障位置を特定することができ、迅速な対応が
できる。また、制御系の異常を早期に発見することによ
り制御機構の安全性、信頼性が向上する。
EFFECTS OF THE INVENTION The diagnostic method of the present invention automates the maintenance and inspection of the air spring electronic control mechanism for railway vehicles, and makes it possible to evaluate the soundness in a short time. Even if you are not familiar with the control system, you can specify the type of failure and the location of the failure, and you can respond quickly. Moreover, the safety and reliability of the control mechanism are improved by early detection of an abnormality in the control system.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の故障検出方法を実施した鉄道車両用
空気ばね電子制御装置の要部を示す斜視図、第2図はこ
の発明の自己診断システムのフローチャート、第3図は
空気ばねに給気するときの弁の開時間と圧力の関係を示
すグラフ、第4図は逆に排気するときの弁の開時間と圧
力の関係を示すグラフ、第5図は空気ばねが下ストッパ
ー当りの状態から設定高さになるまで給気したときの立
ち上げを時間と高さの関係で示すグラフ、第6図は高さ
計による傾斜角θと傾斜角計による傾斜角θとの誤
差△θ範囲を示すグラフである。 1、2、3、4……空気ばね 5……ロータリエンコーダ 6……元空気溜、7……配管 8……制御器 9……前台車、10……後台車 11、12、13、14……給気弁 15……傾斜角計、16……圧力計 21、22、23、24……排気弁
FIG. 1 is a perspective view showing a main portion of an air spring electronic control device for a railroad vehicle in which the failure detection method of the present invention is implemented, FIG. 2 is a flow chart of a self-diagnosis system of the present invention, and FIG. Fig. 4 is a graph showing the relationship between the valve opening time and the pressure when the gas is discharged, Fig. 4 is a graph showing the relationship between the valve opening time and the pressure when the gas is exhausted, and Fig. 5 is the state where the air spring contacts the lower stopper. Is a graph showing the start-up when the air is supplied to the set height from time to height. Fig. 6 shows the error between the tilt angle θ h by the height meter and the tilt angle θ m by the tilt angle meter. It is a graph which shows the range of (theta) e . 1, 2, 3, 4 ... Air spring 5 ... Rotary encoder 6 ... Original air reservoir, 7 ... Piping 8 ... Controller 9 ... Front bogie, 10 ... Rear bogie 11, 12, 13, 14 ...... Air supply valve 15 ...... Inclination angle gauge, 16 ...... Pressure gauge 21, 22, 23, 24 ...... Exhaust valve

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】空気ばね台車を有する鉄道車両の前後台車
の各空気ばねに、連続的に計測する高さ計、圧力計およ
び傾斜角計等のセンサーを用いて、各センサーからの検
出信号を制御器に入力して演算処理し、制御器からの制
御信号により各空気ばねの給排気弁を開閉操作する鉄道
車両用空気ばねの電子制御機構において、車両が水平位
置に停止している状態で、初期条件として空気ばね圧力
が0.3気圧以下の零に近い範囲にあること、ばね高さが
下ストッパー当りしていること、車体傾斜角の絶対値が
0.3゜以下の零に近い範囲にあることの3条件を満して
いるとき、次の〜項のうち1ないし複数の条件から
外れているとき、車両内の空気ばね位置とエラーコード
を記憶し、かつ表示する鉄道車両用空気ばねの電子制御
機構の診断方法。 一定短時間の間給気弁を開き、排気弁を閉じた状態
に保持したとき設定圧力以上となるか、どうか、 前項により設定圧力以上となった状態から、逆に
一定時間の間給気弁を閉じ、排気弁を開いて大気中へ排
気したとき圧力が零となるか、どうか、 一車両内の全空気ばね内圧が零の状態で全空気ばね
の給気弁を開き、排気弁を閉じて各空気ばね高さが設定
高さ以上となるまで給気を続け、その過程で短時間(1
秒程度)内の高さの変化量が設定値を超えるか、どう
か、 一車両内の全空気ばね高さをストッパー当りのしな
い中立レベルに立ち上げたときの空気ばね内圧が設定下
限圧と上限圧の間にあるか、どうか、 前項により空気ばね内圧が設定下限圧と設定上限
圧の間にある状態で車体の片側にある排気弁または給気
弁を開き車体をローリングさせ、そのとき傾斜角センサ
ーから検出される車体傾斜角が、左右の空気ばねの高さ
計から計算される車体傾斜角と誤差の範囲で一致してい
るか、どうか、
1. A sensor such as a height gauge, a pressure gauge, and an inclinometer, which continuously measures, is used for each of the air springs of the front and rear bogies of a railway vehicle having an air spring bogie, and a detection signal from each sensor is provided. In the electronic control mechanism of the air spring for railway vehicles that inputs and outputs to the controller, performs arithmetic processing, and opens and closes the supply and exhaust valves of each air spring by the control signal from the controller, in the state where the vehicle is stopped at the horizontal position. , The initial condition is that the air spring pressure is in the range of less than 0.3 atm near zero, the spring height is hitting the lower stopper, and the absolute value of the vehicle body inclination angle is
When the three conditions of being in the range of less than 0.3 ° and close to zero are satisfied, and when one or more of the following conditions are not satisfied, the position of the air spring in the vehicle and the error code are stored. And a method for diagnosing an electronic control mechanism of an air spring for a railway vehicle to be displayed. Whether the pressure exceeds the set pressure when the air supply valve is opened for a certain short time and the exhaust valve is kept closed. Whether the pressure becomes zero when the exhaust valve is opened and the gas is exhausted to the atmosphere, open the air supply valve of all air springs with the internal pressure of all air springs in the vehicle zero, and close the exhaust valve. Air supply is continued until the height of each air spring exceeds the set height, and in the process (1
Whether the height change amount within a second exceeds the set value, the internal pressure of the air spring when the height of all the air springs in one vehicle is raised to a neutral level without hitting the stopper Whether the pressure is between the pressure or not, open the exhaust valve or the air supply valve on one side of the vehicle body while the air spring internal pressure is between the set lower limit pressure and the set upper limit pressure according to the preceding paragraph, and roll the vehicle body at that time. Whether the vehicle body inclination angle detected by the sensor matches the vehicle body inclination angle calculated from the height gauges of the left and right air springs within the error range,
JP32397490A 1990-11-26 1990-11-26 Diagnostic method for air spring electronic control mechanism for railway vehicle Expired - Lifetime JPH0788170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32397490A JPH0788170B2 (en) 1990-11-26 1990-11-26 Diagnostic method for air spring electronic control mechanism for railway vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32397490A JPH0788170B2 (en) 1990-11-26 1990-11-26 Diagnostic method for air spring electronic control mechanism for railway vehicle

Publications (2)

Publication Number Publication Date
JPH04191169A JPH04191169A (en) 1992-07-09
JPH0788170B2 true JPH0788170B2 (en) 1995-09-27

Family

ID=18160711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32397490A Expired - Lifetime JPH0788170B2 (en) 1990-11-26 1990-11-26 Diagnostic method for air spring electronic control mechanism for railway vehicle

Country Status (1)

Country Link
JP (1) JPH0788170B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110362883B (en) * 2019-06-25 2023-02-17 中车青岛四方机车车辆股份有限公司 Maintenance assembly process design method and bogie maintenance assembly method
CN115097749A (en) * 2022-05-16 2022-09-23 中国第一汽车股份有限公司 Automatic leveling method for dynamometer iron floor

Also Published As

Publication number Publication date
JPH04191169A (en) 1992-07-09

Similar Documents

Publication Publication Date Title
CN108946367B (en) Elevator operation detection method and device based on relative air pressure and altitude error correction
JPH0368870A (en) Method of compensating error of acceleration sensor
US6425282B2 (en) Portable single car test device
US5963883A (en) Modified airflow algorithm with compensation for variations in main reservoir air pressure and ambient airflow
US5563353A (en) Software nullification of transducer induced offset errors within a flow rate measurement system
JP3285861B2 (en) Tank exhaust device for vehicle, method of inspecting function of exhaust device, and inspection device
US5086656A (en) Method and apparatus for calculating the axle load of a vehicle
US6859700B2 (en) Method for functional testing of a lateral-acceleration sensor
JPH0788170B2 (en) Diagnostic method for air spring electronic control mechanism for railway vehicle
JP2003240626A (en) Wheel load acquiring device, wheel load acquiring method, rolling stock, maintenance method of rolling stock and maintenance method of track
JPH08166309A (en) Differential-pressure measuring apparatus with clogging-diagnosing mechanism of connecting pipe
JP3721961B2 (en) Abnormality inspection method and abnormality inspection device
US5650561A (en) Diagnostic device for determining the pneumatic health of a bubble-type fuel measuring system
JPH05116627A (en) Vehicle body control method for railway rolling stock
EP3476678A1 (en) Brake pipe length estimation
JPH0737231B2 (en) Electronic control method for air springs for railway vehicles
JPS6435053A (en) Fault diagnosis device for atmospheric pressure sensor
JPH01112117A (en) Detecting device for rest of liquid in tank
JP2006083943A (en) Method and device for monitoring liquefied gas tank
JPH04176772A (en) Method for detecting failure of air spring electronic control mechanism for rolling stock
JP7027297B2 (en) Anomaly detection method for air springs for railway vehicles
JP3107861B2 (en) Dump truck tire radius measurement system
JPH0757606B2 (en) Adjustment method of air spring electronic control mechanism for railway vehicle
JPH0674040B2 (en) Electronic control method for air springs for railway vehicles
JP2005140765A (en) Method for measuring supplied amount of vehicle-mounted object

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080927

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080927

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090927

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20090927

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20100927

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20100927

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 16

Free format text: PAYMENT UNTIL: 20110927

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 16

Free format text: PAYMENT UNTIL: 20110927