JPH0734367B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JPH0734367B2
JPH0734367B2 JP2317348A JP31734890A JPH0734367B2 JP H0734367 B2 JPH0734367 B2 JP H0734367B2 JP 2317348 A JP2317348 A JP 2317348A JP 31734890 A JP31734890 A JP 31734890A JP H0734367 B2 JPH0734367 B2 JP H0734367B2
Authority
JP
Japan
Prior art keywords
aqueous electrolyte
active material
positive electrode
self
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2317348A
Other languages
Japanese (ja)
Other versions
JPH04188571A (en
Inventor
靖彦 美藤
祐之 村井
修二 伊藤
▲吉▼徳 豊口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2317348A priority Critical patent/JPH0734367B2/en
Publication of JPH04188571A publication Critical patent/JPH04188571A/en
Publication of JPH0734367B2 publication Critical patent/JPH0734367B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、非水電解液二次電池の改良特に電池の自己放
電特性の向上を目指すものである。
TECHNICAL FIELD The present invention aims to improve a non-aqueous electrolyte secondary battery, in particular, improve self-discharge characteristics of the battery.

従来の技術 リチウムまたはリチウム化合物を負極とする非水電解質
二次電池は高電圧で高エネルギー密度となるとこが期待
され、多くの研究が行われている。
2. Description of the Related Art Non-aqueous electrolyte secondary batteries using lithium or a lithium compound as a negative electrode are expected to have high energy density at high voltage, and many studies have been conducted.

特に、これら電池の正極活物質としてMnO2やTiS2がよく
検討されている。最近、タックレイらによりLiMn2O4
正極活物質となることが報告された(マテリアル リサ
ーチ ブレイン1983年18巻461−472ページ)。LiMn2O4
はスピネル構造をした立方晶の結晶構造であり、電池の
正極活物質として用いた場合、電池の放電電圧は4ボル
ト程度の高い電圧となり、正極活物質として有望と考え
られている。
In particular, MnO 2 and TiS 2 have been well studied as a positive electrode active material for these batteries. Recently, Tackley et al. Reported that LiMn 2 O 4 could be used as a positive electrode active material (Material Research Brain 1983 Vol. 18, pp. 461-472). LiMn 2 O 4
Is a cubic crystal structure having a spinel structure, and when used as a positive electrode active material for a battery, the discharge voltage of the battery becomes a high voltage of about 4 V and is considered to be promising as a positive electrode active material.

LiMn2O4は正極活物質の活物質中のLi量Xと開路電位の
関係を第1図に示す。4ボルト付近と2.8ボルト付近の
2段の電位曲線となる。
LiMn 2 O 4 shows the relationship between the Li amount X in the active material of the positive electrode active material and the open circuit potential in FIG. It has a two-step potential curve near 4 volts and around 2.8 volts.

これまで、電位曲線の2.8ボルト付近の2段目に着目
し、充電電圧を4ボルト程度とし、放電を2ボルト程度
まで行う充放電サイクルを行なわせることにより、サイ
クル特性の良好な電池を得る工夫がなされている。
Up to now, paying attention to the second stage near the potential curve of 2.8 V, by setting the charging voltage to about 4 V and performing the charging / discharging cycle of discharging to about 2 V, a device to obtain a battery with good cycle characteristics Has been done.

しかし、より高エネルギー密度を得るには、4.5ボルト
まで充電し3ボルトまで放電する電位曲線のうち1段目
を利用する充放電サイクル、つまりXが1以下好ましく
は0.7以下になるまで充電し、Xが1になるまであるい
は、1.85になるまで放電する方が有利である。しかし、
Xが0.7以下になるまで充電する1段目の充放電のサイ
クル特性は悪く約50サイクル程度で放電容量は半分に低
下する。この劣化の度合は、2段目の電位曲線を用いる
サイクルに較べ極めて大きい。
However, in order to obtain a higher energy density, a charge / discharge cycle that uses the first stage of the potential curve that charges to 4.5 V and discharges to 3 V, that is, charge until X becomes 1 or less, preferably 0.7 or less, It is advantageous to discharge until X becomes 1 or 1.85. But,
The charging / discharging characteristics of the first stage charging until X becomes 0.7 or less are poor, and the discharge capacity drops to half in about 50 cycles. The degree of this deterioration is extremely large as compared with the cycle using the second-stage potential curve.

またXが0.7を越える程度に充電した場合には、十分な
放電容量を得ることができない。
In addition, when X is charged to a level exceeding 0.7, a sufficient discharge capacity cannot be obtained.

そこで、一般式LiXMYMn(2-Y)O4で表わされ、MはCo、C
r、Ni、Ta、Znのうち少なくとも一種であり、かつ0.85
≦X≦1.15であり、0.02≦Y≦0.3である正極活物質を
用いる改良がなされ、サイクル特性の向上が図られてい
る。
Therefore, it is represented by the general formula Li X M Y Mn (2-Y) O 4 , where M is Co, C
At least one of r, Ni, Ta, Zn, and 0.85
Improvements have been made by using a positive electrode active material satisfying ≦ X ≦ 1.15 and 0.02 ≦ Y ≦ 0.3 to improve cycle characteristics.

発明が解決しようとする課題 上記の正極活物質を用いることによりサイクル特性の大
幅な向上が実現できるが、充電電圧4Vを越えるため、充
電後の電池の自己放電特性が不十分であるという問題が
あった。
Problems to be Solved by the Invention By using the above positive electrode active material, it is possible to achieve a great improvement in cycle characteristics, but since the charging voltage exceeds 4 V, there is a problem that the self-discharge characteristics of the battery after charging are insufficient. there were.

本発明は、LiXMYMn(2-Y)O4(MはCo、Cr、Ni、Ta、Znの
うちの少なくとも一種、0.85≦X≦1.15、0.02≦Y≦0.
3)を正極活物質とする非水電解質二次電池の自己放電
特性の向上を目的とし、非水電解液の改良を行なうもの
である。
The present invention provides Li X M Y Mn (2-Y) O 4 (M is at least one of Co, Cr, Ni, Ta and Zn, 0.85 ≦ X ≦ 1.15, 0.02 ≦ Y ≦ 0.
The purpose of this study is to improve the non-aqueous electrolyte for the purpose of improving the self-discharge characteristics of non-aqueous electrolyte secondary batteries using 3) as the positive electrode active material.

課題を解決するための手段 リチウムまたはリチウム化合物を負極とし、LiXMYMn
(2-Y)O4(MはCo、Cr、Ni、Ta、Znのうちの少なくとも
一種、0.85≦X≦1.15、0.02≦Y≦0.3)を正極活物質
とする非水電解質二次電池において、リチウム塩を含む
非水電解液中に、上記で選択したMと同一の元素を添
加、さらに好ましくは上記で選択したMと同一の元素と
Mnを添加する。
Means for Solving the Problems Using lithium or a lithium compound as a negative electrode, Li X M Y Mn
In a non-aqueous electrolyte secondary battery using (2-Y) O 4 (M is at least one of Co, Cr, Ni, Ta and Zn, 0.85 ≦ X ≦ 1.15, 0.02 ≦ Y ≦ 0.3) as a positive electrode active material. , The same element as M selected above is added to the non-aqueous electrolyte containing a lithium salt, and more preferably the same element as M selected above is added.
Add Mn.

作用 LiXMYMn(2-Y)O4(MはCo、Cr、Ni、Ta、Znからなる少な
くとも一種、0.85≦X≦1.15、0.02≦Y≦0.3)を正極
活物質とする非水電解液二次電池を4.0V以上の充電状態
で保存し、電解液中の含有金属元素を調べるとLiの他に
Mn,Co、Cr、Ni、Ta、Znが検出されることがわかった。
Action Non-aqueous with Li X M Y Mn (2-Y) O 4 (M is at least one of Co, Cr, Ni, Ta and Zn, 0.85 ≦ X ≦ 1.15, 0.02 ≦ Y ≦ 0.3) as the positive electrode active material When the electrolyte secondary battery was stored in a charged state of 4.0 V or more and the metal elements contained in the electrolyte were examined, it was found that other than Li
It was found that Mn, Co, Cr, Ni, Ta and Zn were detected.

次に、これらの活物質を正極に用いた電池の放電後と充
電後の保存特性を調べた。その結果充電後の自己放電は
顕著に大きいものであった。
Next, the storage characteristics of a battery using these active materials for the positive electrode after discharging and after charging were examined. As a result, self-discharge after charging was remarkably large.

これに関しては、正極LiXMYMn(2-Y)O4をXが0.7以下に
なるまで充電すると、その電極電位は金属リチウム極に
対して4Vを越えるため、活物質の構成元素の溶解が起こ
り易くなり自己放電が大きくなるものと考える。
In this regard, when the positive electrode Li X MY Mn (2-Y) O 4 is charged until X becomes 0.7 or less, the electrode potential exceeds 4 V with respect to the metal lithium electrode, so the constituent elements of the active material are dissolved. Is more likely to occur and self-discharge increases.

実施例 以下実施例について述べる。Examples Examples will be described below.

LiMn2O4の20%をCo、Cr、Ni、Ta、Znに置換した活物質
を用いた非水電解質二次電池の自己放電特性を検討し
た。組成を、LiXMYMn(2-Y)O4で表わすとMは上記金属元
素であり、X=1、Y=0.2の活物質である。
The self-discharge characteristics of a non-aqueous electrolyte secondary battery using an active material in which 20% of LiMn 2 O 4 was replaced with Co, Cr, Ni, Ta, Zn were examined. When the composition is represented by Li X M Y Mn (2-Y) O 4 , M is the above metal element and is an active material with X = 1 and Y = 0.2.

まず、この活物質の製法について説明する。First, a method for producing this active material will be described.

Li2CO3,Mn3O4およびCo、Cr、Ni、Ta、またはZnの硝酸
塩を原料として用い、Li原子数が1に対して、Mn原子数
が1.8、CoなどのMの原子数が0.2となるように秤量混合
し、大気中で900℃で10時間加熱し活物質を作製した。
次に特性比較のための電池について説明する。正極活物
質7重量部に対し、導電剤としてのアセチレンブラック
2重量部、結着剤としてのポリ4弗化エチレン樹脂1重
量部を混合して正極合剤とした。正極合剤0.1グラムを
直径17.5mmに1トン/cm2でプレス成型して、正極とし
た。製造した電池の断面図を第2図に示す。成型した正
極1をケース2に置く。正極1の上にセパレータ3とし
ての多孔性ポリプロピレンフィルムを置いた。負極とし
て直径17.5mm厚さ0.3mmのリチウム板4を、ポリプロピ
レン製ガスケット6を付けた封口板5に圧着した。非水
電解質(A)として、1モル/lの過塩素酸リチウムを溶
解したポリプロピレンカーボネート溶液を用い、これを
セパレータ上および負極上に加えた。その後電池を封口
した。使用した活物質別に電池を区別すると、LiMn2O4
のMnの一部をCo、Cr、Ni、Ta、またはZnにより置換した
活物質をそれぞれ用いた電池をそれぞれ(A1)(A2)
(A3)(A4)(A5)とする。
Using Li 2 CO 3 , Mn 3 O 4 and Co, Cr, Ni, Ta, or Zn nitrate as the raw material, the number of Li atoms is 1, the number of Mn atoms is 1.8, and the number of M atoms such as Co is The mixture was weighed and mixed so as to be 0.2, and heated in the air at 900 ° C. for 10 hours to prepare an active material.
Next, a battery for characteristic comparison will be described. To 7 parts by weight of the positive electrode active material, 2 parts by weight of acetylene black as a conductive agent and 1 part by weight of polytetrafluoroethylene resin as a binder were mixed to prepare a positive electrode mixture. 0.1 gram of the positive electrode mixture was press-molded to a diameter of 17.5 mm at 1 ton / cm 2 to obtain a positive electrode. A cross-sectional view of the manufactured battery is shown in FIG. The molded positive electrode 1 is placed in the case 2. A porous polypropylene film as the separator 3 was placed on the positive electrode 1. As a negative electrode, a lithium plate 4 having a diameter of 17.5 mm and a thickness of 0.3 mm was pressure-bonded to a sealing plate 5 having a polypropylene gasket 6. As the non-aqueous electrolyte (A), a polypropylene carbonate solution in which 1 mol / l lithium perchlorate was dissolved was used and added to the separator and the negative electrode. After that, the battery was sealed. Distinguishing batteries according to the active materials used, LiMn 2 O 4
Batteries using active materials in which a part of Mn is replaced with Co, Cr, Ni, Ta, or Zn (A1) (A2)
(A3) (A4) (A5).

LiMn2O4の一部を置換した元素、ここではCo、Cr、Ni、T
a、またはZnの各元素を非水電解質(A)に添加した電
解液をそれぞれ作製した。添加元素の供給源としては各
金属の過塩素酸塩を用い、電解液中の各元素濃度が0.05
モル/lになるように調整した。添加元素別に電解液を次
のように区分した。電解液への添加元素がCo、Cr、Ni、
Ta、Znである電解液をそれぞれ(B)(C)(D)
(E)(F)とし、これら電解液を用いて作製した電池
をそれぞれ(B)(C)(D)(E)(F)とする。さ
らに、電解液(B)(C)(D)(E)(F)にMn元素
をさらに添加した電解液を作製し、それぞれ電解液
(G)(H)(I)(J)(K)とする。
An element obtained by partially replacing LiMn 2 O 4 , here Co, Cr, Ni, T
An electrolyte solution was prepared by adding each element of a or Zn to the non-aqueous electrolyte (A). Perchlorate of each metal is used as a source of additive elements, and the concentration of each element in the electrolyte is 0.05.
It was adjusted to be mol / l. The electrolytic solution was classified according to the added element as follows. Elements added to the electrolyte are Co, Cr, Ni,
Electrolyte solutions of Ta and Zn are (B) (C) (D), respectively.
(E) and (F), and batteries produced using these electrolytic solutions are referred to as (B), (C), (D), (E), and (F), respectively. Further, electrolytic solutions (B), (C), (D), (E), and (F) were prepared by further adding an Mn element, and the electrolytic solutions (G), (H), (I), (J), (K) were prepared. And

Mn元素の供給源としては過塩素酸塩を用い、電解液中へ
のMn元素の濃度が0.05モル/lになるように調整した。こ
れら電解液を用いて作製した電池をそれぞれ電池(G)
(H)(I)(J)(K)とする。
Perchlorate was used as the Mn element supply source, and the concentration of the Mn element in the electrolytic solution was adjusted to 0.05 mol / l. Batteries produced by using these electrolytic solutions are referred to as battery (G).
(H) (I) (J) (K).

次に、電池の自己放電試験を行なった。上記の方法で得
られた電池について、2mAの定電流で4.5ボルトまで充電
し、3ボルトまで放電し、この充電放電を10サイクル行
なった後、11サイクル目の充電が終わった後、60℃で2
週間貯蔵した。貯蔵後同じ条件で放電した。
Next, a self-discharge test of the battery was conducted. About the battery obtained by the above method, it was charged to 4.5 V with a constant current of 2 mA, discharged to 3 V, and after 10 cycles of this charging / discharging, after the 11th cycle of charging, at 60 ° C Two
Stored for a week. After storage, it was discharged under the same conditions.

ここで、自己放電率は次のように定義した。Here, the self-discharge rate was defined as follows.

自己放電率=(10サイクル目の放電電気量−11サイクル
目の放電電気量)/10サイクル目の放電電気量 第1表には、各電解液を用いた電池の自己放電率を示
す。
Self-Discharge Rate = (Discharged Electricity at 10th Cycle−Discharged Electricity at 11th Cycle) / 10 Discharged Electricity at 10th Cycle Table 1 shows the self-discharge rates of the batteries using each electrolyte.

活物質LiMn2O4のMnの一部を置換した元素と同一の元素
を電解液に添加することにより、いずれも電池の自己放
電特性が向上する。すなわち、電池(A1)〜(A5)に比
べて電池(B)(C)(D)(E)(F)の自己放電率
は低下し、良好な保持特性を示す。
By adding the same element as the element obtained by substituting a part of Mn of the active material LiMn 2 O 4 to the electrolytic solution, the self-discharge characteristics of the battery are both improved. That is, the self-discharge rates of the batteries (B), (C), (D), (E), and (F) are lower than those of the batteries (A1) to (A5), and good retention characteristics are shown.

また、これらの電解液にさらにMn元素を添加することに
より、電池(G)(H)(I)(J)(K)に見られる
ように自己放電特性の向上が認められる。これは本電池
系の自己放電は活物質中のMn元素およびMnの一部を置換
した金属元素が保存中に電解液中に溶解するために起こ
ると考えられ、これを防ぐ目的で、あらかじめ、電解液
中にMn元素とMnの一部を置換した金属元素の少なくとも
1種を添加しておくことにより、化学平衡的にこれら金
属元素の電解液中への溶解を抑えることができていると
考えている。
Further, addition of Mn element to these electrolytic solutions is recognized to improve the self-discharge characteristics as seen in the batteries (G) (H) (I) (J) (K). It is considered that this self-discharge of the battery system occurs because the Mn element in the active material and the metal element substituting a part of Mn are dissolved in the electrolytic solution during storage, and in order to prevent this, in advance, By adding at least one of Mn element and a metal element in which a part of Mn is substituted to the electrolytic solution, it is possible to suppress the dissolution of these metal elements in the electrolytic solution in a chemical equilibrium. thinking.

以上の実施例1の結果より、LiXMYMn(2-Y)O4のMとして
Co、Cr、Ni、Ta、またはZnを用いる活物質を使用する非
水電解液二次電池においてリチウム塩を含む非水電解液
中に、上記で選択したMと同一の元素、さらに好ましく
は上記で選択したMと同一の元素とMnを添加することに
より自己放電特性の良好な非水電解液二次電池を得るこ
とができる。
From the results of the above-mentioned Example 1, it is determined that M is Li X M Y Mn (2-Y) O 4
In a non-aqueous electrolyte secondary battery using an active material using Co, Cr, Ni, Ta, or Zn, the same element as M selected above in the non-aqueous electrolyte containing a lithium salt, more preferably the above A non-aqueous electrolyte secondary battery having good self-discharge characteristics can be obtained by adding the same element as M selected in 1 and Mn.

以上の実施例では、電解液として1モル/lの過塩素酸リ
チウムを溶解したポリプロピレンカーボネート溶液を用
いた場合の結果であるが、電解液としてこれ以外に、溶
質として過塩素酸リチウム、6フッ化燐酸リチウムやト
リフロロメタンスルフォン酸リチウム、ホウフッ化リチ
ウム、溶媒としてプロピレンカーボネート、エチレンカ
ーボネートなどのカーボネート類、ガンマーブチロラク
トン、酢酸メチルなどのエステル類を用いた電解液が良
好であった。
In the above examples, the results are obtained when a polypropylene carbonate solution in which 1 mol / l lithium perchlorate is dissolved is used as the electrolytic solution. In addition to this, as the electrolytic solution, lithium perchlorate, 6 fluorine are used. An electrolytic solution using lithium phosphated phosphate, lithium trifluoromethanesulfonate, lithium borofluoride, carbonates such as propylene carbonate and ethylene carbonate as a solvent, and esters such as gamma-butyrolactone and methyl acetate was good.

しかしながら、ジメトキシエタンやテトラヒドロフラン
などのエーテル類を使用した場合には、自己放電特性は
悪く電解液へのCo、Cr、Ni、Ta、またはZn元素の添加に
よる自己放電特性の向上は認められず、実施例で示した
プロピレンカーボネートを用いた場合の自己放電率に比
べその値は約2倍となった。本発明では正極は4V以上の
電圧となるため、エーテル類は酸化されるためと考えて
いる。
However, when ethers such as dimethoxyethane and tetrahydrofuran are used, the self-discharge characteristics are poor and no improvement in the self-discharge characteristics due to the addition of Co, Cr, Ni, Ta, or Zn element to the electrolytic solution is observed. The value was about twice as high as the self-discharge rate in the case of using propylene carbonate shown in the examples. In the present invention, since the positive electrode has a voltage of 4 V or higher, it is considered that ethers are oxidized.

発明の効果 以上述べたように、リチウムまたはリチウム化合物を負
極とし、一般式LiXMYMn(2-Y)O4で表わされ、MはCo、C
r、Ni、Ta、またはZnのうちの少なくとも一種であり、
かつ0.85≦X≦1.15であり、0.02≦Y≦0.3である正極
活物質を用いる非水電解液二次電池においてそのLi塩を
含む電解液中に、上記で選択したMと同一の元素、さら
に好ましくは上記で選択したMと同一の元素とMnを添加
することにより自己放電特性が向上する。
EFFECTS OF THE INVENTION As described above, lithium or a lithium compound is used as a negative electrode and is represented by the general formula: Li X M Y Mn (2-Y) O 4 , where M is Co, C
at least one of r, Ni, Ta, or Zn,
And 0.85 ≦ X ≦ 1.15 and 0.02 ≦ Y ≦ 0.3 in the non-aqueous electrolyte secondary battery using the positive electrode active material, the same element as M selected above in the electrolyte containing the Li salt, Preferably, the same element as M selected above and Mn are added to improve the self-discharge characteristics.

【図面の簡単な説明】[Brief description of drawings]

第1図はLiMn2O4正極活物質の活物質中のLi量Xと開路
電位の関係図、第2図は試験に用いた電池の縦断面図で
ある。 1……正極、2……ケース、3……セパレータ、4……
リチウム板、5……封口板、6……ガスケット。
FIG. 1 is a diagram showing the relationship between the amount X of Li in the active material of the LiMn 2 O 4 positive electrode active material and the open circuit potential, and FIG. 2 is a longitudinal sectional view of the battery used in the test. 1 ... Positive electrode, 2 ... Case, 3 ... Separator, 4 ...
Lithium plate, 5 ... Sealing plate, 6 ... Gasket.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】リチウムまたはリチウム化合物からなる負
極、一般式LiXMYMn(2-Y)O4で表され、式中MはCo,Cr,N
i,Ta,Znのうちの少なくとも一種であり、かつ式中Xは
0.85≦X≦1.15であり、式中Yは0.02≦Y≦0.3である
活物質からなる正極、およびリチウム塩を含む非水電解
液を用いる非水電解液二次電池であって、上記リチウム
塩を含む電解液中に、上記式で選択したMと同一の元素
を添加したことを特徴とする非水電解液二次電池。
1. A negative electrode comprising lithium or a lithium compound, represented by the general formula Li X M Y Mn (2-Y) O 4, where M is Co, Cr, N.
i is at least one of Ta, Zn, and X in the formula is
0.85 ≦ X ≦ 1.15, where Y is 0.02 ≦ Y ≦ 0.3, and a non-aqueous electrolyte secondary battery using a positive electrode made of an active material and a non-aqueous electrolyte containing a lithium salt. A non-aqueous electrolyte secondary battery, wherein the same element as M selected in the above formula is added to the electrolyte containing.
JP2317348A 1990-11-20 1990-11-20 Non-aqueous electrolyte secondary battery Expired - Fee Related JPH0734367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2317348A JPH0734367B2 (en) 1990-11-20 1990-11-20 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2317348A JPH0734367B2 (en) 1990-11-20 1990-11-20 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH04188571A JPH04188571A (en) 1992-07-07
JPH0734367B2 true JPH0734367B2 (en) 1995-04-12

Family

ID=18087226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2317348A Expired - Fee Related JPH0734367B2 (en) 1990-11-20 1990-11-20 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH0734367B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0778633A (en) * 1993-09-07 1995-03-20 Toshiba Corp Secondary battery with nonaqueous electrolytic solution
JP3869622B2 (en) * 2000-04-25 2007-01-17 三洋電機株式会社 Method for preventing breakage of positive electrode current collector for lithium secondary battery
JP4095499B2 (en) 2003-06-24 2008-06-04 キヤノン株式会社 Electrode material for lithium secondary battery, electrode structure, and lithium secondary battery
JP4739781B2 (en) * 2005-03-11 2011-08-03 三洋電機株式会社 Lithium secondary battery
JP2007123246A (en) 2005-09-28 2007-05-17 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
WO2011102171A1 (en) * 2010-02-19 2011-08-25 日本電気株式会社 Secondary battery

Also Published As

Publication number Publication date
JPH04188571A (en) 1992-07-07

Similar Documents

Publication Publication Date Title
JP2645609B2 (en) Method for producing lithium manganese oxide
US5352548A (en) Secondary battery
EP0394917A1 (en) Nonaqueous electrolyte secondary cell
EP0122381A1 (en) Secondary battery containing organoborate electrolyte
JPH0896849A (en) Nonaqueous electrolytic secondary battery
EP0810681B1 (en) Nonaqueous electrolyte secondary battery
JPH0734367B2 (en) Non-aqueous electrolyte secondary battery
JP2584123B2 (en) Non-aqueous electrolyte secondary battery
JP4042082B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP2512241B2 (en) Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereof
JPH06203829A (en) Nonaqueous electrolyte secondary battery
JP2512239B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JPH0770329B2 (en) Non-aqueous electrolyte secondary battery
JP3231813B2 (en) Organic electrolyte battery
JP2517176B2 (en) Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereof
JPH04355056A (en) Nonaqueous electrolyte secondary battery
US6465131B1 (en) Lithium secondary cell with a stannous electrode material
JPH04104468A (en) Nonaqueous electrolyte battery
JP2822659B2 (en) Non-aqueous electrolyte secondary battery
JP3053672B2 (en) Manufacturing method of organic solvent secondary battery
JPH01294375A (en) Charging/discharging method for lithium secondary battery
JP2000277164A (en) Battery performance recovery method of lithium secondary battery
JP2005071665A (en) Water-based lithium secondary battery
JPH0359963A (en) Lithium secondary battery
JPH04206273A (en) Nonaqueous electrolyte battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees