JPH07320608A - Manufacture of contact material - Google Patents

Manufacture of contact material

Info

Publication number
JPH07320608A
JPH07320608A JP6105128A JP10512894A JPH07320608A JP H07320608 A JPH07320608 A JP H07320608A JP 6105128 A JP6105128 A JP 6105128A JP 10512894 A JP10512894 A JP 10512894A JP H07320608 A JPH07320608 A JP H07320608A
Authority
JP
Japan
Prior art keywords
contact material
heat treatment
material according
heat
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6105128A
Other languages
Japanese (ja)
Inventor
Isao Okutomi
功 奥冨
Shigeaki Sekiguchi
薫旦 関口
Keisei Seki
経世 関
Atsushi Yamamoto
敦史 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6105128A priority Critical patent/JPH07320608A/en
Publication of JPH07320608A publication Critical patent/JPH07320608A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/0203Contacts characterised by the material thereof specially adapted for vacuum switches

Abstract

PURPOSE:To provide a contact material having less mixture of gas and impurities and having improved voltage resistance characteristic and large current limiting characteristic applying heat treatment to mixed powder comprising specific high conductive metal and an anti-arc resistant component comprising specific metal or its carbide by a specific method. CONSTITUTION:This contact material is manufactured following three processes. (1) An uniform mixed powder or a molded body containing a high conductive component comprising at least one of Ag and Cu having designated particle diameter and at least one metal of Ti, V, Cr, Nb, Mo, Ta and W having designated particle diameter or an anti-arc resistant component comprising these carbide is uniformly mounted and introduced on a heat treatment supporting member of designated shape. (2) The mixed powder or the molded body is heated and sintered together with the heat treatment supporting member and a sintered member having relative density of less than 85% is formed. (3) External energy enough to make the relative density 90% or more is applied to the sintered member at least once.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガスおよび不純物の混
入が少なく、耐電圧特性および大電流遮断特性にすぐれ
た接点材料が得られる接点材料の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a contact material which is less contaminated with gas and impurities and which is excellent in withstand voltage characteristics and large current interruption characteristics.

【0002】[0002]

【従来の技術】真空中でのア―ク拡散性を利用して、高
真空中で電流遮断を行わせる真空バルブの接点は、対向
する固定、可動の2つの接点から構成されている。真空
遮断器には、大電流遮断性能、耐電圧特性、耐溶着性能
の基本的3要件の他に接触抵抗性能、耐消耗性能、電流
裁断性能等も重要な要件となっている。
2. Description of the Related Art The contacts of a vacuum valve for interrupting a current in a high vacuum by utilizing arc diffusivity in a vacuum are composed of two opposing fixed and movable contacts. In the vacuum circuit breaker, contact resistance performance, wear resistance performance, current cutting performance, etc. are also important requirements in addition to the three basic requirements of large current breaking performance, withstand voltage characteristics, and welding resistance performance.

【0003】しかしながら、これらの要件の中には相反
するものがある関係上、単一の金属種によって総ての要
件を満足させる事は不可能である。この為実用されてい
る多くの接点材料に於いては、不足する性能を相互に補
うような2種以上の元素を組合せる事によって、例えば
大電流用、高耐圧用などのように特定の用途に合った接
点材料の選択採用が行われ、それなりに優れた特性を持
つ真空バルブが開発されているが、さらに強まる要求を
充分満足する真空バルブは未だ得られていないのが実情
である。
However, it is impossible to satisfy all the requirements with a single metal species because there are conflicting requirements. For this reason, in many practically used contact materials, by combining two or more elements that complement each other's lacking performance, a specific application such as for large current or high breakdown voltage can be achieved. Although a vacuum valve with excellent characteristics has been developed by selecting and adopting a contact material suitable for the above, the reality is that a vacuum valve that fully satisfies the ever-increasing demand has not yet been obtained.

【0004】例えば、大電流遮断性を目的とした接点と
して、Biを 0.5wt%(重量%)含有させたCu−Bi
合金(特公昭41-12131)、Cu−Te合金(特公昭44-2
3751)が知られている。これらは、Cu,Bi両者、又
はCu,Te両者を融解温度以上に加熱し冷却固化し接
点素材とする。これらの合金は、結晶粒界内に析出した
BiやCu2 Teが合金自体を脆化させる結果、耐電圧
特性を大幅に劣化させる事なく、溶着引きはずし力(耐
溶着性)を改善し、大電流遮断性を実現している。
For example, Cu-Bi containing 0.5 wt% of Bi as a contact for the purpose of blocking large currents.
Alloy (Japanese Patent Publication No. 41-12131), Cu-Te alloy (Japanese Patent Publication No. 44-2)
3751) is known. These are used as contact materials by heating both Cu and Bi or both Cu and Te to a melting temperature or higher and cooling and solidifying. In these alloys, Bi and Cu 2 Te precipitated in the grain boundaries make the alloy itself brittle, and as a result, the withdrawal force (welding resistance) is improved without significantly degrading the withstand voltage characteristics. Achieves a large current cutoff property.

【0005】大電流遮断性を目的とした他の接点とし
て、Crを70〜90容積%含有したCu−Cr合金(特公
昭45-35101)が知られている。これは、Cr自体がCu
と略同等の蒸気圧特性を保持しかつ強力なガスのゲッタ
作用を示す等の効果で高電圧大電流遮断性を実現してい
る。すなわちCu−Cr合金は、高耐圧特性と大容量遮
断とを両立させ得る接点として多用されている。
A Cu-Cr alloy (Japanese Patent Publication No. 45-35101) containing 70 to 90% by volume of Cr is known as another contact for the purpose of blocking large currents. This is because Cr itself is Cu
High voltage and large current interruption performance is realized by the effect of maintaining a vapor pressure characteristic almost equivalent to that and exhibiting a strong gas getter action. That is, the Cu-Cr alloy is often used as a contact that can achieve both high withstand voltage characteristics and large capacity breaking.

【0006】高耐電圧性を目的とした他の接点として、
Cu−W合金(特公昭46-26205、特開昭 50-5866)が知
られている。これは、W自体が極めて高い融解温度を持
つ為、優れた耐電圧性と溶着に対する高い抵抗性とをも
ち、更にCuに対する溶解度がなく導電性にも優れてい
る事から高耐圧接点として多用されている。
As another contact for the purpose of high withstand voltage,
A Cu-W alloy (Japanese Patent Publication No. 46-26205, Japanese Patent Laid-Open No. 5-5866) is known. Since W itself has an extremely high melting temperature, it has excellent withstand voltage properties and high resistance to welding, and since it has no solubility in Cu and is also excellent in conductivity, it is often used as a high-voltage contact. ing.

【0007】前記した接点材料は、一般に溶解法や焼結
法によって作製している。溶解法による接点材料として
Cu−Bi合金、Cu−Te合金が挙げられる。Cu,
Bi,Teを融解温度以上に加熱し、いわゆる溶解法に
よって接点素材としている。その為、重量編析問題で均
質な組成の合金が得られない場合がみられる上に、溶解
炉の溶解作業温度能力の制約から、耐電圧的に優れた高
い融解温度を持つ元素との合金化が困難であるなど、溶
解法では致命的欠陥として構成元素の選択に制約があ
り、合金系が狭くなる。
The above-mentioned contact material is generally manufactured by a melting method or a sintering method. Cu-Bi alloy and Cu-Te alloy are mentioned as the contact material by the melting method. Cu,
Bi and Te are heated to a melting temperature or higher and used as a contact material by a so-called melting method. Therefore, due to the weight segregation problem, alloys with a homogeneous composition may not be obtained, and alloys with elements having a high melting temperature, which are excellent in withstand voltage, due to the limitation of the melting work temperature capacity of the melting furnace. In the melting method, there is a limitation in the selection of the constituent elements as a fatal defect, and the alloy system becomes narrow.

【0008】また焼結法によるCu−Cr合金、Cu−
W合金では、原料となるCuとCr粉を混合したものを
圧縮加圧成型しこれを高温で焼結する粉末冶金法によっ
て接点素材としている。その為、圧縮加圧時に不純物の
混入や酸素含有量の増加、吸着の問題がある(Cu−W
でも同じ)。
Cu-Cr alloys, Cu-
The W alloy is used as a contact material by a powder metallurgy method in which a mixture of Cu and Cr powders, which is a raw material, is compression-pressed and sintered at a high temperature. Therefore, there are problems of mixing of impurities, increase of oxygen content, and adsorption during compression and pressurization (Cu-W
But the same).

【0009】このようなことから、本発明者らは合金系
の選択上で耐電圧的に有利な粉末冶金法の上記した欠陥
の排除を試みた。その結果不純物の混入や酸素含有量の
増加、吸着の問題を排除する技術を開発する接点製造方
法を提案し、従来の粉末焼結法による接点とくらべ、ガ
スおよび不純物の混入の少ない、かつ耐電圧特性および
大電流遮断特性にすぐれた接点材料を具備した真空バル
ブの製造方法を提供出来るようになった。
From the above facts, the present inventors have tried to eliminate the above-mentioned defects of the powder metallurgy method which is advantageous in terms of withstand voltage in selecting the alloy system. As a result, we proposed a contact manufacturing method that develops a technology that eliminates the problems of contamination of impurities, increase of oxygen content, and adsorption, and it has less gas and impurities contamination than contacts by the conventional powder sintering method, and is more durable. It has become possible to provide a method of manufacturing a vacuum valve provided with a contact material having excellent voltage characteristics and large current interruption characteristics.

【0010】[0010]

【発明が解決しようとする課題】すなわち、本発明者
が、目標性能を達成する為の健全な真空バルブ用接点製
造方法を得る事を目的に、前記各工程を検討したとこ
ろ、前記原材料技術のうちで、特に加圧・成型加工技術
に起因すると考えられる被成型体の特性ばらつきや、溶
解、焼結など加熱処理中に素材あるいは部品と共に加熱
して用いる溶解用るつぼ、焼結用ボ―トの物理的、化学
的状態などの影響によって、得られる素材あるいは部品
(製品)の品質(例えば、表面状態の健全性)が、影響
を受けている事が判った。
That is, the inventors of the present invention have studied each of the above steps in order to obtain a sound vacuum valve contact manufacturing method for achieving a target performance. Among these, melting of crucibles and sintering boats that are used by heating together with materials or parts during heat treatment such as melting, sintering, etc., which are considered to be due to pressure / molding processing technology It was found that the quality (for example, the soundness of the surface condition) of the obtained material or part (product) is affected by the influence of the physical or chemical state of the.

【0011】例えば、被熱処理金属粉末として、Cu,
Ag,Ti,V,Cr,Nb,Mo,Ta,Wの1つの
金属もしくはCu,Agを除くこれらの炭化物を用いた
場合、接点素材あるいは部品を製造する時に行われる加
熱処理には、一般に該接点素材あるいは部品を加熱処理
中に支えて置く為に、熱処理用部材(容器,るつぼ、ボ
―トなど。以下、熱処理用容器という。)が不可欠であ
る。このように、該接点素材あるいは部品は、熱処理用
容器に挿入するか載置して加熱処理を行い製品あるいは
半製品とするため、前記接点素材あるいは部品は、熱処
理用容器材質である黒鉛と、加熱処理中直接的に接触す
ることになり、該接点素材あるいは部品と炭素とが、冶
金的反応を呈する場合が見られる。その結果、該素材あ
るいは部品が熱処理用容器から、健全な形態で取り出せ
ず損傷を受けるのみならず熱処理用容器を破壊する等、
表面形状的な不都合さがみられる場合がある。これらは
製品として致命的損害となるばかりか、経済的損失も重
大な問題となる。
For example, as the heat-treated metal powder, Cu,
When one metal of Ag, Ti, V, Cr, Nb, Mo, Ta, or W or these carbides except Cu and Ag is used, the heat treatment performed when manufacturing the contact material or the component is generally In order to support and place contact materials or parts during heat treatment, heat treatment members (containers, crucibles, boats, etc., hereinafter referred to as heat treatment containers) are indispensable. In this way, the contact material or component is inserted into or placed in a heat treatment container to be subjected to heat treatment to obtain a product or a semi-finished product. There is a case in which the contact material or part and the carbon are brought into direct contact with each other during the heat treatment and a metallurgical reaction is exhibited. As a result, the material or part is not damaged from the heat treatment container without being taken out in a sound form, and the heat treatment container is destroyed.
Inconvenience may occur in terms of surface shape. These are not only fatal damages as products, but also economic loss is a serious problem.

【0012】一方、熱処理用容器材質として、酸化カル
シウム(カルシア)又は酸化イットリウム(イットリ
ア)製熱処理用容器を選択したときには、上記炭素の場
合の様な著るしい冶金的反応は見られず、表面形状的に
は損傷がない接点素材あるいは部品が得られる。しか
し、通常の黒鉛又は酸化カルシウム(カルシア)又は酸
化イットリウム(イットリア)製熱処理用容器は、多孔
性でありその表面および内部には多量の水分、ガスが存
在しているため、この水分、ガスが加熱処理中直接的に
該接点素材あるいは部品表面を汚染する不都合さがみら
れる場合がある。特にこれらの表面は、吸着物が十分少
なくなるほど平滑に仕上げる事が出来ず、表面に水分、
ガス、その他表面付着物が存在しやすい。
On the other hand, when a heat treatment container made of calcium oxide (calcia) or yttrium oxide (yttria) is selected as the material for the heat treatment container, no remarkable metallurgical reaction as in the case of the above carbon is observed, and A contact material or component that is undamaged in shape is obtained. However, a normal graphite or calcium oxide (calcia) or yttrium oxide (yttria) container for heat treatment is porous, and a large amount of water and gas are present on the surface and inside thereof. There may be inconvenience of directly contaminating the contact material or the component surface during the heat treatment. In particular, these surfaces cannot be finished so smooth that the adsorbate is sufficiently small,
Gas and other surface deposits tend to be present.

【0013】また、表面形状的な不都合さがなくても、
成型技術に起因する被成型体内部でのガスの巻き込み
や、成型圧力分布の不均一性の為の焼結の不均一化によ
る組織上の偏析など、内面的な不都合さが残る。特にこ
の成型圧力分布の不均一性は接点組成、組織の安定性に
とって重要である。
Further, even if there is no problem in surface shape,
Internal disadvantages such as gas entrainment inside the molded body due to the molding technology and segregation on the structure due to non-uniform sintering due to non-uniform molding pressure distribution remain. In particular, the nonuniformity of the molding pressure distribution is important for the contact composition and the stability of the structure.

【0014】さらに、冶金的反応に伴って熱処理用容器
中の不純物が該接点素材あるいは部品中に拡散、侵入
し、加熱処理後の該接点素材あるいは部品の純度を低下
させる不都合さがみられる場合がある。
Further, there is a case that impurities in the heat treatment container are diffused and infiltrated into the contact material or part due to the metallurgical reaction, and the purity of the contact material or part after heat treatment is deteriorated. .

【0015】このような不都合さは、健全な接点素材あ
るいは部品の製造に対して障害となり、真空バルブ特性
に対して好ましくない影響を与えている。本発明の目的
は、接点素材あるいは部品などを、熱処理用容器中に挿
入あるいは載置し、加熱処理して部材を製造するに於い
て、該接点素材あるいは部品が、組織的偏析、表面的損
傷、汚染等の障害を受けにくい接点材料の製造方法を提
供することにある。
Such inconvenience hinders the production of sound contact materials or parts and adversely affects the vacuum valve characteristics. An object of the present invention is to insert or place a contact material or a component in a heat treatment container and heat-treat it to manufacture a member, in which the contact material or the component is structurally segregated or surface-damaged. Another object of the present invention is to provide a method of manufacturing a contact material that is less likely to be damaged by contamination and the like.

【0016】[0016]

【課題を解決するための手段および作用】本発明者ら
は、損傷、汚染等の障害のない接点素材あるいは部品の
製造の為に、被熱処理金属粉末の加圧・成型加工技術、
熱処理用容器などを検討し、真空バルブ特性との対比を
研究した結果、この発明を完成するに至った。
Means and Actions for Solving the Problems The present inventors have proposed a technique for pressurizing and molding a metal powder to be heat-treated in order to manufacture a contact material or a part having no damage such as damage and contamination.
The present invention has been completed as a result of studying a heat treatment container and the like and studying a comparison with a vacuum valve characteristic.

【0017】以下、この発明をより詳細に説明する。最
新の開閉装置プラントや開閉システムでも、その性能が
1つの接点材料、接点部品の品質によって、ばらつきが
出たり、機能しないケ―スが存在する場合がある。
The present invention will be described in more detail below. Even in the latest switchgear plant and switchgear system, the performance may vary depending on the quality of one contact material and contact part, and there may be cases where the function does not work.

【0018】本発明者らが前記各工程を検討したとこ
ろ、上記した開閉装置プラントや開閉システムの電気的
(または機械的、化学的)性能のばらつきは、これらに
使った接点材料を製造する時の被成型体性状や加熱処理
工程と相関している事が判明した。特に、接点素材ある
いは部品を構成している原材料の個々に着いて、発生す
るガスの放出を制御する事により、上記した開閉装置プ
ラントや開閉システムの性能のばらつきを低減化出来る
ことを見出した。
When the inventors of the present invention examined each of the above-mentioned steps, variations in the electrical (or mechanical, chemical) performances of the switchgear plant and the switchgear system described above were found when the contact materials used for them were manufactured. It was found to be correlated with the properties of the molded body and the heat treatment process. In particular, it has been found that the variation in the performance of the switchgear plant or the switchgear system can be reduced by controlling the release of the generated gas by arriving at each of the contact materials or the raw materials constituting the parts.

【0019】そこで本発明者らは、成型体の製造過程、
加熱処理工程をさらに詳細に調査した結果、成型体の状
態のばらつきの程度、加熱処理の条件のばらつきの程度
で、前記開閉装置プラントや開閉システムの性能のばら
つきに、重大な影響を与えている事を確認した。
Therefore, the present inventors have
As a result of further detailed examination of the heat treatment process, the degree of variation in the state of the molded body and the degree of variation in the conditions of the heat treatment have a significant influence on the variation in the performance of the switchgear plant and the switchgear system. I confirmed the thing.

【0020】すなわち、健全な接点素材あるいは部品を
製造するためには、最適の成型体製造条件と、高性能の
熱処理用容器とが不可欠である事を示唆している。した
がって、好ましい接点部材の製造方法としては、熱処理
の前段階での粉体の取扱いと、熱処理中の容器など熱処
理雰囲気の管理とが、偏析、損傷、汚染等の障害のない
焼結部材の製造に対してポイントとなる。
That is, it is suggested that the optimum conditions for producing a molded body and a high-performance container for heat treatment are indispensable for producing a sound contact material or parts. Therefore, as a preferable method of manufacturing the contact member, handling of the powder in the pre-stage of the heat treatment and management of the heat treatment atmosphere such as the container during the heat treatment are the production of the sintered member without obstacles such as segregation, damage and contamination. Becomes a point against.

【0021】これらのことを考慮し、従来のものを検討
してみると、次のような問題点がある。 (1)公知技術として、接点材料の製造に於いては、熱
処理に先立ち、原料粉体を混合した後、成型プレス機械
によって、所定形状に圧粉成型したものを、焼結、熱処
理に供する事が行われている。該原料粉体を圧粉成型す
ることによって、熱処理時(焼結時)の取り使い作業性
の向上、該原料粉体容積の縮小化、焼結性の向上、焼結
後の部材の高密度化など多くの利益を得ている。
Considering these matters, when the conventional one is examined, there are the following problems. (1) As a known technique, in the production of a contact material, prior to heat treatment, raw material powders are mixed and then compacted into a predetermined shape by a molding press machine, and then subjected to sintering and heat treatment. Is being done. By compacting the raw material powder, the workability during heat treatment (sintering) is improved, the volume of the raw material powder is reduced, the sinterability is improved, and the density of the member after sintering is high. Many profits have been obtained.

【0022】しかし、成型プレス機械によって粉体を圧
縮するため、内部にガスの残存が避けられず熱処理時
(焼結時)に、焼結体を変色、酸化させたり、このガス
の体積膨脹による焼結体の膨れ、変形現象を呈する等の
不具合が見られる場合がある。これらはいずれも成型時
のガスの閉じ込めに原因し、焼結時にガスが十分外部に
出される前に焼結の進行によって出口が閉じられる為と
考えられる。 (2)また、金型への装填時の該原料粉体の流動性の差
異や、成型時の成型技術に係わる成型圧力の該原料粉体
への圧力伝達の差異等で、密度等のばらつきの少ない均
一な成型体または/および焼結体の製作は、困難となっ
ている。これは、個々の成型体の成型作業時に、各成型
体に与えられる加圧力が成型体個々によって、ばらつき
が存在しているのみでなく、前述した流動性の相違によ
る加圧後の成型体内部の場所による圧力分布の相違に原
因している事が判った。この知見は、本発明の一要素を
構成する重要な知見である。 (3)別の、公知技術として、上記成型体を焼結するに
於て、熱処理中の該成型体を収納する容器として、炭素
製熱処理用容器が知られている。
However, since the powder is compressed by the molding press machine, it is unavoidable that the gas remains inside and the sintered body is discolored or oxidized during the heat treatment (sintering), or the volume expansion of this gas is caused. Problems such as swelling and deformation of the sintered body may be observed. It is considered that all of these are due to the confinement of gas during molding, and the outlet is closed due to the progress of sintering before the gas is sufficiently discharged during sintering. (2) Also, due to differences in fluidity of the raw material powder at the time of loading into the mold, difference in pressure transmission to the raw material powder of molding pressure related to molding technology at the time of molding, and the like, variations in density and the like. It is difficult to manufacture a uniform molded body and / or a sintered body having a small amount. This is because not only the pressure applied to each molded body during the molding operation of each molded body varies depending on the molded body, but also the inside of the molded body after pressurization due to the difference in fluidity described above. It was found that this was caused by the difference in pressure distribution depending on the location. This finding is an important finding that constitutes one element of the present invention. (3) As another known technique, a carbon heat treatment container is known as a container for accommodating the molded body that is undergoing heat treatment in sintering the molded body.

【0023】これは、高温下での炭素(カ―ボン)の優
れた還元力と、多くの金属との低い濡れ性を利用したも
ので、工業的に多用されている。しかし、炭素製熱処理
用容器は、上記した利点があるものの、一方、熱処理す
る素材あるいは部品の材種によっては、両者間で著しい
冶金的反応を生じて、健全な状態での素材あるいは部品
の製造に対して障害となっている。例えば、接点組成と
して、Cr,Ti,Fe等を選択した場合には、Cr炭
化物、Ti炭化物、Fe炭化物の生成によって、接点素
材あるいは接点部品表面の損傷、熱処理用容器の破壊が
見られ好ましくない。このような冶金的反応を抑止する
技術として、両者間に酸化アルミニウム微粒子層を介在
させる技術が開発されている。しかし、微粒子間隙ある
いは微粒子表面に介在している水分、ガスによって、C
r,Ti,Fe等は何らかの影響を受け、やはり、健全
な状態での接点素材あるいは接点部品の製造に対して、
素材品質及び価格の点で障害となる場合がある。 (4)他の公知技術として、窒素硼素、窒化ケイ素など
窒化物製熱処理容器、酸化カルシウム、酸化イットリウ
ムなど酸化物製熱処理用容器が知られている。これは窒
化物、酸化物が高温下で多くの金属と濡れ難いという固
有の性質を利用したもので、工業的に用いられている。
This utilizes the excellent reducing power of carbon (carbon) at high temperature and the low wettability with many metals, and is widely used industrially. However, although the carbon heat treatment container has the above-mentioned advantages, on the other hand, depending on the type of material or part to be heat-treated, a significant metallurgical reaction occurs between the two to produce the material or part in a sound state. Is an obstacle to. For example, when Cr, Ti, Fe or the like is selected as the contact composition, the formation of Cr carbide, Ti carbide, or Fe carbide may damage the contact material or the surface of the contact part, or destroy the heat treatment container, which is not preferable. . As a technique for suppressing such metallurgical reaction, a technique for interposing an aluminum oxide fine particle layer between the two has been developed. However, due to the moisture and gas present in the fine particle gaps or the fine particle surface, C
r, Ti, Fe, etc. are affected in some way, and again for the production of contact materials or contact parts in a sound state,
It may be an obstacle in terms of material quality and price. (4) As other known techniques, a heat treatment container made of a nitride such as boron nitride and silicon nitride, and a heat treatment container made of an oxide such as calcium oxide and yttrium oxide are known. This utilizes the unique property that nitrides and oxides are difficult to wet with many metals at high temperatures, and is used industrially.

【0024】しかし、窒化物熱処理用容器では、上記し
た利点があるものの、一方、雰囲気によっては使用が制
限されたり、比較的分解温度が低いなどの問題点が存在
する。また、酸化物製熱処理用容器でも前記した様に表
面吸着ガス、不純物の影響を避ける事が出来ず、素材品
質及び価格の点で障害となる場合がある。
However, although the nitride heat treatment container has the above-mentioned advantages, there are problems that the use is restricted depending on the atmosphere and the decomposition temperature is relatively low. Further, even in the case of the oxide heat treatment container, the influence of the surface adsorption gas and impurities cannot be avoided as described above, which may be an obstacle in terms of material quality and price.

【0025】問題点1で述べたように、被熱処理金属粉
末(接点材料原料粉末)を、所定形状に圧粉成型した場
合、成型時のガスの閉じ込めに原因となって、焼結後焼
結体の膨れ、変形現象を呈する等の不具合が見られる。
この様な状態の接点素材を真空バルブ用接点材料として
使用した時は耐電圧特性、遮断特性に悪影響を与える。
As described in Problem 1, when the heat-treated metal powder (contact material powder) is compacted into a predetermined shape, it causes sintering after sintering due to gas confinement during molding. Problems such as swelling and deformation of the body are observed.
When the contact material in such a state is used as a contact material for a vacuum valve, the withstand voltage characteristic and the breaking characteristic are adversely affected.

【0026】問題点2で述べたように、被熱処理金属粉
末を圧粉成型した場合、粉体への圧力伝達の差異や不均
一さで、密度等にばらつきが見られる。この様な状態の
接点素材を真空バルブ用接点材料として使用した時は耐
電圧特性、遮断特性に悪影響を与える。
As described in Problem 2, when the heat-treated metal powder is compacted, the density and the like are varied due to the difference and nonuniformity of pressure transmission to the powder. When the contact material in such a state is used as a contact material for a vacuum valve, the withstand voltage characteristic and the breaking characteristic are adversely affected.

【0027】問題点3,4で述べたように、被熱処理金
属粉末が焼結処理にって、熱処理用支持部材(容器)と
反応する時には、健全な接点素材を製造することが出来
ず、この様な状態の接点素材を真空バルブ用接点材料と
して使用した時は耐電圧特性、遮断特性に悪影響を与え
る。
As described in the problems 3 and 4, when the metal powder to be heat treated reacts with the supporting member (container) for heat treatment during the sintering treatment, a sound contact material cannot be manufactured, When the contact material in such a state is used as a contact material for a vacuum valve, the withstand voltage characteristic and the breaking characteristic are adversely affected.

【0028】ここで本発明者らは、上記問題点1、2を
解決する効果的手段として、成型時のガスの閉じ込め現
象を排除するのを助長させるのに、被熱処理金属粉末を
圧縮せず熱処理用支持部材に導入したり、又は若し圧縮
したとしても成型時に閉じ込められたガスが、焼結時に
閉じ込められる事なく十分外部に放出出来るように、焼
結後の焼結部材の相対密度を85%より低く抑制出来る程
度の低い圧縮外力を選択し圧縮した被熱処理金属粉末を
熱処理用支持部材に導入した。
Here, as an effective means for solving the above problems 1 and 2, the inventors of the present invention did not compress the heat-treated metal powder in order to help eliminate the gas confinement phenomenon during molding. The relative density of the sintered member after sintering should be adjusted so that the gas trapped during molding can be sufficiently released to the outside without being trapped during sintering even if it is introduced into the heat treatment support member or if it is compressed. The heat-treatable metal powder compressed by selecting a low compression external force that can be suppressed below 85% was introduced into the heat treatment support member.

【0029】焼結作業も焼結後の焼結部材の相対密度を
85%より低く抑制出来る程度の低い焼結温度を選択し
た。上記問題点3,4を解決する手段として、炭素製熱
処理用容器と被熱処理金属粉末の全面とが、熱処理中に
直接接触しないよう、被熱処理金属の少なくとも一部分
を所定金属(該被熱処理金属)の炭化物又は/及び酸化
物とする技術を開発しこれらの課題を同時に解決した。
すなわち本発明では、第1、2の工程で低ガス化に配慮
し、かつ第3の工程では接点材料としての電気特性に配
慮して素材の相対密度を90%以上に緻密化した。更に、
必要により諸特性の安定化の為に第4の工程を付与し
た。
In the sintering work, the relative density of the sintered member after sintering
A low sintering temperature was selected that could be suppressed below 85%. As means for solving the above problems 3 and 4, at least a part of the heat treated metal is a predetermined metal (the heat treated metal) so that the carbon heat treatment container and the entire surface of the heat treated metal powder do not come into direct contact with each other during the heat treatment. These problems were solved simultaneously by developing the technology of using the above-mentioned carbide and / or oxide.
That is, in the present invention, the relative density of the material is densified to 90% or more in consideration of low gasification in the first and second steps, and in consideration of electric characteristics as a contact material in the third step. Furthermore,
If necessary, a fourth step was added to stabilize various characteristics.

【0030】[0030]

【実施例】以下、本発明の一実施例を表1乃至表4を参
照しながら詳細に説明する。本発明の製造方法の主旨
は、対象とする被熱処理金属(原材料粉末)に外力を与
えることなく(又は若し与えたとしても所定条件以内の
圧縮外力)、所定の表面条件を満たした熱処理用容器
に、載置・導入した後、前記被熱処理金属を前記熱処理
用容器と共に加熱・焼結して、焼結部材を得る接点材料
の製造方法である。
EXAMPLES An example of the present invention will be described in detail below with reference to Tables 1 to 4. The purpose of the manufacturing method of the present invention is for heat treatment that satisfies a predetermined surface condition without applying an external force to a target heat-treated metal (raw material powder) (or even if a compressive external force within a predetermined condition is applied). This is a method for producing a contact material in which a metal to be heat treated is heated and sintered together with the heat treatment container after being placed and introduced in a container to obtain a sintered member.

【0031】従って、対象とする被熱処理金属の種類
を、特に限定する必要はなく、ここでは、まずCrを被
熱処理金属の代表金属として選定した。なお、具体的な
評価方法は次のとおりである。
Therefore, it is not necessary to limit the type of the heat-treatable metal to be treated, and here, Cr was selected as the representative metal of the heat-treatable metals. The specific evaluation method is as follows.

【0032】(1)遮断特性 前記した各条件で製造した直径70mmの接点を装着した遮
断テスト用実験バルブを開閉装置に取り付けると共に、
ベ―キング、電圧エ―ジング等を与えた後、24kv,50Hz
の回路に接続し5kAずつ電流を増加しながら遮断限界を
真空バルブ3本につき比較評価した。尚、実施例1の結
果のみは、真空バルブ3本の平均値であり、他の数値は
実施例1の値を 100とした時の比較値をバラツキ幅を持
って示した。
(1) Breaking characteristics An experimental valve for breaking test equipped with contacts having a diameter of 70 mm manufactured under the above-mentioned conditions is attached to the switchgear, and
After applying baking, voltage aging, etc., 24kv, 50Hz
The circuit was connected to the above circuit and the breaking limit was compared and evaluated for three vacuum valves while increasing the current by 5 kA. Incidentally, only the result of Example 1 is the average value of three vacuum valves, and the other values are shown with a variation range when the value of Example 1 is set to 100.

【0033】遮断テスト終了実験バルブを破壊して、ア
―クの拡がり程度も観察し遮断性能の判断の一助とし
た。 (2)耐電圧特性 羽布研磨により表面を鏡面研磨したNi針を陽極とし、
前記した各条件で製造した接点素材から切出した直径30
mmの円板状電極表面を、同様に羽布研磨により鏡面研磨
し陰極とし、両極間のギャップを 0.5mmとし、104
a.の真空中で徐々に電圧を上昇させ、スパ―クを発生
した時の電圧値を測定した。尚、実施例1の結果のみ
は、真空バルブ3本の平均値であり、他の数値は実施例
1の値を 1.0とした時の比較値をバラツキ幅を持って示
した。
Completion of the breaking test The experimental valve was broken and the extent of the arc spread was also observed to help judge the breaking performance. (2) Withstand voltage characteristics A Ni needle whose surface is mirror-polished by cloth polishing is used as an anode,
Diameter 30 cut from the contact material manufactured under the above conditions
Similarly, the surface of the disc electrode with a diameter of 1 mm is mirror-polished with a cloth cloth to form a cathode, and the gap between both electrodes is set to 0.5 mm and 10 4 P
a. The voltage was gradually increased in the vacuum, and the voltage value when the spark was generated was measured. Incidentally, only the result of Example 1 is the average value of three vacuum valves, and the other numerical values show the comparative values when the value of Example 1 is set to 1.0 with a variation range.

【0034】(3)再点弧特性@ 直径30mm、厚さ5mmの円板状接点片を、ディマウンタブ
ル型真空バルブに装着し、24kv× 500Aの回路を2000回
遮断した時の再点弧発生頻度を2台の遮断器(真空バル
ブとして6本)のバラツキ値を考慮して表示した。
(3) Re-ignition characteristics @ Re-ignition when a disc-shaped contact piece with a diameter of 30 mm and a thickness of 5 mm is attached to a demountable vacuum valve and the circuit of 24 kv x 500 A is cut off 2000 times. The frequency of occurrence was displayed in consideration of the variation values of the two circuit breakers (six vacuum valves).

【0035】接点片の装着に際してはベ―キングのみ行
い、銀臘の使用並びにこれに伴う加熱は行わなかった。 (4)素材中のガス量 前記した各条件で製造した接点素材から5mm立方の試験
片を切出し、2400〜2600℃で所定時間保持している間に
放出されるガス量を測定した。すなわち高真空中に保持
した例えば黒鉛るつぼ中に前記試験片を投入し、黒鉛る
つぼに直接通電するか、高周波加熱などの方法によって
加熱し、試料から放出されるガス量を定量した。数値は
3個のバラツキ幅で示した。
When the contact pieces were attached, only baking was performed, and the use of silver bars and the accompanying heating were not performed. (4) Amount of gas in material A 5 mm cubic test piece was cut out from the contact material produced under each of the above-mentioned conditions, and the amount of gas released during holding at 2400 to 2600 ° C for a predetermined time was measured. That is, the test piece was placed in, for example, a graphite crucible held in a high vacuum, and the graphite crucible was directly energized or heated by a method such as high frequency heating to quantify the amount of gas released from the sample. The numerical value is shown by the variation width of three pieces.

【0036】(5)接触抵抗特性 表面荒さを5μmに仕上げ加工した直径30mm、厚さ5mm
のフラット電極と、同じ表面荒さを持つ曲率半径 100R
の凸状電極とを対向させ、両電極を開閉機構を持つ10
3 Pa.の真空容器内に取り付け3Kgの荷重を与え、交
流10Aを与えた時の電圧降下から接触抵抗を求めた。数
値は3回の測定のバラツキ幅で考察した。なお記載した
接触抵抗値は測定回路を構成する配線材料、開閉器等の
抵抗又は接触抵抗を回路定数として含んだ値で考察し
た。
(5) Contact resistance characteristics 30 mm in diameter and 5 mm in thickness with surface roughness finished to 5 μm
100R radius with the same surface roughness as the flat electrode of
With the convex electrode of 10 and the opening and closing mechanism for both electrodes
3 Pa. The contact resistance was determined from the voltage drop when the device was mounted in a vacuum container of No. 3 and a load of 3 kg was applied and an alternating current of 10 A was applied. The numerical value was considered by the variation width of three measurements. Note that the contact resistance value described is a value that includes the wiring material that constitutes the measurement circuit, the resistance of the switch, or the contact resistance as a circuit constant.

【0037】(6)温度上昇特性 上記した接触抵抗特性測定と同じ電極条件の電極を対向
させ、103 Pa.の真空容器内に取り付け、接触力30
Kg,開離力20Kgで 400Aの電流を20回開閉後、固定側電
極の側面に予め開けておいた直径 1.5mm,深さ4mmの測
定穴に熱電対を挿入し測定したものである。なお測定は
周囲温度を含んだ値で測定し、かつ電極を取り付けるホ
ルダ―の熱容量の影響も含んだ比較値をもって考察し
た。次にこの評価方法に基づいて行った各実施例につい
て検討する。
(6) Temperature rise characteristic The electrodes under the same electrode conditions as those for the contact resistance characteristic measurement described above are opposed to each other at 10 3 Pa.s. Installed in a vacuum container with a contact force of 30
It was measured by opening and closing a current of 400 A for 20 times at a breaking force of 20 kg and then inserting a thermocouple into the measurement hole with a diameter of 1.5 mm and a depth of 4 mm that was previously opened on the side surface of the fixed electrode. The measurement was carried out with the value including the ambient temperature, and the comparison value including the effect of the heat capacity of the holder to which the electrode is attached was also considered. Next, each example performed based on this evaluation method will be examined.

【0038】[0038]

【表1】 [Table 1]

【0039】[0039]

【表2】 [Table 2]

【0040】[0040]

【表3】 [Table 3]

【0041】[0041]

【表4】 [Table 4]

【0042】実験;参考A 表面を極めて清浄化した、厚さ3mmの高純度Cr板を使
用して、金属Cr板製熱処理用容器を作製した。
Experiment: Reference A A high-purity Cr plate having a thickness of 3 mm, the surface of which was extremely cleaned, was used to prepare a heat treatment container made of a metal Cr plate.

【0043】真空中約1250℃で十分脱ガス処理した電解
法で製造した平均粒径80μmのCr粉と、水素中約 450
℃で十分脱ガス処理した電解法で製造した平均粒径50μ
mのCu粉とを、重量比50:50になる様に秤量し混合し
た混合粉末を使用して、 0.8トン/cm2 にて、直径42
mmのCr・Cu圧粉体を製作した。
Cr powder having an average particle size of 80 μm, produced by an electrolytic method, which was sufficiently degassed at about 1250 ° C. in vacuum, and about 450 in hydrogen.
Average particle size 50μ produced by electrolysis with sufficient degassing at ℃
m and Cu powder, using a mixed powder obtained by mixing weighed so as to become a weight ratio of 50:50, at 0.8 tons / cm 2, diameter 42
mm Cr / Cu powder compact was manufactured.

【0044】前記金属Cr板製熱処理用容器に、上記C
r・Cu圧粉体を直接接触する状態で載置、導入し(第
1の工程)、真空中1100℃の加熱処理を行いCr・Cu
焼結体製造実験を行った(第2の工程)。その結果、C
r板製熱処理用容器とCr・Cu焼結体との間は、強固
な相互拡散現象が見られ、Cr・Cu焼結体を損傷なく
容器から取出す事は出来ず、健全なCr・Cu焼結体を
得る事は出来なかった。但しCr・Cu焼結体の表面汚
染および内部への不純物の侵入は無かった。第1,第2
の工程のみでは表1の様に遮断特性、耐電圧特性、接触
抵抗特性、温度上昇特性ともに著しく劣った。
The above-mentioned C is placed in the metal Cr plate heat treatment container.
Place and introduce r · Cu green compact in direct contact (first step), and heat treatment at 1100 ° C in vacuum to perform Cr · Cu.
An experiment for manufacturing a sintered body was performed (second step). As a result, C
A strong interdiffusion phenomenon was observed between the r-plate heat treatment container and the Cr / Cu sintered body, and the Cr / Cu sintered body could not be taken out from the container without damage. I couldn't get a union. However, the surface of the Cr / Cu sintered body was not contaminated and impurities were not penetrated into the inside. First and second
As shown in Table 1, the cut-off property, the withstand voltage property, the contact resistance property, and the temperature rise property were remarkably inferior only in the step of.

【0045】実験;参考B 表面を極めて清浄化した、厚さ3mmの高純度Cr板を使
用して、金属Cr板製熱処理用容器を作製した。
Experiment: Reference B A heat treatment container made of a metal Cr plate was prepared by using a highly pure Cr plate having a thickness of 3 mm, the surface of which was extremely cleaned.

【0046】電解法で製造した脱ガス処理をしていない
平均粒径80μmのCr粉と平均粒径50μmのCu粉とを
重量比50:50になる様に秤量し混合した混合粉末を使用
して、 0.8トン/cm2 にて、直径42mmのCr・Cu圧
粉体を製作した(脱ガス処理条件以外は実験と同
等)。
Using a mixed powder prepared by electrolysis, a mixture of Cr powder having an average particle size of 80 μm and Cu powder having an average particle size of 50 μm, which has not been degassed, was weighed and mixed in a weight ratio of 50:50. Then, a Cr / Cu green compact having a diameter of 42 mm was produced at 0.8 ton / cm 2 (similar to the experiment except the degassing condition).

【0047】前記金属Cr板製熱処理用容器に、上記C
r・Cu圧粉体を直接接触する状態で載置、導入し(第
1の工程)、真空中1100℃の加熱処理を行いCr・Cu
焼結体製造実験を行った(第2の工程)。その結果、C
r・Cu焼結体では、同実験と同じ加熱処理を与えた
にも拘らず、Cr板製熱処理用容器とCr・Cu焼結体
との間には、実験の場合のような、強固な相互拡散現
象が見られず、実験の場合より損傷の程度は低くCr
・Cu焼結体を容器から取出す事が出来た。しかし、局
所的な溶着部分が引きはずし跡として残った。また焼結
体内部には 100μm級のポアの存在も見られ健全なCr
・Cu焼結体を得る事は出来なかった。なお、表面汚染
および内部への不純物の侵入は実験と同様に無かっ
た。
The above-mentioned C is placed in the metal Cr plate heat treatment container.
Place and introduce r · Cu green compact in direct contact (first step), and heat treatment at 1100 ° C in vacuum to perform Cr · Cu.
An experiment for manufacturing a sintered body was performed (second step). As a result, C
Although the r.Cu sintered body was subjected to the same heat treatment as in the same experiment, a strong heat treatment as in the case of the experiment was made between the Cr plate heat treatment container and the Cr.Cu sintered body. No mutual diffusion phenomenon was observed, and the degree of damage was lower than in the case of the experiment.
・ It was possible to take out the Cu sintered body from the container. However, the locally welded part remained as a trip mark. In addition, the presence of 100 μm-class pores was found inside the sintered body, and sound Cr
・ A Cu sintered body could not be obtained. As with the experiment, neither surface contamination nor penetration of impurities into the interior was observed.

【0048】すなわち、本発明者らは、両実験によ
って取出し時のCr・Cu焼結体の表面損傷問題の相違
を除くと、表面汚染および内部への不純物の侵入の観点
からは、被熱処理金属(原材料)と同じ材質の高純度金
属が熱処理用容器として、有用である観察知見を得た。
しかも、後者実験の場合の方が、表面損傷問題が軽微
であった事実を考察すると、Cr粉、Cu粉に残存して
いた適度の表面ガスが、表面を極めて清浄化した熱処理
用容器の表面に作用し、濡れにくい状態の被膜を適度に
生成したと考えられる。微少分析の結果検出元素は、C
r,Cu,O,Cであった。
That is, the inventors of the present invention, except for the difference in the surface damage problem of the Cr.Cu sintered body at the time of taking out by both experiments, from the viewpoint of surface contamination and intrusion of impurities into the inside, the heat treated metal The observational knowledge that a high-purity metal of the same material as (raw material) is useful as a container for heat treatment was obtained.
Moreover, considering the fact that the surface damage problem was minor in the latter experiment, the appropriate amount of surface gas remaining in the Cr powder and the Cu powder showed that the surface of the heat treatment container whose surface was extremely cleaned It is considered that a film that is hard to get wet is appropriately formed by acting on the above. As a result of microanalysis, the detection element is C
r, Cu, O, C.

【0049】第2の工程で得たCr・Cu焼結部材に対
して、加圧機で9トン/cm2 (実施例1,比較例
1),鍛造機で6トン/cm2 (比較例2)の外部エネ
ルギを印加(第3の工程)して接点素材とした。電気特
性は第3の工程の追加でやや改善の傾向が見られるもの
の実用には供し得ない水準であった(参考B)。
With respect to the Cr / Cu sintered member obtained in the second step, 9 tons / cm 2 (Example 1 and Comparative Example 1) with a press machine and 6 tons / cm 2 (Comparative Example 2) with a forging machine. ) External energy is applied (third step) to obtain a contact material. The electrical characteristics showed a tendency of improvement with the addition of the third step, but were at a level that could not be put to practical use (reference B).

【0050】実験;実施例1、比較例1〜2 実験、では、被熱処理金属として成型体(Cr粉、
Cu粉)を使用した為、ポア、ガスの存在量や存在場所
にばらつきが生じやすく、特に閉じられた内部にガスが
存在していた場合、熱処理時に爆発的なガス放出がおこ
り、表面損傷の原因ともなっている場合がある。そこ
で、一つの解決施策として、相対密度を85%より低い焼
結体としガス放出を促進させる。他の解決施策として、
熱処理中に内部ガスを簡単に放出出来る様にする為に、
使用する被熱処理金属の状態を、実験、実験の場合
の様な粉末成型体とせず、実験として、ガス放出が簡
単に行える様にする為に、粉末状のままで熱処理用容器
に導入しそのまま焼結する実験を試みた。実験の示唆
によって、熱処理用容器は、炭素を素材としてその表面
に、被熱処理金属と同じCrを厚さ 0.1μmイオンプレ
―テイング法で被覆した。その結果、各々施策とも有効
であり両施策の併用は特に有益でガスおよび不純物のよ
り少ない、表面損傷のより少ない焼結部材(実験;実
施例1)を得た。すなわち第2の工程後のガス量を比較
すると、実験では 500〜1000PPM、実験では1000
〜2000PPMと多かったのに対して、実験(実施例
1)では 200〜 400PPMに低下する効果を示した。そ
の効果によって表1に示す様に実用レベルの電気特性を
示した。
Experiment: In Example 1 and Comparative Examples 1 and 2, the heat-treated metal was a molded body (Cr powder,
Since Cu powder) is used, the amount and location of pores and gas are likely to vary, especially when gas is present inside the closed interior, explosive gas release occurs during heat treatment, which may cause surface damage. It may also be the cause. Therefore, as one solution measure, a sintered body having a relative density lower than 85% is used to promote gas release. As another solution measure,
In order to easily release the internal gas during heat treatment,
The state of the metal to be heat treated to be used is not changed into a powder molded body as in the case of experiments, but as an experiment, in order to make it possible to easily release gas, it is introduced into the heat treatment container as it is in powder form and as it is An experiment was conducted to sinter. According to the suggestion of the experiment, the heat treatment container was made of carbon as a raw material, and the surface thereof was coated with the same Cr as the heat-treated metal by an ion plating method with a thickness of 0.1 μm. As a result, each measure was effective, and the combined use of both measures was particularly beneficial, and a sintered member (experiment; Example 1) with less gas and impurities and less surface damage was obtained. That is, comparing the amount of gas after the second step, it was 500 to 1000 PPM in the experiment and 1000 in the experiment.
Although it was as large as ˜2000 PPM, the experiment (Example 1) showed the effect of decreasing to 200 to 400 PPM. Due to the effect, as shown in Table 1, electric characteristics at a practical level were shown.

【0051】これに対して熱処理用容器として、実験
、のように厚さ3mmの高純度Cr板を使用した金属
Cr板製熱処理用容器を使用したところ、金属Cr板の
品質ばらつきに起因すると考えられる被熱処理金属中の
ガス量に、ばらつきが発生する傾向(実験;比較例1
350〜 900PPM)にあった。また、第2の工程後の相
対密度を大きくすると、ガス量の値及びそのばらつきも
大( 850〜4550PPM)となり好ましくない(実験;
比較例2)。
On the other hand, as a heat treatment container, when a heat treatment container made of a metal Cr plate using a high-purity Cr plate having a thickness of 3 mm was used as in an experiment, it was considered that the quality variation of the metal Cr plate was caused. Of the amount of gas in the heat-treated metal to be produced tends to vary (experiment; Comparative Example 1
350-900 PPM). Further, when the relative density after the second step is increased, the value of the gas amount and its variation are large (850 to 4550 PPM), which is not preferable (experiment;
Comparative example 2).

【0052】実験;実施例2 さらに本発明者らは、上記実験では、使用した高純
度Cr板製熱処理用容器の表面を極めて清浄化して使用
したが、被熱処理金属の状態の差異によって、その結果
に相違がでたものと上記実験の結果を考察した。
Experiment: Example 2 Further, in the above experiment, the present inventors used the highly purified Cr plate heat-treating container with the surface extremely cleaned. However, due to the difference in the state of the metal to be heat treated, The difference between the results and the results of the above experiment were considered.

【0053】そこで本発明者らは、実験として、炭素
製熱処理用容器の表面にあらかじめ、スパッタリング法
で、厚さが 0.1μm程度の極薄いCr被膜を生成させた
熱処理用容器を作製した。この熱処理用容器を用いて、
真空中1050℃で加熱処理(第2の工程)を行ったとこ
ろ、熱処理用容器から表面損傷なく、健全な状態で被熱
処理金属(実施例2)を取出せた上、該部品は、表面汚
染および内部への不純物の侵入は無かった。
Therefore, as an experiment, the present inventors produced a heat treatment container in which an ultrathin Cr coating having a thickness of about 0.1 μm was previously formed on the surface of the carbon heat treatment container by the sputtering method. Using this heat treatment container,
When the heat treatment (second step) was performed in vacuum at 1050 ° C., the heat-treated metal (Example 2) could be taken out from the heat treatment container in a sound state without surface damage, and the component was No impurities entered the inside.

【0054】第2の工程で得たCr・Cu焼結部材に対
して、加圧機で4トン/cm2 (実施例2)の外部エネ
ルギを印加(第3の工程)して、相対密度99.7%の接点
素材とした。その結果表1の様に安定した電気的特性を
示した。
External energy of 4 ton / cm 2 (Example 2) was applied to the Cr / Cu sintered member obtained in the second step (third step) with a relative density of 99.7. % Of contact material. As a result, stable electrical characteristics were shown as shown in Table 1.

【0055】実験;実施例3〜4 実験として、炭素の表面に厚さ 0.1μm程度の極薄い
Cr被膜を生成した後、その表面をスパッタリング法
で、雰囲気を調整しながら、Cr23 として、(Cr
−Cr 203)被膜を炭素の上に生成させた熱処理用容器
を作製した(実施例3)。
Experiments: Examples 3 to 4 As an experiment, an extremely thin Cr coating having a thickness of about 0.1 μm was formed on the surface of carbon, and then the surface was formed into Cr 2 O 3 by a sputtering method while adjusting the atmosphere. , (Cr
A container for heat treatment was prepared in which a -Cr203) coating was formed on carbon (Example 3).

【0056】また、同様にして厚さ 0.1μm程度の極薄
い(Cr−Cr 3C2)被膜を炭素の上に生成させた熱処
理用容器を作製した(実施例4)。これらの熱処理用容
器を用いて、真空中 975℃〜1000℃で加熱処理(第2の
工程)を行ったところ、熱処理用容器から表面損傷な
く、健全な状態でCr・Cu焼結体を取出す事が出来た
上、該Cr・Cu焼結体は、表面汚染および内部への不
純物の侵入は無かった(実施例3,4)。
Similarly, an extremely thin (Cr—Cr 3 C 2) coating having a thickness of about 0.1 μm was formed on carbon to prepare a heat treatment container (Example 4). When heat treatment (second step) was performed in vacuum at 975 ° C to 1000 ° C using these heat treatment containers, the Cr / Cu sintered body was taken out from the heat treatment container in a sound state without surface damage. In addition, the Cr / Cu sintered body was free from surface contamination and intrusion of impurities into the inside (Examples 3 and 4).

【0057】第2の工程で得たCr・Cu焼結部材に対
して、加圧機で4トン/cm2 (実施例3)相当、加圧
機で4トン/cm2 相当(実施例4)の外部エネルギを
印加(第3の工程)して、相対密度99.7%の接点素材と
した。その結果表1の様に安定した電気的特性を示し
た。
With respect to the Cr / Cu sintered member obtained in the second step, a presser of 4 ton / cm 2 (Example 3) or a presser of 4 ton / cm 2 (Example 4) was used. External energy was applied (third step) to obtain a contact material having a relative density of 99.7%. As a result, stable electrical characteristics were shown as shown in Table 1.

【0058】実験;実施例5、比較例3 実験として、真空蒸着法で、雰囲気を調整しながら、
厚さ 100μm程度の(Cr−Cr 203)被膜を炭素の上
に生成させた熱処理用容器を作製した。
Experiment: Example 5, Comparative Example 3 As an experiment, the atmosphere was adjusted by the vacuum vapor deposition method.
A container for heat treatment was produced in which a (Cr-Cr 203) coating having a thickness of about 100 μm was formed on carbon.

【0059】またスパッタリング法で、雰囲気を調整し
ながら、厚さ 0.01 μm程度の(Cr−Cr 203)被膜
を炭素の上に生成させた熱処理用容器を作製した。この
熱処理用容器を用いて、真空中 880℃〜1000℃で加熱処
理(第2の工程)を行ったところ、軽度の表面損傷を受
けていたが、ほぼ健全な状態でCr・Cu焼結体を、熱
処理用容器から取出すことができ、かつ該Cr・Cu焼
結体には、表面汚染および内部への不純物の侵入はなか
った(実施例5)。
Further, a heat treatment container was produced in which a (Cr-Cr 203) coating having a thickness of about 0.01 μm was formed on carbon while adjusting the atmosphere by the sputtering method. When heat treatment (second step) was performed in vacuum at 880 ° C to 1000 ° C using this heat treatment container, slight surface damage was observed, but the Cr / Cu sintered body was in a substantially sound state. Was removed from the heat treatment container, and the Cr / Cu sintered body did not have surface contamination or intrusion of impurities into the inside (Example 5).

【0060】しかし、被膜の厚さが必要量なかった場合
には、黒鉛の表面や内部に存在する水分、ガスが、熱処
理中のCr・Cuにまで拡散し、これらの表面変色、汚
染および内部への不純物侵入を招き、健全なCr部品を
得る事は出来なかった(比較例3)。
However, if the thickness of the coating is not required, moisture and gas existing on the surface and inside of the graphite diffuse to Cr / Cu during the heat treatment, causing surface discoloration, contamination and internal It was impossible to obtain a sound Cr component by invading impurities into the steel (Comparative Example 3).

【0061】第2の工程で得たCr・Cu焼結部材に対
して、鍛造機で5トン/cm2 相当(実施例5)、加圧
機で4トン/cm2 相当(比較例6)の外部エネルギを
印加(第3の工程)して、相対密度99.9%(実施例
5),79.8%(比較例3)の接点素材とした。その結果
表1の様に実施例5では安定した電気的特性を示した
が、比較例3では実用のレベルには達しなかった。
For the Cr / Cu sintered member obtained in the second step, a forging machine of 5 ton / cm 2 equivalent (Example 5) and a presser of 4 ton / cm 2 equivalent (Comparative Example 6) were used. External energy was applied (third step) to obtain contact materials having relative densities of 99.9% (Example 5) and 79.8% (Comparative Example 3). As a result, as shown in Table 1, Example 5 showed stable electric characteristics, but Comparative Example 3 did not reach a practical level.

【0062】実験;実施例6〜8 上記した実験では、熱処理用容器の素材材
質としてCr板、や炭素を使用し、その表面を所定の条
件を有する金属クロ―ムや酸化クロ―ムを被覆して使用
した(実施例1〜5で示したように)。
Experiments: Examples 6 to 8 In the experiments described above, Cr plate or carbon was used as the material for the heat treatment container, and the surface thereof was coated with metal chromium or oxide chromium having predetermined conditions. Used (as shown in Examples 1-5).

【0063】しかし、本発明では、これらに限る事なく
その目的を達成する事ができる。すなわち、熱処理用容
器の素材材質として、上記したCr板や炭素以外の酸化
カルシウム又は酸化イットリウムであっても、表面を所
定条件とした熱処理用容器を使用し、かつ被熱処理金属
(原材料)を加圧せず前記熱処理用容器に載置・導入
し、被熱処理金属(原材料)を前記熱処理用容器と共に
加熱、焼結する本発明方法によれば、効果を達成出来る
ことが判った(実施例6、実施例7)。
However, the present invention is not limited to these, and the object can be achieved. That is, even if the above-mentioned Cr plate or calcium oxide or yttrium oxide other than carbon is used as the material for the heat treatment container, a heat treatment container whose surface is subjected to predetermined conditions is used, and a metal to be heat treated (raw material) is added. It was found that the effect can be achieved by the method of the present invention in which the metal to be heat treated (raw material) is heated and sintered together with the heat treatment container by placing and introducing it in the heat treatment container without pressing (Example 6). , Example 7).

【0064】すなわち、酸化カルシウム製の熱処理用容
器の表面に 0.1μmのCrを被覆した後、そのCrを炭
化クロ―ム(主としてCr32 )としたの(実施例
6)、および酸化イットリウム製の熱処理用容器の表面
に 0.1μmのCrを被覆した後、そのCrを酸化クロ―
ム(主としてCr23 )としたもの(実施例7)であ
る。
That is, after 0.1 μm of Cr was coated on the surface of a heat treatment container made of calcium oxide, the Cr was changed to chromium carbide (mainly Cr 3 C 2 ) (Example 6) and yttrium oxide. The surface of the heat treatment container made of 0.1 μm is coated with Cr, and then the Cr is oxidized by oxidation.
A beam (mainly Cr 2 O 3) and the one (Example 7).

【0065】また、酸化カルシウム製の熱処理用容器の
表面に 0.1μmのCrを被覆した後、そのCrを炭化ク
ロ―ム(主としてCr32 )、および酸化クロ―ム
(主としてCr23 )とを混在させて良いもの(実施
例8)。
Further, after coating the surface of a heat treatment container made of calcium oxide with Cr of 0.1 μm, the Cr is coated with chromium carbide (mainly Cr 3 C 2 ) and oxide chromium (mainly Cr 2 O 3). ) May be mixed (Example 8).

【0066】被熱処理金属(原材料)を熱処理用容器に
導入・載置した後、熱処理温度、原料粒径の調節,焼結
助材の添加などで、焼結部材の空隙率を広範囲に調節す
ることが可能である。
After the metal to be heat treated (raw material) is introduced and placed in the heat treatment container, the porosity of the sintered member is adjusted in a wide range by adjusting the heat treatment temperature, the grain size of the raw material, the addition of the sintering aid and the like. It is possible.

【0067】第2の工程で得たCr・Cu焼結部材に対
して、加圧機で4トン/cm2 相当の外部エネルギを印
加(第3の工程)して、相対密度99.9%(実施例6),
99.9%(実施例7),99.8%(実施例8)の接点素材を
得た。その結果表1の様に安定した電気的特性を示し
た。
External energy equivalent to 4 ton / cm 2 was applied to the Cr / Cu sintered member obtained in the second step (third step) with a relative density of 99.9% (Example 6),
Contact materials of 99.9% (Example 7) and 99.8% (Example 8) were obtained. As a result, stable electrical characteristics were shown as shown in Table 1.

【0068】実験;実施例9 実施例1の接点素材(第3の工程まで終了した素材)に
対して、接触抵抗の低減を必要とする時には、接点形状
に加工後、真空中少なくとも 350℃で再加熱熱処理(第
4の工程)を与える事によって、接触抵抗のばらつき幅
を縮小するなど素材の安定化に寄与する。表1の様に実
施例1の接触抵抗が、70〜90μΩであったのに対して第
4の工程の追加で、65〜70μΩと改善された。この場合
の再加熱熱処理温度の選択は、接触抵抗の安定性の観点
から、特に接触抵抗特性を重要視する製品に於いては高
導電性成分の著しい蒸発が起こらない範囲する事が重要
で、約 900℃が限度である。
Experiment; Example 9 When it is necessary to reduce the contact resistance of the contact material of Example 1 (material finished up to the third step), after processing into a contact shape, at least 350 ° C. in vacuum. By providing the reheating heat treatment (fourth step), it contributes to the stabilization of the material such as reducing the variation width of the contact resistance. As shown in Table 1, the contact resistance of Example 1 was 70 to 90 μΩ, whereas it was improved to 65 to 70 μΩ by the addition of the fourth step. In this case, from the viewpoint of stability of contact resistance, it is important to select the reheating heat treatment temperature within a range where significant evaporation of the highly conductive component does not occur, particularly in products in which contact resistance characteristics are important. The limit is about 900 ° C.

【0069】実施例10 上記した実施例1〜9,比較例1〜2,参考例A〜Bで
は、平均粒径80μmのCr粉と、平均粒径50μmのCu
粉を使用した例を代表例としてのべたが、第1〜3の工
程を具備する事を特徴とする本発明の主旨は、この粒子
径に限定されるものではなく、本発明の接点材料の製造
方法の提供目的に対して、平均粒径が 0.1μm未満では
ガス成分を十分低減できず耐電圧特性の維持が困難とな
り遮断性能の低下が見られる。また、平均粒径が 150μ
m以上では、接触抵抗にばらつきが見られこれらの合金
製造への応用はいずれも好ましくない。従って本発明の
製造方法は、平均粒径を 0.1〜 150μmの範囲を選択し
た合金の製造方法に適応出来る。
Example 10 In Examples 1-9, Comparative Examples 1-2, and Reference Examples AB described above, Cr powder having an average particle size of 80 μm and Cu having an average particle size of 50 μm were used.
Although an example using powder is described as a representative example, the gist of the present invention, which is characterized by including the first to third steps, is not limited to this particle size, and the contact material of the present invention can be used. For the purpose of providing the manufacturing method, if the average particle size is less than 0.1 μm, the gas components cannot be sufficiently reduced, and it becomes difficult to maintain the withstand voltage characteristics, and the breaking performance is deteriorated. The average particle size is 150μ
If it is more than m, the contact resistance varies, and application to the production of these alloys is not preferable. Therefore, the production method of the present invention can be applied to the production method of an alloy in which the average particle size is selected in the range of 0.1 to 150 μm.

【0070】実施例11 上記した実施例1〜10,比較例1〜2,参考例A〜Bで
は、高導電性成分と耐弧性成分との比率をほぼ50:50
(重量比)試料の例を代表例としてのべたが、第1〜3
の工程を具備する事を特徴とする本発明の主旨は、この
高導電性成分と耐弧性成分との比率に限定されるもので
はなく、本発明の接点材料の製造方法の提供目的に対し
て、合金中の高導電性成分の量が、10%未満では接触抵
抗が高くなるのみならず遮断性能の低下が見られる。ま
た、合金中の高導電性成分の量が、85%以上では耐電圧
特性の維持が困難となり、これらの合金製造への応用は
いずれも好ましくない。従って本発明の製造方法は、合
金中の高導電性成分の量が10〜85重量%の範囲に選択し
た合金の製造方法に適応出来る。
Example 11 In Examples 1 to 10, Comparative Examples 1 to 2 and Reference Examples AB described above, the ratio of the highly conductive component to the arc resistant component was approximately 50:50.
(Weight ratio) Although the example of the sample is described as a representative example,
The gist of the present invention, which is characterized by including the step of, is not limited to the ratio of the highly conductive component and the arc-resistant component, and is for the purpose of providing the method for producing the contact material of the present invention. When the amount of the highly conductive component in the alloy is less than 10%, not only the contact resistance increases but also the barrier performance decreases. Further, if the amount of the highly conductive component in the alloy is 85% or more, it becomes difficult to maintain the withstand voltage characteristics, and application to these alloy productions is not preferable. Therefore, the production method of the present invention can be applied to the production method of an alloy in which the amount of the highly conductive component in the alloy is selected in the range of 10 to 85% by weight.

【0071】実施例12 上記した実施例1〜11,比較例1〜2,参考例A〜Bで
は、高導電性成分と耐弧性成分とで構成した合金の代表
例としてのべたが、第1〜3の工程を具備する事を特徴
とする本発明の主旨は、この構成に制限されるものでは
なく、本発明の接点材料の製造方法の提供目的に対し
て、更に補助成分(例えばBi)を 0.05〜5重量%含
有させた合金製造に対しても適応出来る。補助成分の量
が、 0.05重量%未満では補助成分を添加する本来の目
的である耐溶着性の改善効果が少ないのみならず、成分
コントロ―ルもばらつきが見られる。また、合金中の補
助成分の量が、5%以上では耐電圧特性の維持が困難と
なるのみでなく、偏析による成分コントロ―ルにもばら
つきが見られ、これらの合金製造への応用はいずれも好
ましくない。従って本発明の製造方法は、補助成分を
0.05 〜5重量%の範囲に選択した合金の製造方法に適
応出来る。
Example 12 In Examples 1 to 11, Comparative Examples 1 to 2 and Reference Examples A to B described above, a representative example of an alloy composed of a highly conductive component and an arc resistant component was used. The gist of the present invention, which is characterized by comprising the steps 1 to 3, is not limited to this constitution, and for the purpose of providing the method for producing the contact material of the present invention, further auxiliary components (for example, Bi ) Can be applied to the production of an alloy containing 0.05 to 5% by weight. When the amount of the auxiliary component is less than 0.05% by weight, not only the effect of improving the welding resistance, which is the original purpose of adding the auxiliary component, is small, but also the component control varies. Further, if the amount of the auxiliary component in the alloy is 5% or more, it becomes difficult not only to maintain the withstand voltage characteristics, but also the component control due to segregation varies, and any application to the production of these alloys will occur. Is also not preferable. Therefore, the production method of the present invention uses auxiliary components
It can be applied to the alloy manufacturing method selected in the range of 0.05 to 5% by weight.

【0072】実施例13 上記した実施例1〜12では、本発明の「第2の工程」に
於ける熱処理条件としてその温度が1050℃(実施例1、
2)〜 830℃(実施例7)の範囲の例を示したが、第1
〜3の工程を具備する事を特徴とする本発明の主旨は、
この熱処理条件に限定されるものではなく、本発明の接
点材料の製造方法の提供目的に対して、「第2の工程」
に於ける熱処理条件としてその温度は、高導電性成分の
溶融温度以下で 500℃以上の温度範囲を選択する。
Example 13 In Examples 1 to 12 above, the temperature was 1050 ° C. (Example 1, Example 1) as the heat treatment condition in the “second step” of the present invention.
2) to 830 ° C (Example 7) in the example of the range,
The gist of the present invention, which is characterized by comprising the steps of
The heat treatment conditions are not limited to the above, but for the purpose of providing the method for producing a contact material of the present invention, the “second step”
As the heat treatment condition in, the temperature is selected to be a temperature range below the melting temperature of the highly conductive component and above 500 ° C.

【0073】この条件が 500℃未満では、「第2の工
程」によって得た焼結部材の機械的強度が十分でなく作
業性に難点を持った部材となる。また高導電性成分の溶
融温度以上とすると、重量差による偏析のみでなく、偏
析による成分コントロ―ルにもばらつきが見られ、これ
らの合金製造への応用はいずれも好ましくない。従って
本発明の製造方法は、「第2の工程」に於ける熱処理条
件としてその温度を高導電性成分の溶融温度以下で 500
℃以上の温度範囲に選択した合金の製造方法に適応出来
る。
If this condition is less than 500 ° C., the mechanical strength of the sintered member obtained by the “second step” will not be sufficient and the member will have a difficulty in workability. If the melting temperature of the high-conductivity component is higher than the melting temperature, not only segregation due to weight difference but also component control due to segregation is observed, and application to these alloys is not preferable. Therefore, in the manufacturing method of the present invention, as the heat treatment condition in the “second step”, the temperature is set to 500 ° C. or lower as the melting temperature of the highly conductive component.
It can be applied to the alloy manufacturing method selected in the temperature range of ℃ or more.

【0074】実施例14 上記した実施例1〜13,比較例1〜2,参考例A〜Bで
は、耐弧性成分粉末は、表面被覆等せずそのままの例を
代表例としてのべたが、第1〜3の工程を具備する事を
特徴とする本発明の主旨は、この代表例に限定されるも
のではなく、本発明の接点材料の製造方法の提供目的に
対して、厚さ 0.01 〜50μmのCu又は/及びAgを被
覆した粉末とする事は、接触抵抗を20〜50%低減するな
ど接触抵抗特性を改善する製造方法を提供する。
Example 14 In Examples 1 to 13 and Comparative Examples 1 to 2 and Reference Examples A to B described above, the arc-resistant component powder was used as a representative example without surface coating or the like. The gist of the present invention, which is characterized by including the first to third steps, is not limited to this representative example, and for the purpose of providing the method for producing a contact material of the present invention, a thickness of 0.01 to The powder coated with 50 μm of Cu or / and Ag provides a manufacturing method for improving the contact resistance characteristics such as reducing the contact resistance by 20 to 50%.

【0075】実施例15 上記した実施例1〜14,比較例1〜2,参考例A〜Bで
は、高導電性成分・耐弧性成分の各原料粉末は、表面被
覆等せずそのままの例を代表例としてのべたが、第1〜
3の工程を具備する事を特徴とする本発明の主旨は、こ
の代表例に限定されるものではなく、本発明の接点材料
の製造方法の提供目的に対して、厚さ 0.01 〜50μmの
Fe,Co,Niを被覆した粉末とする事は、耐電圧値
を10〜20%向上させるなど耐電圧特性を改善する製造方
法を提供する。
Example 15 In Examples 1 to 14 and Comparative Examples 1 to 2 and Reference Examples A to B described above, the raw material powders of the high conductivity component and the arc resistant component were used as they were without surface coating. As a representative example,
The gist of the present invention, which is characterized by including the step 3 above, is not limited to this representative example. For the purpose of providing the method for producing the contact material of the present invention, the Fe of 0.01 to 50 μm in thickness is provided. The powder coated with Co, Co and Ni provides a manufacturing method for improving the withstand voltage characteristics such as improving the withstand voltage value by 10 to 20%.

【0076】また、被熱処理金属(原材料)として、C
r・Cuを代表例として述べたが、被熱処理金属(原材
料)の耐弧成分がTi,V,Nb,Ta,Mo,Wの場
合、これらの炭化物であっても、また導電成分がAg,
Cu−Agであっても、熱処理用容器を上記の様な条件
とするなど第1〜3の工程を具備する事によって、同様
に高品質の接点素材を得ることが出来る。高導電性成分
と耐弧性成分との比率がほぼ同じなら、実施例1〜2と
同程度の実用に供し得る接点を得た。
As the metal to be heat treated (raw material), C
Although r · Cu has been described as a typical example, when the arc-resistant component of the heat-treated metal (raw material) is Ti, V, Nb, Ta, Mo, W, even if these carbides are used, the conductive component is Ag,
Even if Cu-Ag is used, a high-quality contact material can be similarly obtained by providing the first to third steps such as setting the heat treatment container under the above conditions. If the ratios of the highly conductive component and the arc-resistant component were almost the same, contact points that could be put to practical use in the same degree as in Examples 1 and 2 were obtained.

【0077】本発明者らは、炭素製熱処理用容器の上に
金属被膜を生成させた熱処理用容器であっても、表面損
傷および表面汚染および内部への不純物の侵入のない健
全な状態の接点素材がえられる事、しかし炭素製熱処理
用容器の上に金属被膜の厚さが不適切であると、強固な
相互拡散現象が見られ好ましくない事等を明らかにし
た。
The inventors of the present invention have found that even in a heat treatment container in which a metal coating is formed on a carbon heat treatment container, the contact point in a sound state without surface damage, surface contamination, and intrusion of impurities into the interior is obtained. It was clarified that the material can be obtained, but if the thickness of the metal coating on the carbon heat treatment container is inappropriate, a strong interdiffusion phenomenon is observed, which is not preferable.

【0078】以上述べた上記知見に基き本発明者は、前
記した焼結前の該原料粉体の受ける圧力が、各焼結部材
毎のみならず各焼結部材内部のミクロ的部分について
も、一定となる技術についての検討、及び前記した実験
検討とを相乗した結果、本発明を完成し、真空バルブの
電気的性能の向上に寄与した。
Based on the above-mentioned findings, the present inventor has found that the pressure applied to the raw material powder before sintering is not only for each sintered member but also for the microscopic portion inside each sintered member. As a result of the synergistic effect of the study on the constant technology and the above-mentioned experimental study, the present invention was completed and contributed to the improvement of the electrical performance of the vacuum valve.

【0079】[0079]

【発明の効果】以上のように本発明によれば、被熱処理
金属粉末は、所定の粒子径を有するAg,Cuの少なく
とも1つよりなる高導電性成分と、所定の粒子径を有す
るTi,V,Cr,Nb,Mo,Ta,Wの少なくとも
1つの金属、またはこれらの炭化物よりなる耐弧性成分
とを有し、これらを均一に混合して得た混合粉または成
型体を、所定形状を有する熱処理用支持部材に均一に載
置・導入する第一の工程と、前記混合粉を、前記熱処理
用支持部材と共に加熱、焼結し、相対密度が85%より低
い焼結部材を得る第二の工程と、前記焼結部材に対し
て、相対密度を90%以上とするに充分な外部エネルギを
少くとも1回印加して素材を得る第三の工程とを備える
ようにしたので、ガスおよび不純物の混入が少なく、優
れた耐電圧特性および大電流遮断特性が得られる接点材
料の製造方法を提供することができる。
As described above, according to the present invention, the heat-treatable metal powder comprises a highly conductive component made of at least one of Ag and Cu having a predetermined particle size, and Ti having a predetermined particle size. A mixed powder or molded product having at least one metal of V, Cr, Nb, Mo, Ta, W, or an arc resistant component made of a carbide thereof, and uniformly mixing these, is formed into a predetermined shape. A first step of uniformly placing and introducing the heat treatment support member having the, and the mixed powder is heated and sintered together with the heat treatment support member to obtain a sintered member having a relative density lower than 85%. Since the second step and the third step of obtaining the raw material by applying at least one external energy sufficient to make the relative density of 90% or more to the sintered member, the gas is provided. With less impurities, excellent withstand voltage characteristics and It is possible to provide a method of manufacturing a contact material that can obtain a large current interruption characteristic.

フロントページの続き (72)発明者 山本 敦史 東京都府中市東芝町1番地 株式会社東芝 府中工場内Front page continuation (72) Inventor Atsushi Yamamoto 1st Toshiba Town, Fuchu City, Tokyo Inside Toshiba Fuchu Plant

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】 被熱処理金属粉末は、所定の粒子径を有
するAg,Cuの少なくとも1つよりなる高導電性成分
と、 所定の粒子径を有するTi,V,Cr,Nb,Mo,T
a,Wの少なくとも1つの金属、またはこれらの炭化物
よりなる耐弧性成分とを有し、これらを均一に混合して
得た混合粉または成型体を、所定形状を有する熱処理用
支持部材に均一に載置・導入する第一の工程と、前記混
合粉を、前記熱処理用支持部材と共に加熱、焼結し、相
対密度が85%より低い焼結部材を得る第二の工程と、前
記焼結部材に対して、相対密度を90%以上とするに充分
な外部エネルギを少くとも1回印加して素材を得る第三
の工程とを備えたことを特徴とする接点材料の製造方
法。
1. The heat-treated metal powder comprises a highly conductive component of at least one of Ag and Cu having a predetermined particle size, and Ti, V, Cr, Nb, Mo, T having a predetermined particle size.
A mixed powder or molded product containing at least one metal of a and W, or an arc-resistant component made of a carbide of these, and uniformly obtained by uniformly mixing them on a support member for heat treatment having a predetermined shape. The first step of placing and introducing into the above, the second step of heating and sintering the mixed powder together with the supporting member for heat treatment to obtain a sintered member having a relative density lower than 85%, and the sintering A method for producing a contact material, comprising: a third step of applying external energy sufficient to make a relative density of 90% or more to a member at least once to obtain a material.
【請求項2】 前記第一の工程は、所定形状を有する熱
処理用支持部材に、前記混合粉を加圧せず載置・導入し
たことを特徴とする請求項1記載の接点材料の製造方
法。
2. The method for producing a contact material according to claim 1, wherein in the first step, the mixed powder is placed and introduced onto a heat treatment support member having a predetermined shape without applying pressure. .
【請求項3】 前記第3の工程は、外部エネルギを印加
する手段が、プレス成型機械、圧延機械、鍛造機械な
ど、静的もしくは動的な加圧または圧延法を選択したこ
とを特徴とする請求項1または請求項2記載の接点材料
の製造方法。
3. The third step is characterized in that the means for applying external energy selects a static or dynamic pressing or rolling method such as a press molding machine, a rolling machine, a forging machine. A method of manufacturing the contact material according to claim 1 or 2.
【請求項4】 前記非酸化性雰囲気において、少なくと
も 350℃の加熱処理を少なくとも1回与えて素材を得る
第四の工程を備えたことを特徴とする請求項1〜請求項
3のいずれかに記載の接点材料の製造方法。
4. The method according to claim 1, further comprising a fourth step of obtaining a material by subjecting the material to a heat treatment at least 350 ° C. at least once in the non-oxidizing atmosphere. A method for producing the contact material described.
【請求項5】 前記被熱処理金属粉末の所定の粒子径
は、 0.1〜 150μmであることを特徴とする請求項1〜
請求項4のいずれかに記載の接点材料の製造方法。
5. The predetermined particle size of the metal powder to be heat treated is 0.1 to 150 μm.
The method for manufacturing the contact material according to claim 4.
【請求項6】 接点材料中に占める高導電性成分の量
は、10〜85重量%であることを特徴とする請求項1〜請
求項5のいずれかに記載の接点材料の製造方法。
6. The method for producing a contact material according to claim 1, wherein the content of the highly conductive component in the contact material is 10 to 85% by weight.
【請求項7】 前記第2の工程は、前記熱処理用支持部
材面上にCu粉末またはCu薄板を載置した後、その上
に前記混合粉をCu・Cr混合粉として載置後、両者を
同時に加熱、焼結し、一面にCu層を持つCu・Cr焼
結部材を得ることを特徴とする請求項1〜請求項6のい
ずれかに記載の接点材料の製造方法。
7. In the second step, after the Cu powder or Cu thin plate is placed on the surface of the heat treatment support member, the mixed powder is placed thereon as a Cu / Cr mixed powder, and then both are placed. The method for producing a contact material according to claim 1, wherein a Cu / Cr sintered member having a Cu layer on one surface is simultaneously heated and sintered to obtain a Cu / Cr sintered member.
【請求項8】 前記第2の工程は、非酸化性雰囲気にお
いて 500〜1000℃の熱処理を少なくとも1回与えたこと
を特徴とする請求項1〜請求項7のいずれかに記載の接
点材料の製造方法。
8. The contact material according to claim 1, wherein in the second step, heat treatment at 500 to 1000 ° C. is applied at least once in a non-oxidizing atmosphere. Production method.
【請求項9】 前記被熱処理金属粉末が、 0.05 〜5%
の補助成分Biを均一に混合して得たCu・Cr・Bi
混合粉であることを特徴とする請求項1〜請求項8のい
ずれかに記載の接点材料の製造方法。
9. The heat-treated metal powder is 0.05 to 5%.
・ Cr ・ Bi obtained by uniformly mixing the auxiliary component Bi of
It is mixed powder, The manufacturing method of the contact material in any one of Claims 1-8.
【請求項10】 前記被熱処理金属粉末の補助成分が、
Te,Se,Pb,Sbのうちの1つであることを特徴
とする請求項9記載の接点材料の製造方法。
10. The auxiliary component of the metal powder to be heat treated is:
The method for producing a contact material according to claim 9, wherein the method is one of Te, Se, Pb, and Sb.
【請求項11】 前記被熱処理金属の高導電性成分とし
たCu粉末の一部もしくは総てをAgで置換したことを
特徴とする請求項7〜請求項10のいずれかに記載の接点
材料の製造方法。
11. The contact material according to claim 7, wherein a part or all of the Cu powder used as the highly conductive component of the heat-treated metal is replaced with Ag. Production method.
【請求項12】 前記熱処理用支持部材は、その表面の
少なくとも一部分をCrで被覆した後、該被覆したCr
の少なくとも一部分をCrの炭化物または酸化物のいず
れかとしたことを特徴とする請求項1〜請求項11のいず
れかに記載の接点材料の製造方法。
12. The support member for heat treatment has at least a part of its surface coated with Cr, and then the coated Cr.
12. The method for producing a contact material according to any one of claims 1 to 11, wherein at least a part of is a carbide or oxide of Cr.
【請求項13】 前記被熱処理金属粉末の耐弧性成分の
表面には、厚さ 0.01〜50μmのCuまたはAgのいず
れかを被覆してなることを特徴とする請求項1〜請求項
12のいずれかに記載の接点材料の製造方法。
13. The surface of the arc-resistant component of the heat-treated metal powder is coated with either Cu or Ag having a thickness of 0.01 to 50 μm.
13. The method for producing a contact material according to any one of 12.
【請求項14】 前記被熱処理金属粉末の表面には、厚
さ 0.01 〜50μmのFe,Ni,Coより選ばれた1つ
を被覆してなることを特徴とする請求項1〜請求項13の
いずれかに記載の接点材料の製造方法。
14. The surface of the metal powder to be heat treated is coated with one selected from Fe, Ni, and Co having a thickness of 0.01 to 50 μm. A method for manufacturing the contact material according to any one of claims.
【請求項15】 前記被熱処理金属粉末の耐弧性成分の
表面には、厚さ 0.01〜50μmのTi,V,Nb,T
a,Mo,Wより選ばれた1つを被覆してなることを特
徴とする請求項1〜請求項14のいずれかに記載の接点材
料の製造方法。
15. The surface of the arc-resistant component of the heat-treated metal powder has a thickness of 0.01 to 50 μm of Ti, V, Nb, and T.
15. The method for producing a contact material according to claim 1, wherein the contact material is coated with one selected from a, Mo and W.
【請求項16】 前記熱処理用支持部材の材質は、炭
素、酸化カルシウム、酸化イットリウムより選ばれた1
つであることを特徴とする請求項1〜請求項15のいずれ
かに記載の接点材料の製造方法。
16. The material of the heat treatment support member is selected from carbon, calcium oxide and yttrium oxide.
16. The method for producing a contact material according to claim 1, wherein the contact material is one of the following.
【請求項17】 前記熱処理用支持部材の材質は、炭素
であり、その表面の少なくとも一部分を金属クロム、酸
化クロム、炭化クロム、酸化アルミ、酸化カルシウム、
酸化イットリウムの少なくとも1つであることを特徴と
する請求項1〜請求項16のいずれかに記載の接点材料の
製造方法。
17. The material of the heat treatment support member is carbon, and at least a part of the surface thereof is metallic chromium, chromium oxide, chromium carbide, aluminum oxide, calcium oxide,
The method for producing a contact material according to any one of claims 1 to 16, which is at least one of yttrium oxide.
JP6105128A 1994-05-19 1994-05-19 Manufacture of contact material Pending JPH07320608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6105128A JPH07320608A (en) 1994-05-19 1994-05-19 Manufacture of contact material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6105128A JPH07320608A (en) 1994-05-19 1994-05-19 Manufacture of contact material

Publications (1)

Publication Number Publication Date
JPH07320608A true JPH07320608A (en) 1995-12-08

Family

ID=14399147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6105128A Pending JPH07320608A (en) 1994-05-19 1994-05-19 Manufacture of contact material

Country Status (1)

Country Link
JP (1) JPH07320608A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002015644A (en) * 2000-06-29 2002-01-18 Toshiba Corp Contact material for vacuum circuit breaker, its manufacturing method and vacuum circuit breaker
JP2008171682A (en) * 2007-01-11 2008-07-24 Toshiba Corp Manufacturing method of contact material, and manufacturing method of vacuum valve
JP2010277962A (en) * 2009-06-01 2010-12-09 Japan Ae Power Systems Corp Electrode contact member for vacuum breaker, and manufacturing method of the electrode contact member of vacuum breaker
WO2011003225A1 (en) * 2009-07-08 2011-01-13 中南大学 Preparation method for silver metal oxide made electric contact material
US11462367B2 (en) 2017-02-22 2022-10-04 Mitsubishi Electric Corporation Contact material, method of manufacturing same, and vacuum valve

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002015644A (en) * 2000-06-29 2002-01-18 Toshiba Corp Contact material for vacuum circuit breaker, its manufacturing method and vacuum circuit breaker
JP2008171682A (en) * 2007-01-11 2008-07-24 Toshiba Corp Manufacturing method of contact material, and manufacturing method of vacuum valve
JP2010277962A (en) * 2009-06-01 2010-12-09 Japan Ae Power Systems Corp Electrode contact member for vacuum breaker, and manufacturing method of the electrode contact member of vacuum breaker
WO2011003225A1 (en) * 2009-07-08 2011-01-13 中南大学 Preparation method for silver metal oxide made electric contact material
US11462367B2 (en) 2017-02-22 2022-10-04 Mitsubishi Electric Corporation Contact material, method of manufacturing same, and vacuum valve

Similar Documents

Publication Publication Date Title
US6551374B2 (en) Method of controlling the microstructures of Cu-Cr-based contact materials for vacuum interrupters and contact materials manufactured by the method
US5236523A (en) Silver- or silver-copper alloy-metal oxide composite material
JP2908073B2 (en) Manufacturing method of contact alloy for vacuum valve
JP3825275B2 (en) Electrical contact member and its manufacturing method
EP0903760B1 (en) Vacuum valve
EP0929088A2 (en) Contact material
JPH07320608A (en) Manufacture of contact material
EP0982744B1 (en) Contact material for contacts for vacuum interrupter and method of manufacturing the contact
EP0460680B1 (en) Contact for a vacuum interrupter
EP0538896A2 (en) Process for forming contact material
EP3156154B1 (en) Process for producing electrode material
JP5506873B2 (en) Contact material and manufacturing method thereof
EP3187287B1 (en) Method for manufacturing electrode material
JP5116538B2 (en) Contact material
JPH0612646B2 (en) Contact material for vacuum valve
JP2937620B2 (en) Manufacturing method of contact alloy for vacuum valve
JP3251779B2 (en) Manufacturing method of contact material for vacuum valve
JPH0682532B2 (en) Method for manufacturing contact alloy for vacuum valve
JP2557143B2 (en) Method for producing silver-tin oxide composite material
JP2511043B2 (en) Manufacturing method of contact alloy for vacuum valve
JP2653467B2 (en) Manufacturing method of contact alloy for vacuum valve
JP2511019B2 (en) Contact material for vacuum valve
JPH05101752A (en) Manufacture of contact for vacuum valve
JPH0887934A (en) Manufacture of contact alloy for vacuum switchgear
JPH09190730A (en) Manufacture of contact member for vacuum circuit breaker