JPH07331456A - Heat insulating coating film and its production - Google Patents

Heat insulating coating film and its production

Info

Publication number
JPH07331456A
JPH07331456A JP14399794A JP14399794A JPH07331456A JP H07331456 A JPH07331456 A JP H07331456A JP 14399794 A JP14399794 A JP 14399794A JP 14399794 A JP14399794 A JP 14399794A JP H07331456 A JPH07331456 A JP H07331456A
Authority
JP
Japan
Prior art keywords
layer
thermal
thermal barrier
coating film
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14399794A
Other languages
Japanese (ja)
Other versions
JP2902557B2 (en
Inventor
Masahiro Sato
昌宏 佐藤
Kiyoshi Hasegawa
潔 長谷川
Akitoshi Yamamoto
彰利 山本
Shozo Okazaki
章三 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP6143997A priority Critical patent/JP2902557B2/en
Publication of JPH07331456A publication Critical patent/JPH07331456A/en
Application granted granted Critical
Publication of JP2902557B2 publication Critical patent/JP2902557B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a heat insulating coating film having thermal shock and erosion resistances and further having oxidation resistance. CONSTITUTION:A bonding layer 12 of MCrAlY is formed on the surface of a heat resistant alloy substrate 10 by thermal spraying in vacuum and a heat insulating layer 14 of partially stabilized zirconia for reducing heat conduction and absorbing a thermal shock is formed on the surface of the bonding layer 12 by thermal spraying in the air to produce a heat insulating coating film. A vapor-deposited protective layer 16 of partially stabilized zirconia having higher density than the heat insulating layer 14 is further formed on the surface of the layer 14 to improve erosion resistance. When alumina is incorporated into the protective layer 16, the amt. of oxygen permeating the layer 16 is reduced and oxidation resistance can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐熱衝撃性及び耐エロ
ージョン性、さらには耐剥離性を有する遮熱コーティン
グ膜及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermal barrier coating film having thermal shock resistance, erosion resistance, and peeling resistance, and a method for producing the same.

【0002】[0002]

【従来の技術】例えばガスタービンの翼、燃焼器等の遮
熱コーティング膜の寿命を延長する方法としては、従
来、つぎのようなものが提案されている。 (1) 実開平4−106360号公報に記載されてい
るように、金属製部材にアンダーコーティング層を介し
て粒子径の粗いセラミックスの第1コーティング層と粒
子径の細かいセラミックスの第2コーティング層を形成
し、第1コーティング層で熱遮蔽し、第2コーティング
層で高温ガス浸透遮断、セラミックス粒子剥離防止及び
摩擦損失減少を行うようにしたもの。 (2) 特開平4−362168号公報に記載されてい
るように、母材上に耐食耐酸化性金属層、セラミックス
層、耐摩耗性金属層(高温加熱で耐摩耗性に富む酸化物
となる)を順番に積層したもの。 (3) 米国特許第5169689号公報に記載されて
いるように、基材表面に垂直亀裂を含む低密度層と、高
密度の保護層を設け、低密度層で応力緩和を図り、高密
度保護層で耐エロージョンを図るようにしたもの。
2. Description of the Related Art The following methods have been conventionally proposed as a method for extending the life of a thermal barrier coating film on a blade of a gas turbine, a combustor, or the like. (1) As described in Japanese Utility Model Application Laid-Open No. 4-106360, a metal member is provided with a first coating layer of ceramics having a coarse particle diameter and a second coating layer of ceramics having a fine particle diameter via an undercoating layer. It is formed and heat-shielded by the first coating layer, and high-temperature gas permeation is blocked by the second coating layer, ceramic particle separation prevention and friction loss reduction. (2) As described in JP-A-4-362168, a corrosion-resistant and oxidation-resistant metal layer, a ceramics layer, and a wear-resistant metal layer (becomes an oxide with high wear resistance when heated at high temperatures). ) Are stacked in order. (3) As described in US Pat. No. 5,169,689, a low-density layer containing vertical cracks and a high-density protective layer are provided on the surface of a base material, and the low-density layer is used for stress relaxation to provide high-density protection. A layer designed to resist erosion.

【0003】[0003]

【発明が解決しようとする課題】従来の遮熱コーティン
グでは、一般に、耐熱合金からなる基材の表面に、減圧
溶射によるMCrAlY(エムクラリー、Ni、Co等
のMetal−Cr−Al−Y)からなるボンド層と、
大気溶射又は蒸着による部分安定化ジルコニアからなる
遮熱層が成膜されている。なお、ボンド層はセラミック
ス遮熱層の下地層であり、部分安定化ジルコニアはイッ
トリア等の添加物により立方晶を部分的に安定化したも
のである。
In the conventional thermal barrier coating, generally, the surface of the base material made of a heat-resistant alloy is formed of MCrAlY (Metal-Cr-Al-Y such as emclary, Ni and Co) by reduced pressure spraying. A bond layer,
A thermal barrier layer made of partially stabilized zirconia by thermal spraying or vapor deposition is formed. The bond layer is an underlayer of the ceramic heat shield layer, and the partially stabilized zirconia is a cubic crystal partially stabilized by an additive such as yttria.

【0004】コーティング膜の損傷形態は、熱衝撃によ
る剥離、酸化・腐食による剥離、エロージョンに大別で
き、これらがコーティング膜の寿命を決定しているが、
上記の従来の技術では次の点で対応できない。 (1) 耐熱衝撃性には低密度膜が有利で、耐エロージ
ョン性には高密度膜が有利であるが、溶射膜は低密度で
あり、蒸着膜は高密度であるので、いずれも単一層で
は、これらの特性を両立できない。 (2) ジルコニアは熱伝導度が低く遮熱層には適して
いるが、酸素透過性が高いため、ボンド層と遮熱層との
接合界面からボンド層が酸化して剥離する。
The damage pattern of the coating film can be roughly classified into peeling due to thermal shock, peeling due to oxidation and corrosion, and erosion, which determine the life of the coating film.
The above-mentioned conventional technique cannot cope with the following points. (1) A low density film is advantageous for thermal shock resistance, and a high density film is advantageous for erosion resistance. However, since the sprayed film has a low density and the vapor deposition film has a high density, both are single layers. Then, these characteristics cannot be compatible. (2) Zirconia has low thermal conductivity and is suitable for a heat shield layer, but since it has high oxygen permeability, the bond layer oxidizes and peels from the bonding interface between the bond layer and the heat shield layer.

【0005】また、上記の実開平4−106360号公
報記載の熱遮蔽セラミックスコーティング膜は、セラミ
ックスのコーティング層を2層用いたものであるが、セ
ラミックス2層の粒子径を変えており、厳密には密度を
変えているものではない。また、表面の第2コーティン
グ層は溶射によるもので、蒸着による保護層ではない。
上記の特開平4−362168号公報記載の遮熱コーテ
ィング膜は、最外層が金属であり、セラミックスの蒸着
保護層ではない。上記の米国特許第5169689号公
報記載の遮熱コーティング膜は、低密度層に縦方向のク
ラック(亀裂)が含まれ、高密度層は溶射(spray
ing)によるものであり、蒸着により最表面の保護層
を形成するものではない。
The heat-shielding ceramic coating film described in Japanese Utility Model Laid-Open No. 4-106360 mentioned above uses two ceramic coating layers, but the particle diameters of the two ceramic layers are changed, and therefore, strictly. Does not change density. Further, the second coating layer on the surface is formed by thermal spraying and is not a protective layer formed by vapor deposition.
In the thermal barrier coating film described in JP-A-4-362168, the outermost layer is a metal, not a vapor deposition protective layer of ceramics. In the thermal barrier coating film described in the above-mentioned US Pat. No. 5,169,689, the low-density layer includes vertical cracks, and the high-density layer is sprayed.
ing) and does not form the outermost protective layer by vapor deposition.

【0006】本発明は上記の諸点に鑑みなされたもの
で、本発明の目的は、膜の最表面だけを蒸着層として緻
密化、高密度化し、膜の中間部は溶射層として低密度と
することにより、耐熱衝撃性及び耐エロージョン性を両
立させるようにした遮熱コーティング膜及びその製造方
法を提供することにある。本発明の他の目的は、最表面
の蒸着層成分にアルミナ、シリカ、マグネシア、カルシ
ア等を含有させることにより、遮熱層を透過する酸素を
低減して、ボンド層と遮熱層との接合界面の酸化を防止
し耐剥離性を向上させた遮熱コーティング膜及びその製
造方法を提供することにある。
The present invention has been made in view of the above points, and an object of the present invention is to densify and densify only the outermost surface of the film as a vapor deposition layer, and to make the middle portion of the film have a low density as a sprayed layer. In view of the above, the present invention provides a thermal barrier coating film that achieves both thermal shock resistance and erosion resistance, and a method for manufacturing the same. Another object of the present invention is to reduce the oxygen permeating through the heat shield layer by including alumina, silica, magnesia, calcia, etc. in the vapor deposition layer component of the outermost surface, and to bond the bond layer and the heat shield layer. It is an object of the present invention to provide a thermal barrier coating film in which oxidation at the interface is prevented and peel resistance is improved, and a method for manufacturing the same.

【0007】[0007]

【課題を解決するための手段及び作用】上記の目的を達
成するために、本発明の遮熱コーティング膜は、図1に
示すように、耐熱合金からなる基材10の表面にボンド
層12を設け、このボンド層12の表面に熱伝導を低減
させ熱衝撃を吸収させるための溶射遮熱層14を設けた
遮熱コーティング膜において、溶射遮熱層14の表面に
この溶射遮熱層14より密度の高い耐エロージョン性を
向上させるための蒸着保護層16を設けたことを特徴と
している。溶射遮熱層14と蒸着保護層16とは、同一
の材料、例えば部分安定化ジルコニアからなっている。
また、ボンド層12はMCrAlYからなっている。
In order to achieve the above object, the thermal barrier coating film of the present invention has a bond layer 12 formed on the surface of a base material 10 made of a heat-resistant alloy, as shown in FIG. In the thermal barrier coating film, which is provided with a thermal spraying thermal barrier layer 14 for reducing heat conduction and absorbing thermal shock on the surface of the bond layer 12, a thermal spraying thermal barrier layer 14 is provided on the surface of the thermal spraying thermal barrier layer 14. It is characterized in that a vapor deposition protective layer 16 is provided to improve the erosion resistance with high density. The thermal spray coating 14 and the vapor deposition protection layer 16 are made of the same material, for example, partially stabilized zirconia.
The bond layer 12 is made of MCrAlY.

【0008】本発明の遮熱コーティング膜においては、
溶射遮熱層14の密度を4.5〜5.0g/cm3、蒸着保
護層の密度を5.5〜6.0g/cm3とする。溶射遮熱層
の密度がこの範囲未満の場合は、膜が脆く、摩耗しやす
くなる傾向があり、一方、この範囲を超えると、熱衝撃
による亀裂及び剥離が発生しやすくなる傾向がある。ま
た、蒸着保護層の密度が上記の範囲未満の場合は、耐エ
ロージョン性が低下し、また酸素透過遮断性が発揮でき
なくなる傾向がある。
In the thermal barrier coating film of the present invention,
The density of the thermal spraying heat shield layer 14 is 4.5 to 5.0 g / cm 3 , and the density of the vapor deposition protection layer is 5.5 to 6.0 g / cm 3 . If the density of the thermal spraying heat-shielding layer is less than this range, the film tends to be brittle and easily worn, while if it exceeds this range, cracking and peeling due to thermal shock tend to occur. Further, if the density of the vapor deposition protective layer is less than the above range, the erosion resistance tends to be low and the oxygen permeation barrier property may not be exhibited.

【0009】さらに、蒸着保護層16に、アルミナ、シ
リカ、マグネシア及びカルシアの少なくとも1種を10
〜50mol %、好ましくは20〜40mol %含有させる
ことがある。この範囲未満の場合は、蒸着保護層16を
酸素が透過し、この透過酸素が溶射遮熱層14を透過し
て、ボンド層12との接合界面が酸化されて剥離し易く
なる。一方、この範囲を超えると、蒸着保護層の安定性
が低下し、溶射遮熱層から剥離しやすくなる。
Further, at least one of alumina, silica, magnesia and calcia is added to the vapor deposition protection layer 16 in an amount of 10%.
-50 mol%, preferably 20-40 mol% may be contained. If it is less than this range, oxygen permeates the vapor deposition protective layer 16, the permeated oxygen permeates the thermal spraying thermal barrier layer 14, and the bonding interface with the bond layer 12 is oxidized and easily peeled off. On the other hand, if it exceeds this range, the stability of the vapor deposition protective layer is lowered, and it becomes easy to peel from the thermal spray coating.

【0010】本発明の遮熱コーティング膜の製造方法
は、耐熱合金からなる基材の表面に溶射によりボンド層
を形成した後、このボンド層の表面に溶射により遮熱層
を形成し、ついで、この溶射遮熱層の表面に蒸着により
この溶射遮熱層よりも密度の高い保護層を形成すること
を特徴としている。前述のように、溶射遮熱層と蒸着保
護層とを部分安定化ジルコニアで形成し、ボンド層をN
i、Co等を主成分とするMCrAlYで形成すること
が好ましい。また、蒸着保護層を形成するジルコニアを
主体とした蒸着層成分にアルミナ、シリカ、マグネシア
及びカルシアの少なくとも1種を10〜50mol %、好
ましくは20〜40mol %添加することがある。蒸着保
護層は真空蒸着法、イオンプレーティング法、スパッタ
リング法及びCVD法のうちのいずれかの方法で形成さ
れる。
According to the method for producing a thermal barrier coating film of the present invention, a bond layer is formed on the surface of a base material made of a heat-resistant alloy by thermal spraying, and then a thermal barrier layer is formed on the surface of the bond layer by thermal spraying. It is characterized in that a protective layer having a density higher than that of the thermal spraying heat shield layer is formed on the surface of the thermal spraying heat shield layer by vapor deposition. As described above, the thermal spray coating and the vapor deposition protection layer are formed of partially stabilized zirconia, and the bond layer is N.
It is preferable to form MCrAlY containing i, Co and the like as main components. Further, 10 to 50 mol%, preferably 20 to 40 mol% of at least one of alumina, silica, magnesia and calcia may be added to the component of the zirconia-based vapor deposition layer forming the vapor deposition protective layer. The vapor deposition protection layer is formed by any one of a vacuum vapor deposition method, an ion plating method, a sputtering method and a CVD method.

【0011】溶射遮熱層の厚みは0.1〜0.5mm、好
ましくは0.2〜0.3mmであり、蒸着バリア層の厚み
は0.01〜0.1mm、好ましくは0.03〜0.05
mmである。本発明の方法においては、通常の遮熱コーテ
ィングの場合と同様の処理、すなわち、耐熱合金の表面
に、例えば減圧溶射によるボンド層(MCrAlY)
と、例えば大気溶射による遮熱層(部分安定化ジルコニ
ア)を形成した後、その表面に蒸着による保護層を形成
する。このように構成することにより、溶射層(低密
度)と蒸着層(高密度)を組み合せて膜の最表面だけを
緻密化することにより、耐熱衝撃性と耐エロージョン性
を両立させることができる。さらに、最表面の蒸着層成
分を最適化して、ジルコニア溶射層の遮熱性を維持し、
酸素透過量を抑制することにより、耐酸化性を向上させ
ることができる。
The thickness of the thermal spray coating is 0.1 to 0.5 mm, preferably 0.2 to 0.3 mm, and the thickness of the vapor deposition barrier layer is 0.01 to 0.1 mm, preferably 0.03. 0.05
mm. In the method of the present invention, the same treatment as in the case of a normal thermal barrier coating, that is, a bond layer (MCrAlY) formed on the surface of the heat resistant alloy by, for example, reduced pressure spraying
Then, for example, after forming a heat shield layer (partially stabilized zirconia) by thermal spraying in the atmosphere, a protective layer is formed on the surface by vapor deposition. With this structure, the thermal spray resistance (low density) and the vapor deposition layer (high density) are combined to densify only the outermost surface of the film, whereby both thermal shock resistance and erosion resistance can be achieved. Furthermore, by optimizing the vapor deposition layer components on the outermost surface, the thermal insulation of the zirconia sprayed layer is maintained,
By suppressing the amount of oxygen permeation, oxidation resistance can be improved.

【0012】[0012]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例に何ら限定されるも
のではなく、適宜変更して実施することが可能なもので
ある。 比較例1 耐熱合金(組成60Ni−13Cr−9Co−2Mo−
4W)からなる基材の表面に減圧溶射(圧力5KPa )に
より厚さ0.1mmのボンド層(Ni−22Co−17C
r−12.5Al−0.6Y)を形成した後、このボン
ド層の表面に大気溶射により部分安定化ジルコニアの厚
さ0.2mmの溶射遮熱層を形成した。上記のようにして
製造したコーティング膜に、平均粒径0.05mmのアル
ミナ粉体を100g/m3含む650℃の空気を流速60m
/s及び80m/sで試験片表面の接線より35度の方向
から2時間噴射して摩耗量(mm)を測定した。結果は図
2に示すとおりであった。
EXAMPLES The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited to the following examples, and various modifications can be made as appropriate. Comparative Example 1 Heat-resistant alloy (composition 60Ni-13Cr-9Co-2Mo-
4 W) on the surface of the base material by vacuum spraying (pressure 5 KPa) with a thickness of 0.1 mm bond layer (Ni-22Co-17C).
After forming r-12.5Al-0.6Y), a sprayed thermal barrier layer having a thickness of 0.2 mm of partially stabilized zirconia was formed on the surface of the bond layer by atmospheric spraying. The coating film produced as described above was subjected to a flow rate of 60 m of air at 650 ° C. containing 100 g / m 3 of alumina powder having an average particle diameter of 0.05 mm.
/ S and 80 m / s, the amount of wear (mm) was measured by spraying from the direction of 35 degrees from the tangent line of the surface of the test piece for 2 hours. The result was as shown in FIG.

【0013】実施例1 比較例1において製造されたコーティング膜において、
厚さ0.2mmの溶射遮熱層の表面に真空蒸着法により厚
さ0.05mmの部分安定化ジルコニアの蒸着保護層を形
成した。真空蒸着の条件は、酸素雰囲気圧力0.1Pa、
溶解用電子ビーム出力10KW、ルツボ−基板間距離17
0mm、基板予熱温度500℃、成膜時間2hrであった。
そして、このようにして製造した蒸着保護層を有するコ
ーティング膜に、比較例1の場合と同様の含粉体気体
を、比較例1の場合と同じ条件で噴射して、摩耗量を測
定した。結果は図2に示すとおりであった。図2から、
最表面に蒸着保護層を有するコーティング膜は、蒸着保
護層を有しない従来のコーティング膜に比べて、摩耗量
が大幅に減少していることがわかる。
Example 1 In the coating film produced in Comparative Example 1,
A vapor deposition protection layer of partially stabilized zirconia having a thickness of 0.05 mm was formed on the surface of the thermal spraying thermal barrier layer having a thickness of 0.2 mm by a vacuum vapor deposition method. The conditions for vacuum deposition are 0.1 Pa for oxygen atmosphere,
Output of electron beam for melting 10KW, crucible-substrate distance 17
It was 0 mm, the substrate preheating temperature was 500 ° C., and the film forming time was 2 hours.
Then, the powder-containing gas similar to that in Comparative Example 1 was injected under the same conditions as in Comparative Example 1 to the coating film having the vapor deposition protective layer thus manufactured, and the wear amount was measured. The result was as shown in FIG. From FIG.
It can be seen that the coating film having the vapor deposition protective layer on the outermost surface has a significantly reduced amount of wear as compared with the conventional coating film having no vapor deposition protective layer.

【0014】実施例2 実施例1において、3mass%イットリア添加の部分安定
化ジルコニアにアルミナを25mol %添加したものを原
料として、厚さ0.2mmの溶射遮熱層の表面に真空蒸着
法により厚さ0.05mmの蒸着保護層を形成した。他の
方法及び条件は実施例1の場合と同様であった。このよ
うにして製造したアルミナを含有する蒸着保護層を有す
るコーティング膜に、1200℃の灯油燃焼ガスを50
0時間噴射して、ボンド層と溶射遮熱層の界面に生成す
る酸化物層の厚さを測定した。その結果は、蒸着保護層
を有しない従来のコーティング膜と比較して、界面酸化
物層厚さが明らかに減少した。
Example 2 In Example 1, a material obtained by adding 25 mol% of alumina to partially stabilized zirconia with 3 mass% yttria added was used as a raw material, and the thickness of the sprayed heat-insulating layer having a thickness of 0.2 mm was increased by vacuum deposition. A vapor deposition protective layer having a thickness of 0.05 mm was formed. Other methods and conditions were the same as in the case of Example 1. A coating film having a vapor-deposited protective layer containing alumina produced in this manner was heated with 1200 ° C. kerosene combustion gas.
After spraying for 0 hour, the thickness of the oxide layer formed at the interface between the bond layer and the thermal-spray thermal barrier layer was measured. As a result, the thickness of the interfacial oxide layer was significantly reduced as compared with the conventional coating film having no vapor deposition protective layer.

【0015】[0015]

【発明の効果】本発明は上記のように構成されているの
で、つぎのような効果を奏する。 (1) 溶射層(低密度)と蒸着層(高密度)では物理
的に耐熱衝撃性と耐エロージョン性が相反するが、これ
ら2つの成膜方式を組み合わせて、膜の表面のみを蒸着
層として緻密化、高密度化することにより、低密度の溶
射層で熱衝撃を吸収し、高密度の蒸着層で耐エロージョ
ン性を向上させることができる。 (2) 部分安定化ジルコニアは熱伝導度が低く遮熱層
として最適であるが、酸素透過性が高いためにボンド層
との接合界面が酸化して剥離に至る。しかし、部分安定
化ジルコニアからなる最表面の蒸着保護層の成分をアル
ミナ等を添加して調整する場合は、酸素透過量が抑制さ
れて、耐酸化性とそれに伴う耐剥離性を向上させること
ができる。
Since the present invention is configured as described above, it has the following effects. (1) The thermal spray resistance (low density) and the vapor deposition layer (high density) are physically contradictory to each other in thermal shock resistance and erosion resistance. However, by combining these two film forming methods, only the surface of the film is used as the vapor deposition layer. By densifying and increasing the density, thermal shock can be absorbed by the low-density sprayed layer, and erosion resistance can be improved by the high-density vapor-deposited layer. (2) Partially stabilized zirconia has a low thermal conductivity and is most suitable as a heat shield layer, but because of its high oxygen permeability, the bonding interface with the bond layer is oxidized and causes delamination. However, when the components of the outermost vapor deposition protective layer made of partially stabilized zirconia are adjusted by adding alumina or the like, the amount of oxygen permeation is suppressed, and it is possible to improve oxidation resistance and accompanying peel resistance. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の遮熱コーティング膜の一実施例を示す
断面図である。
FIG. 1 is a cross-sectional view showing an example of a thermal barrier coating film of the present invention.

【図2】比較例1及び実施例1における高温粉体噴射摩
耗試験結果を示すグラフである。
FIG. 2 is a graph showing the results of a high temperature powder jet abrasion test in Comparative Example 1 and Example 1.

【符号の説明】[Explanation of symbols]

10 基材 12 ボンド層 14 溶射遮熱層 16 蒸着保護層 10 Base Material 12 Bond Layer 14 Thermal Spray Thermal Shield Layer 16 Deposition Protective Layer

フロントページの続き (72)発明者 山本 彰利 兵庫県明石市川崎町1番1号 川崎重工業 株式会社明石工場内 (72)発明者 岡崎 章三 兵庫県明石市川崎町1番1号 川崎重工業 株式会社明石工場内Front page continuation (72) Inventor Akito Yamamoto 1-1 Kawasaki-cho, Akashi-shi, Hyogo Kawasaki Heavy Industries Ltd. Akashi factory (72) Inventor Shozo Okazaki 1-1 1-1 Kawasaki-cho, Akashi-shi, Hyogo Kawasaki Heavy Industries, Ltd. Akashi Factory

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 耐熱合金からなる基材の表面にボンド層
を設け、このボンド層の表面に熱伝導を低減させ熱衝撃
を吸収させるための溶射遮熱層を設けた遮熱コーティン
グ膜において、溶射遮熱層の表面にこの溶射遮熱層より
密度の高い耐エロージョン性を向上させるための蒸着保
護層を設けたことを特徴とする遮熱コーティング膜。
1. A thermal barrier coating film in which a bond layer is provided on the surface of a base material made of a heat resistant alloy, and a thermal spraying thermal barrier layer for reducing thermal conduction and absorbing thermal shock is provided on the surface of the bond layer. A thermal barrier coating film, characterized in that a vapor deposition protective layer having a density higher than that of the thermal spray thermal barrier layer for improving erosion resistance is provided on the surface of the thermal spray thermal barrier layer.
【請求項2】 溶射遮熱層と蒸着保護層とが同一の材料
からなることを特徴とする請求項1記載の遮熱コーティ
ング膜。
2. The thermal barrier coating film according to claim 1, wherein the thermal spraying thermal barrier layer and the vapor deposition protective layer are made of the same material.
【請求項3】 ボンド層がMCrAlYからなり、溶射
遮熱層及び蒸着保護層が部分安定化ジルコニアからなる
ことを特徴とする請求項1又は2記載の遮熱コーティン
グ膜。
3. The thermal barrier coating film according to claim 1, wherein the bond layer is made of MCrAlY, and the thermal spraying thermal barrier layer and the vapor deposition protective layer are made of partially stabilized zirconia.
【請求項4】 溶射遮熱層の密度が4.5〜5.0g/c
m3で、蒸着保護層の密度が5.5〜6.0g/cm3である
ことを特徴とする請求項1、2又は3記載の遮熱コーテ
ィング膜。
4. The density of the thermal spray coating is 4.5-5.0 g / c
The thermal barrier coating film according to claim 1, 2 or 3, wherein the vapor deposition protective layer has a density of 5.5 to 6.0 g / cm 3 in m 3 .
【請求項5】 蒸着保護層が、ジルコニアを主体とし
て、アルミナ、シリカ、マグネシア及びカルシアの少な
くとも1種を10〜50mol %含有していることを特徴
とする請求項3又は4記載の遮熱コーティング膜。
5. The thermal barrier coating according to claim 3, wherein the vapor deposition protective layer contains zirconia as a main component and contains 10 to 50 mol% of at least one of alumina, silica, magnesia and calcia. film.
【請求項6】 耐熱合金からなる基材の表面に溶射によ
りボンド層を形成した後、このボンド層の表面に溶射に
より遮熱層を形成し、ついで、この溶射遮熱層の表面に
蒸着によりこの溶射遮熱層よりも密度の高い保護層を形
成することを特徴とする遮熱コーティング膜の製造方
法。
6. A bond layer is formed on the surface of a base material made of a heat-resistant alloy by thermal spraying, a thermal barrier layer is formed on the surface of the bond layer by thermal spraying, and then vapor deposition is performed on the surface of the thermal sprayed thermal barrier layer. A method for producing a thermal barrier coating film, which comprises forming a protective layer having a density higher than that of the thermal spraying thermal barrier layer.
【請求項7】 溶射遮熱層と蒸着保護層とを部分安定化
ジルコニアで形成することを特徴とする請求項6記載の
遮熱コーティング膜の製造方法。
7. The method for producing a thermal barrier coating film according to claim 6, wherein the thermal spraying thermal barrier layer and the vapor deposition protective layer are formed of partially stabilized zirconia.
【請求項8】 蒸着保護層を形成する成分にジルコニア
を主体として、アルミナ、シリカ、マグネシア及びカル
シアの少なくとも1種を10〜50mol %添加すること
を特徴とする請求項7記載の遮熱コーティング膜の製造
方法。
8. The thermal barrier coating film according to claim 7, wherein zirconia is the main constituent of the vapor deposition protective layer, and 10 to 50 mol% of at least one of alumina, silica, magnesia and calcia is added. Manufacturing method.
【請求項9】 蒸着保護層を真空蒸着法、イオンプレー
ティング法、スパッタリング法及びCVD法のうちのい
ずれかの方法で形成することを特徴とする請求項6、7
又は8記載の遮熱コーティング膜の製造方法。
9. The deposition protection layer is formed by any one of a vacuum deposition method, an ion plating method, a sputtering method and a CVD method.
Or a method of manufacturing the thermal barrier coating film according to item 8.
JP6143997A 1994-06-01 1994-06-01 Thermal barrier coating film and method of manufacturing the same Expired - Fee Related JP2902557B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6143997A JP2902557B2 (en) 1994-06-01 1994-06-01 Thermal barrier coating film and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6143997A JP2902557B2 (en) 1994-06-01 1994-06-01 Thermal barrier coating film and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH07331456A true JPH07331456A (en) 1995-12-19
JP2902557B2 JP2902557B2 (en) 1999-06-07

Family

ID=15351916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6143997A Expired - Fee Related JP2902557B2 (en) 1994-06-01 1994-06-01 Thermal barrier coating film and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2902557B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100390388B1 (en) * 2000-07-31 2003-07-07 한국과학기술연구원 Thermal Barrier Coating Materials and Method for Making the Same, and Method for Forming the Thermal Barrier Coating Layers
KR100454987B1 (en) * 2002-03-25 2004-11-06 주식회사 코미코 Yttria Coated parts production and repair for semiconductor fabrication by plasma spray process
JP2006241515A (en) * 2005-03-03 2006-09-14 Tohoku Univ Method for producing heat shield coating member and heat shield coating member
JP2011012287A (en) * 2009-06-30 2011-01-20 Hitachi Ltd Heat-resistant member, and gas turbine hot part
JP2016145677A (en) * 2015-02-09 2016-08-12 日本電気硝子株式会社 Top plate for cooking device and method for producing the same
US10808308B2 (en) * 2016-06-08 2020-10-20 Mitsubishi Heavy Industries, Ltd. Thermal barrier coating, turbine member, and gas turbine
CN114032486A (en) * 2021-11-11 2022-02-11 北京星航机电装备有限公司 Composite structure thermal protection coating and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06143997A (en) * 1992-11-04 1994-05-24 Matsushita Electric Ind Co Ltd Vehicle humidifier
JPH07243018A (en) * 1994-03-08 1995-09-19 Mitsubishi Heavy Ind Ltd Surface modification method for heat insulating film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06143997A (en) * 1992-11-04 1994-05-24 Matsushita Electric Ind Co Ltd Vehicle humidifier
JPH07243018A (en) * 1994-03-08 1995-09-19 Mitsubishi Heavy Ind Ltd Surface modification method for heat insulating film

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100390388B1 (en) * 2000-07-31 2003-07-07 한국과학기술연구원 Thermal Barrier Coating Materials and Method for Making the Same, and Method for Forming the Thermal Barrier Coating Layers
KR100454987B1 (en) * 2002-03-25 2004-11-06 주식회사 코미코 Yttria Coated parts production and repair for semiconductor fabrication by plasma spray process
JP2006241515A (en) * 2005-03-03 2006-09-14 Tohoku Univ Method for producing heat shield coating member and heat shield coating member
JP4644803B2 (en) * 2005-03-03 2011-03-09 国立大学法人東北大学 Method for manufacturing heat shielding coating member and heat shielding coating member
JP2011012287A (en) * 2009-06-30 2011-01-20 Hitachi Ltd Heat-resistant member, and gas turbine hot part
JP2016145677A (en) * 2015-02-09 2016-08-12 日本電気硝子株式会社 Top plate for cooking device and method for producing the same
US10808308B2 (en) * 2016-06-08 2020-10-20 Mitsubishi Heavy Industries, Ltd. Thermal barrier coating, turbine member, and gas turbine
CN114032486A (en) * 2021-11-11 2022-02-11 北京星航机电装备有限公司 Composite structure thermal protection coating and preparation method thereof

Also Published As

Publication number Publication date
JP2902557B2 (en) 1999-06-07

Similar Documents

Publication Publication Date Title
US6716539B2 (en) Dual microstructure thermal barrier coating
US6106959A (en) Multilayer thermal barrier coating systems
US7338719B2 (en) MCrAl layer
JP4004577B2 (en) Comparted wear-resistant sealing system, Comparted wear-resistant ceramic coating method, Gas turbine engine component channel duct segment coating, and Comparted wear-resistant ceramic coating
EP1829984B1 (en) Process for making a high density thermal barrier coating
US20160333455A1 (en) Thermal Barrier Coating with Lower Thermal Conductivity
US20110151132A1 (en) Methods for Coating Articles Exposed to Hot and Harsh Environments
US20090252985A1 (en) Thermal barrier coating system and coating methods for gas turbine engine shroud
JPH0448867B2 (en)
US20070231589A1 (en) Thermal barrier coatings and processes for applying same
JP7232295B2 (en) Adhesion-promoting layer for bonding high-temperature protective layer onto substrate, and method for producing same
US11319829B2 (en) Geometrically segmented abradable ceramic thermal barrier coating with improved spallation resistance
JP2008196040A (en) Heat resistant member
US6045928A (en) Thermal barrier coating system having a top coat with a graded interface
JPH0340105B2 (en)
JPH07243018A (en) Surface modification method for heat insulating film
JPH07331456A (en) Heat insulating coating film and its production
JPH09316622A (en) Gas turbine member and its thermal insulation coating method
KR100270226B1 (en) The heat protect coating and the same method
JP7457633B2 (en) Thermal barrier coatings and heat-resistant components
CN114107775B (en) Bonding layer alloy for turbine blade of aircraft engine and preparation method thereof
JPH08246901A (en) Thermal insulation coating film excellent in oxidation resistance
Brzezinski et al. Vacuum plasma sprayed ZrO2-based thermal barrier coatings for aerospace applications
JP2004256855A (en) Thermal barrier coating member and method for manufacturing the same
JPH04362168A (en) Heat insulating coating film

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees