JPH07318600A - Non-contact conductivity measuring instrument - Google Patents

Non-contact conductivity measuring instrument

Info

Publication number
JPH07318600A
JPH07318600A JP13508594A JP13508594A JPH07318600A JP H07318600 A JPH07318600 A JP H07318600A JP 13508594 A JP13508594 A JP 13508594A JP 13508594 A JP13508594 A JP 13508594A JP H07318600 A JPH07318600 A JP H07318600A
Authority
JP
Japan
Prior art keywords
measured
current
conductivity
substance
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13508594A
Other languages
Japanese (ja)
Inventor
Kazunori Otobe
和紀 乙部
Yuji Kikuchi
佑二 菊池
Junichi Sugiyama
純一 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Food Research Institute
Original Assignee
National Food Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Food Research Institute filed Critical National Food Research Institute
Priority to JP13508594A priority Critical patent/JPH07318600A/en
Publication of JPH07318600A publication Critical patent/JPH07318600A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To provide a non-contact conductivity measuring instrument which can accurately measure conductivity without contacting a sample with a simple configuration. CONSTITUTION:A vibration magnetic field at an RF (Radio Frequency) region is generated in a coil 4 for generating magnetic field, induction current (excitation current) is allowed to flow into substance 1 to be measured by placing the substance 1 into the vibration magnetic field, and an energy loss inherent in the substance to be measured being generated by the induction current is measured as the change in the level of vibration current given to the magnetic field generation coil 4, and the conductivity of the substance 1 to be measured is obtained without any contact based on the correlation between the level of the measured vibration current and the conductivity of the substance to be measured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、導電率の測定器に係
り、特に測定対象物質(以下、試料という)の導電率を
非接触もしくは非破壊で測定可能な測定器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductivity measuring device, and more particularly to a measuring device capable of measuring the conductivity of a substance to be measured (hereinafter referred to as a sample) in a non-contact or non-destructive manner.

【0002】一般に、導電率の測定は、果汁の酸度や糖
度測定、電磁流量計による流量測定、バイオリアクタ等
における反応過程のモニタリング、青果物の塾度測定、
水分含有量の測定、イオンクロマトグラフノ検出等、種
々の測定あるいは検出のための指標として広範囲に用い
られている。
Generally, the conductivity is measured by measuring the acidity and sugar content of fruit juice, measuring the flow rate by an electromagnetic flow meter, monitoring the reaction process in a bioreactor, measuring the degree of fruit and vegetables, etc.
It is widely used as an index for various measurements or detections such as measurement of water content and detection of ion chromatography.

【0003】このような用途の多様性をもつ導電率測定
装置は、装置構成の単純さ、簡便性、保守の容易さ、あ
るいは安全性などの点から、収穫、流通、加工のあらゆ
る段階において利用価値の高い装置である。
The conductivity measuring device having such a variety of uses is used at all stages of harvesting, distribution and processing because of its simple structure, convenience, easy maintenance, and safety. It is a valuable device.

【0004】[0004]

【従来の技術】従来、導電率測定器として、電極を用い
る接触型の導電率測定器と、電極に依らない導電率測定
器と、が知られている。
2. Description of the Related Art Conventionally, as a conductivity measuring device, a contact-type conductivity measuring device using an electrode and a conductivity measuring device independent of an electrode are known.

【0005】接触型の導電率測定器は、2つの電極また
は4つの電極を試料に直接接触させ、それらの電極を通
じて試料中に電流を流し、そのときの電極間に生じる電
圧を測定するよう構成されている。この場合、電極の試
料に対する接触は、溶液試料の場合には電極を溶液試料
中に浸し、青果物のような固形試料の場合は針状の電極
を試料に突き刺すことで行われる。
The contact-type conductivity measuring device is configured such that two electrodes or four electrodes are brought into direct contact with a sample, a current is caused to flow through the sample through the electrodes, and the voltage generated between the electrodes at that time is measured. Has been done. In this case, the electrode is brought into contact with the sample by immersing the electrode in the solution sample in the case of a solution sample and by piercing the sample with a needle-shaped electrode in the case of a solid sample such as fruits and vegetables.

【0006】電極に依らない導電率測定器としては、ト
ロイド(円環状ソレノイド)による誘導電流測定法を用
いたものが知られている。これは、励磁用トロイドと測
定用トロイドを並列に配置して検出部を構成し、この検
出部全体を試料溶液中に浸し、励磁用トロイドに励磁電
流を流して磁場を発生させ、発生した磁場により試料溶
液中の電荷を加速する。この加速電荷は測定用トロイド
の磁束と鎖交するように運動するために測定用トロイド
に磁場が発生し、このときの電荷の運動速度(励磁電
圧)と電荷の量に応じた誘導起電力が測定用トロイドに
おいて観察される構成となっている。
As a conductivity measuring instrument which does not depend on an electrode, one using an induced current measuring method using a toroid (annular solenoid) is known. This is a detection unit that is composed by arranging an excitation toroid and a measurement toroid in parallel.The entire detection unit is immersed in a sample solution, and an excitation current is passed through the excitation toroid to generate a magnetic field. To accelerate the charge in the sample solution. This accelerating charge moves so as to interlink with the magnetic flux of the measuring toroid, so that a magnetic field is generated in the measuring toroid, and the induced electromotive force according to the moving speed (excitation voltage) of the charge and the amount of charge at this time is generated. It is the structure observed in the measurement toroid.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、従来の
接触型導電率測定器は次のような問題点を有する。 電極を試料に直接接触させる必要があるため、非破
壊測定ができない。 電極は特殊で高価であり、洗浄や保管等の保守に手
間がかかる。 試料やリアクターの生産物が電極を介して汚染され
る恐れがある。 電極の反応が安定するまでに時間がかかり、また多
数の試料を測定する場合には各試料の測定毎に電極を洗
浄しなければならないので作業効率が悪い。 原理的には、励磁電流の周波数を高くして電荷の運
動速度を増すことにより、少量の電荷密度でも測定感度
を上げることができるが、電極の反応速度に限界があ
り、実質的には制約を受ける。 電気双極子の影響により、高い周波数による導電率
測定が困難である。
However, the conventional contact type conductivity measuring device has the following problems. Non-destructive measurement is not possible because the electrode must be in direct contact with the sample. The electrodes are special and expensive, and maintenance such as cleaning and storage takes time. Samples and reactor products can be contaminated through the electrodes. It takes time for the reaction of the electrodes to stabilize, and in the case of measuring a large number of samples, the electrodes have to be washed after each measurement of the samples, so the work efficiency is poor. In principle, by increasing the frequency of the exciting current and increasing the velocity of movement of the charge, it is possible to increase the measurement sensitivity even with a small amount of charge density, but there is a limit to the reaction rate of the electrode, and there is practical limitation. Receive. Due to the influence of electric dipoles, it is difficult to measure conductivity at high frequencies.

【0008】また、従来の電極に依らない導電率測定器
は次のような問題点を有する。 検出部のトロイドを試料中に浸漬させる必要がある
ため、上記同様に非破壊測定ができないし、試料の測定
ごとに検出部を洗浄しなければならないので作業効率が
悪い。 試料やリアクターの生産物が検出部を介して汚染さ
れる恐れがある。 原理的には、励磁電流の周波数を高くして電荷の運
動速度を増すことにより、少量の電荷密度でも測定感度
を上げることができるが、電極の反応速度に限界があ
り、実質的には制約を受ける。
In addition, the conventional conductivity measuring device which does not rely on electrodes has the following problems. Since it is necessary to immerse the toroid of the detection unit in the sample, non-destructive measurement cannot be performed in the same manner as described above, and the detection unit has to be washed after each measurement of the sample, resulting in poor work efficiency. Samples and reactor products may be contaminated via the detector. In principle, by increasing the frequency of the exciting current and increasing the velocity of movement of the charge, it is possible to increase the measurement sensitivity even with a small amount of charge density, but there is a limit to the reaction rate of the electrode, and there is practical limitation. Receive.

【0009】したがって、本発明は、簡単な装置構成
で、かつ試料に非接触で導電率を精度良く測定すること
ができる導電率測定器を提供することを目的とする。
Therefore, it is an object of the present invention to provide a conductivity measuring instrument which has a simple device structure and which can measure the conductivity with high accuracy without contacting a sample.

【0010】[0010]

【課題を解決するための手段】本発明者等は電磁誘導の
法則に基づいて動き得る電荷が存在する物質であれば、
いかなる物質でも振動磁場を与えることにより当該物質
内に誘導電流を生じさせることが可能であると考えた。
また、超伝導物質でない限り、電流が存在すれば必ずエ
ネルギー損失が生じ、かつ電流は電荷密度と運動速度に
比例する。
Means for Solving the Problems The inventors of the present invention have proposed that if a substance having an electric charge that can move based on the law of electromagnetic induction exists,
It was considered possible to generate an induced current in any substance by applying an oscillating magnetic field.
Also, unless it is a superconducting substance, energy loss will always occur if a current is present, and the current is proportional to the charge density and the velocity of motion.

【0011】したがって、電荷の運動速度すなわち振動
磁場の振動周波数を加速することにより、少量の電荷し
か含まない物質であっても測定可能な大きさの損失を生
じさせることができ、また、振動磁場の周波数を変化さ
せることにより測定感度が可変な損失測定器の実現が可
能であると考えた。
Therefore, by accelerating the velocity of movement of the electric charge, that is, the oscillation frequency of the oscillating magnetic field, a measurable loss can be caused even in a substance containing a small amount of electric charge. We thought that it is possible to realize a loss measuring instrument whose measurement sensitivity is variable by changing the frequency.

【0012】一方、誘導電流により生じるエネルギー損
失は、物質に与える振動磁場を発生させるための励磁電
流の大きさの変化として測定可能であるから、原理的に
は例えば中空ソレノイド等の磁場発生手段の中空部内に
測定対象の試料を配置し、振動磁場により試料内に生じ
た誘導電流によるエネルギー損失を励磁電流の観察によ
って測定することができることになる。実際に、導電率
の異なる様々な電解質の水溶液を用いた検証の結果、導
電率と励磁電流との間に一定の関係が存在することを見
出し、本発明に達したものである。
On the other hand, the energy loss caused by the induced current can be measured as a change in the magnitude of the exciting current for generating the oscillating magnetic field given to the substance. Therefore, in principle, for example, a magnetic field generating means such as a hollow solenoid is used. By arranging the sample to be measured in the hollow portion, the energy loss due to the induced current generated in the sample by the oscillating magnetic field can be measured by observing the exciting current. In fact, as a result of verification using aqueous solutions of various electrolytes having different electric conductivity, it was found that there is a certain relationship between the electric conductivity and the exciting current, and the present invention has been achieved.

【0013】以上を背景として、請求項1に記載の発明
は、測定対象物質を収納し、RF(ラジオ周波数)領域
における振動磁場を発生するコイルと、この磁場発生用
コイルに前記RF領域の振動電流を供給する発振回路
と、この振動電流を測定する電流測定手段と、測定され
た前記振動電流に基づいて前記測定対象物質の導電率を
求める算出手段と、を備えて構成される。
With the background described above, the invention according to claim 1 stores a substance to be measured and generates an oscillating magnetic field in an RF (radio frequency) range, and a coil for generating the magnetic field, which vibrates in the RF range. An oscillation circuit that supplies a current, a current measuring unit that measures the oscillating current, and a calculating unit that calculates the conductivity of the substance to be measured based on the measured oscillating current are configured.

【0014】請求項2に記載の発明は、測定対象物質を
収納し、RF(ラジオ周波数)領域における振動磁場を
発生するコイルと、この磁場発生用コイルに供給する振
動電流の前記RF領域の振動周波数を変化可能な発振回
路と、この振動電流を測定する電流測定手段と、測定さ
れた前記振動電流に基づいて前記測定対象物質の導電率
を求める算出手段と、を備えて構成される。
According to a second aspect of the present invention, a coil which contains a substance to be measured and generates an oscillating magnetic field in an RF (radio frequency) region, and an oscillating current supplied to the coil for generating a magnetic field oscillates in the RF region. An oscillation circuit that can change the frequency, a current measuring unit that measures this oscillating current, and a calculating unit that calculates the conductivity of the substance to be measured based on the measured oscillating current are configured.

【0015】請求項3記載の発明は、磁場発生用コイル
は、測定対象物質を収納可能な空隙を有する筒状のソレ
ノイドである場合の本発明の適用を開示する。
The invention according to claim 3 discloses the application of the present invention in the case where the magnetic field generating coil is a cylindrical solenoid having a void capable of accommodating a substance to be measured.

【0016】[0016]

【作用】請求項1に記載の発明によれば、発振回路によ
り磁場発生用コイルに振動電流を与えてラジオ周波数領
域(数百KHz〜数十MHz)の振動磁場を発生させ、
この振動磁場内に測定対象物質を収納することにより測
定対象物質中に誘導電流が流れ、この誘導電流によって
当該測定対象物質固有のエネルギー損失が生じる。この
エネルギー損失は、磁場発生コイルに与える振動電流大
きさの変化として測定可能であるので、この振動電流の
大きさを電流測定手段により測定し、測定された振動電
流の大きさと測定対象物質の導電率との相関に基づいて
算出手段により測定対象物質の導電率を非接触で求める
ことができる。
According to the invention of claim 1, an oscillating current is applied to the magnetic field generating coil by the oscillating circuit to generate an oscillating magnetic field in the radio frequency region (several hundred KHz to several tens of MHz),
By storing the substance to be measured in the oscillating magnetic field, an induced current flows in the substance to be measured, and the induced current causes an energy loss specific to the substance to be measured. Since this energy loss can be measured as a change in the magnitude of the oscillating current applied to the magnetic field generating coil, the magnitude of this oscillating current is measured by the current measuring means, and the magnitude of the measured oscillating current and the conductivity of the measurement target substance are measured. The conductivity of the substance to be measured can be obtained in a non-contact manner by the calculation means based on the correlation with the rate.

【0017】請求項2に記載の装置発明によれば、発振
回路により磁場発生用コイルに振動電流を与えてラジオ
周波数領域の振動磁場を発生させ、この振動磁場内に測
定対象物質を収納することにより測定対象物質中に誘導
電流が流れ、この誘導電流によって当該測定対象物質固
有のエネルギー損失が生じる。このエネルギー損失は、
磁場発生コイルに与える振動電流大きさの変化として測
定可能であるので、この振動電流の大きさを電流測定手
段により測定し、測定された振動電流の大きさと測定対
象物質の導電率との相関に基づいて算出手段により測定
対象物質の導電率が求められるが、発振回路は振動電流
の周波数を変化させることが可能であり、周波数を変え
ることにより測定対象物質内の電荷をその周波数に応じ
た速度で回転運動させることにより測定感度の制御が可
能となる。
According to the second aspect of the present invention, an oscillating circuit applies an oscillating current to the magnetic field generating coil to generate an oscillating magnetic field in the radio frequency region, and the substance to be measured is stored in the oscillating magnetic field. Causes an induced current to flow in the measurement target substance, and the induced current causes energy loss specific to the measurement target substance. This energy loss is
Since it can be measured as a change in the magnitude of the oscillating current applied to the magnetic field generating coil, the magnitude of this oscillating current is measured by the current measuring means, and the correlation between the magnitude of the measured oscillating current and the conductivity of the measurement target substance The conductivity of the substance to be measured can be calculated based on the calculation means, but the oscillation circuit can change the frequency of the oscillating current.By changing the frequency, the electric charge in the substance to be measured can be changed according to the frequency. The measurement sensitivity can be controlled by rotating with.

【0018】請求項3に記載の装置発明によれば、磁場
発生用コイルとして筒状の中空ソレノイドを用いること
により測定対象物質を空隙内への収納が容易となる。
According to the third aspect of the present invention, by using the cylindrical hollow solenoid as the magnetic field generating coil, it becomes easy to store the substance to be measured in the void.

【0019】[0019]

【実施例】次に、本発明の好適な実施例を図面を参照し
て説明する。 (I)第1実施例 図1に本発明が適用される導電率測定器の構成例を示
す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, preferred embodiments of the present invention will be described with reference to the drawings. (I) First Example FIG. 1 shows a structural example of a conductivity measuring instrument to which the present invention is applied.

【0020】図1に示すように、導電率測定器は、試験
管等の容器2内に封入された試料1を収納しコイル4が
巻回されたソレノイド3と、このコイル4に一定の電圧
を供給してコイル4を励磁する発振回路6と、コイル4
に流れる振動電流(励磁電流または試料1内を流れる誘
導電流)iの大きさを測定するための電流検出抵抗5
と、電流検出抵抗5の両端電圧から振動電流iを求める
電流検器7と、電流検器7から出力される振動電流検出
値iに基づいて試料1の導電率ρを求める演算器8と、
算出された導電率ρを表示する出力装置9と、から構成
される。
As shown in FIG. 1, the electric conductivity measuring instrument comprises a solenoid 3 in which a sample 1 enclosed in a container 2 such as a test tube is housed and a coil 4 is wound, and a constant voltage applied to the coil 4. The oscillation circuit 6 for exciting the coil 4 by supplying the
Current detection resistor 5 for measuring the magnitude of the oscillating current (exciting current or induced current flowing in the sample 1) i
A current detector 7 that obtains an oscillating current i from the voltage across the current detection resistor 5, and a calculator 8 that obtains the conductivity ρ of the sample 1 based on the oscillating current detection value i output from the current detector 7.
And an output device 9 for displaying the calculated conductivity ρ.

【0021】試料1は、強電解物質である水酸化ナトリ
ウム、水酸化カリウム、塩化ナトリウム、塩化カリウム
等について濃度の異なる水溶液を樹脂製ディスポーザブ
ル試験官(直径15mm、長さ100 mm、容量120 ml)に密閉
封入したものを用いた。このように容器2を密閉するこ
とにより、試料1が汚染されることがなく、正確な測定
が可能となる。
Sample 1 is a resin disposable tester (diameter: 15 mm, length: 100 mm, capacity: 120 ml) of an aqueous solution having different concentrations of strong electrolytes such as sodium hydroxide, potassium hydroxide, sodium chloride and potassium chloride. The one that was hermetically sealed was used. By sealing the container 2 in this manner, the sample 1 is not contaminated and accurate measurement is possible.

【0022】ソレノイド3には、アクリル樹脂パイプ
(巻線部分の外径18mm、内径15mm,全長13mm)と、その
外周に絶縁被覆銅線(直径15mm)を22回巻いたコイル
4を用いている。
As the solenoid 3, an acrylic resin pipe (outer diameter 18 mm, inner diameter 15 mm, total length 13 mm) and a coil 4 in which an insulating coated copper wire (diameter 15 mm) is wound 22 times on the outer periphery thereof are used. .

【0023】発振回路6は、発振周波数が数百KHz〜
数十MHz帯のラジオ周波数領域における振動電流を供
給する回路であり、コイル4はこの発振回路6の一部を
構成している。
The oscillation circuit 6 has an oscillation frequency of several hundred KHz.
The coil 4 is a circuit for supplying an oscillating current in the radio frequency range of several tens of MHz, and the coil 4 constitutes a part of the oscillation circuit 6.

【0024】電流検出器7は、ディジタルボルトメータ
を用い、0.1 μA の精度で測定可能なものとする。
The current detector 7 is a digital voltmeter and can measure with an accuracy of 0.1 μA.

【0025】演算器8は、予め測定された励磁電流iと
導電率ρの相関に基づいて作成された変換テーブルを格
納するRAM11と、入力される励磁電流検出値iから
RAM11を参照して導電率ρを算出するCPU12か
らなる。
The calculator 8 refers to the RAM 11 which stores a conversion table created based on the correlation between the previously measured exciting current i and the conductivity ρ, and the input exciting current detection value i to the RAM 11 for conductivity. It is composed of the CPU 12 that calculates the rate ρ.

【0026】出力装置9は、プリンタ、X−Yプロッタ
あるいはCRTモニタ等を用いることができる。
As the output device 9, a printer, an XY plotter, a CRT monitor or the like can be used.

【0027】次に、測定方法は次の通りである。 (1)変換テーブルの作成 まず、容器2に封入された試料1をソレノイド3の空隙
内に挿入し、ソレノイド3のコイル4に対して発振回路
6から所定振動周波数(例えば、f=15MHz)、初
期の振動電流(i=100μA)、周囲温度(22±
0.5℃)の条件下で一定電圧をコイル4に印加する。
そして、導電率計(AOL−40型、電気化学計器株式
会社製)、電極(2112型、セル定数0.950)の
組み合わせで、導電率ρと励磁電流iの関係を測定す
る。その測定結果、各試料1について導電率ρと励磁電
流iとの間には、図4に示すような一定の関係が存在す
ることが確認された。
Next, the measuring method is as follows. (1) Creation of conversion table First, the sample 1 enclosed in the container 2 is inserted into the space of the solenoid 3, and a predetermined vibration frequency (for example, f = 15 MHz) is applied to the coil 4 of the solenoid 3 from the oscillation circuit 6. Initial oscillating current (i = 100μA), ambient temperature (22 ±
A constant voltage is applied to the coil 4 under the condition of 0.5 ° C.).
Then, the relationship between the conductivity ρ and the exciting current i is measured with a combination of a conductivity meter (AOL-40 type, manufactured by Electrochemical Instruments Co., Ltd.) and an electrode (2112 type, cell constant 0.950). As a result of the measurement, it was confirmed that a constant relationship as shown in FIG. 4 exists between the conductivity ρ and the exciting current i for each sample 1.

【0028】したがって、この図4に示すような物質に
応じた導電率ρと励磁電流iの関係を知ることができれ
ば、上述の如く励磁電流iは容易に非接触で測定するこ
とが可能であるから、この励磁電流iに基づいて導電率
ρを算出することが可能である。この導電率ρと励磁電
流iとの関係をデータベース化したのがRAM11に格
納された変換テーブルである。 (2)測定 以上の構成において、測定対象の試料1を容器2ととも
にソレノイド3の空隙内に納め、上記同様に発振回路6
から一定の励磁電圧をコイル4に引加して励磁電流iの
値を変化を電流検器7により検出することで演算器8を
介して導電率ρに変換され、その値が出力装置9に出力
されることになる。このように、従来の如く電極を用い
て、試料に直接接触することなく、導電率ρを測定する
ことができる。
Therefore, if the relationship between the conductivity ρ and the exciting current i depending on the substance as shown in FIG. 4 can be known, the exciting current i can be easily measured in a non-contact manner as described above. Therefore, it is possible to calculate the conductivity ρ based on this exciting current i. The conversion table stored in the RAM 11 is a database of the relationship between the conductivity ρ and the exciting current i. (2) Measurement In the above configuration, the sample 1 to be measured is stored together with the container 2 in the space of the solenoid 3, and the oscillation circuit 6 is used in the same manner as above.
Is applied to the coil 4 to detect a change in the value of the exciting current i by the current detector 7, and the value is converted into the conductivity ρ via the calculator 8 and the value is output to the output device 9. Will be output. As described above, the conductivity ρ can be measured by using the electrodes as in the conventional case without directly contacting the sample.

【0029】(II)第2実施例 従来から、ミカンやイチゴの果汁の酸度測定には導電率
測定が用いられている。有機酸含量はクエン酸換算で概
ね0.5%〜多くても2%程度と変動範囲が狭いため、
純水で希釈した果汁液の導電率と酸度との間には、糖度
とは無関係に直線的な関係があることが知られている。
(II) Second Example Conductivity measurement has been conventionally used to measure the acidity of fruit juices of mandarin oranges and strawberries. The organic acid content is 0.5% in terms of citric acid, and the fluctuation range is narrow at about 2% at most.
It is known that there is a linear relationship between the conductivity and the acidity of a juice juice diluted with pure water, regardless of the sugar content.

【0030】このような酸度測定についても本発明にか
かる非接触導電率測定器を提供することができる。
The non-contact conductivity measuring device according to the present invention can also be provided for such acidity measurement.

【0031】すなわち、図1に示す測定器を用い、モデ
ル試料1として、クエン酸濃度1〜3%とぶどう糖濃度
5〜10%の混合水溶液を作成し、この混合水溶液を純
水で10倍に希釈して、第1実施例と同様の手順で導電
率ρと励磁電流iとの関係を求めた。
That is, using the measuring instrument shown in FIG. 1, as a model sample 1, a mixed aqueous solution having a citric acid concentration of 1 to 3% and a glucose concentration of 5 to 10% was prepared, and the mixed aqueous solution was made 10 times with pure water. After dilution, the relationship between the conductivity ρ and the exciting current i was obtained by the same procedure as in the first embodiment.

【0032】その結果、図3に示すように、糖濃度に拘
らず、導電率ρに対して励磁電流iが直線的に変化する
ことが明らかとなった。したがって、この導電率ρと励
磁電流iとの関係を図3のように変換テーブル化するこ
とによって、非接触で導電率ρを測定することができ
る。
As a result, as shown in FIG. 3, it became clear that the exciting current i changes linearly with the conductivity ρ regardless of the sugar concentration. Therefore, by converting the relationship between the conductivity ρ and the exciting current i into a conversion table as shown in FIG. 3, the conductivity ρ can be measured without contact.

【0033】(III )その他の態様 以上の実施例において、発振回路6は発振周波数可変型
のものを用いることができ、電荷密度の低い物質を測定
対象試料1とする場合に、当該物質に最適な周波数を選
択的に用いることにより測定可能な損失を発生させ、そ
れに伴って生じる励磁電流iの変化から導電率ρを求め
ることができる。
(III) Other Modes In the above embodiments, the oscillation circuit 6 of variable oscillation frequency can be used, and when a substance having a low charge density is used as the sample 1 to be measured, it is optimal for the substance. A measurable loss is generated by selectively using different frequencies, and the conductivity ρ can be obtained from the change in the exciting current i that occurs with it.

【0034】また、ソレノイド3は上述のように独立し
て形成しても良いが、果汁等の製造プロセスに組み込む
ことができる。すなわち、例えば、ソレノイド3を測定
対象物質が流れる配管に取り付け(例えば外周に装着)
可能とすることにより、プロセスのリアルタイムでの導
電率測定ないしはモニタリングが可能となり、品質管理
に供することができる。
Although the solenoid 3 may be formed independently as described above, it can be incorporated in the manufacturing process of fruit juice or the like. That is, for example, the solenoid 3 is attached to a pipe through which the substance to be measured flows (for example, attached to the outer circumference).
By making it possible, it becomes possible to measure or monitor the electric conductivity of the process in real time, which can be used for quality control.

【0035】その他、試料物質の培養容器に合わせた大
きさあるいは形状のソレノイド3を用いることは、本発
明の範囲に属する。
Besides, it is within the scope of the present invention to use the solenoid 3 having a size or shape adapted to the culture vessel for the sample substance.

【0036】また、以上の実施例では電流iと導電率ρ
の変換をRAM11の変換テーブルによるものとした
が、同等の特性をもつ関数発生器によりアナログ信号処
理するようにしても良い。
In the above embodiment, the current i and the conductivity ρ
Although the conversion is performed by the conversion table of the RAM 11, the analog signal processing may be performed by a function generator having equivalent characteristics.

【0037】[0037]

【発明の効果】以上の通り、請求項1乃至3に記載の発
明によれば、簡単な装置構成で、試料物質の導電率を当
該試料物質に非接触で測定することができる。非接触で
測定可能である結果、従来のような洗浄工程を必要とせ
ず、試料の交換が容易となり、測定作業の効率を向上さ
せることができる。電極を用いないので、電極反応によ
る影響を受けず、電極反応の安定を待たずに迅速な測定
が可能となり、また、高周波領域での測定が可能とな
る。
As described above, according to the inventions described in claims 1 to 3, the conductivity of the sample substance can be measured in a non-contact manner with a simple device configuration. As a result of the non-contact measurement, it is possible to easily replace the sample and improve the efficiency of the measurement work without requiring the conventional washing step. Since no electrode is used, it is not affected by the electrode reaction, and rapid measurement is possible without waiting for stabilization of the electrode reaction, and measurement in the high frequency region is also possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示すブロック図である。FIG. 1 is a block diagram showing an embodiment of the present invention.

【図2】演算器の例を示すブロック図である。FIG. 2 is a block diagram showing an example of an arithmetic unit.

【図3】変換テーブルの例を示すブロック図である。FIG. 3 is a block diagram showing an example of a conversion table.

【図4】第1実施例における励磁電流と導電率の関係を
示す特性図である。
FIG. 4 is a characteristic diagram showing a relationship between an exciting current and conductivity in the first embodiment.

【図5】第2実施例における励磁電流と導電率の関係を
示す特性図である。
FIG. 5 is a characteristic diagram showing a relationship between an exciting current and electric conductivity in the second embodiment.

【符号の説明】[Explanation of symbols]

1 試料 2 容器 3 ソレノイド 4 コイル 5 電流検出抵抗 6 発振回路 7 電流検出器 8 演算器 9 出力装置 11 RAM 12 CPU 1 Sample 2 Container 3 Solenoid 4 Coil 5 Current Detection Resistor 6 Oscillation Circuit 7 Current Detector 8 Computing Unit 9 Output Device 11 RAM 12 CPU

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 測定対象物質を収納し、RF(ラジオ周
波数)領域における振動磁場を発生するコイルと、 この磁場発生用コイルに前記RF領域の振動電流を供給
する発振回路と、 この振動電流を測定する電流測定手段と、 測定された前記振動電流に基づいて前記測定対象物質の
導電率を求める算出手段と、を備えたことを特徴とする
非接触導電率測定器。
1. A coil for accommodating a substance to be measured and generating an oscillating magnetic field in an RF (radio frequency) region, an oscillating circuit for supplying the oscillating current in the RF region to the magnetic field generating coil, and the oscillating current A non-contact conductivity measuring instrument comprising: a current measuring unit for measuring; and a calculating unit for calculating the conductivity of the substance to be measured based on the measured oscillating current.
【請求項2】 測定対象物質を収納し、RF(ラジオ周
波数)領域における振動磁場を発生するコイルと、 この磁場発生用コイルに供給する振動電流の前記RF領
域の振動周波数を変化可能な発振回路と、 この振動電流を測定する電流測定手段と、 測定された前記振動電流に基づいて前記測定対象物質の
導電率を求める算出手段と、を備えたことを特徴とする
非接触導電率測定器。
2. A coil that contains a substance to be measured and that generates an oscillating magnetic field in an RF (radio frequency) region, and an oscillating circuit that can change the oscillating frequency of the oscillating current supplied to the magnetic field generating coil in the RF region. A non-contact conductivity measuring instrument comprising: a current measuring unit that measures the oscillating current; and a calculating unit that calculates the conductivity of the substance to be measured based on the measured oscillating current.
【請求項3】 磁場発生用コイルは、測定対象物質を収
納可能な空隙を有する筒状のソレノイドであることを特
徴とする請求項1または2に記載の非接触導電率測定
器。
3. The non-contact conductivity measuring instrument according to claim 1, wherein the magnetic field generating coil is a cylindrical solenoid having a space capable of accommodating a substance to be measured.
JP13508594A 1994-05-25 1994-05-25 Non-contact conductivity measuring instrument Pending JPH07318600A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13508594A JPH07318600A (en) 1994-05-25 1994-05-25 Non-contact conductivity measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13508594A JPH07318600A (en) 1994-05-25 1994-05-25 Non-contact conductivity measuring instrument

Publications (1)

Publication Number Publication Date
JPH07318600A true JPH07318600A (en) 1995-12-08

Family

ID=15143485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13508594A Pending JPH07318600A (en) 1994-05-25 1994-05-25 Non-contact conductivity measuring instrument

Country Status (1)

Country Link
JP (1) JPH07318600A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001201476A (en) * 2000-01-20 2001-07-27 Sumitomo Metal Ind Ltd Acid densitometer and method for measuring acid concentration
JP2002516995A (en) * 1998-05-28 2002-06-11 フレゼニウス メディカル ケアー ドイチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Apparatus and method for contactlessly measuring the conductivity of a liquid present in a flow passage
JP2003302431A (en) * 2002-02-08 2003-10-24 Daihen Corp Output terminal characteristic analytical method of impedance matching device, impedance matching device and output terminal characteristic analytical system for impedance matching device
JP2004085446A (en) * 2002-08-28 2004-03-18 Daihen Corp Impedance matching device, and method and system for analyzing output terminal characteristic of the same
JP2004177274A (en) * 2002-11-27 2004-06-24 Tohoku Techno Arch Co Ltd Non-contact electric conductivity measurement system
JP2006506621A (en) * 2002-11-13 2006-02-23 ノースロップ グラマン コーポレーション Non-contact type surface conductivity measurement probe
JP2008032556A (en) * 2006-07-28 2008-02-14 Takara Keiki Seisakusho:Kk Nondestructive quality evaluation device for vegetables, and non-destructive quality evaluation method
JP2011237444A (en) * 2011-07-15 2011-11-24 Takara Scale Co Ltd Nondestructive quality evaluation device for fruit vegetables and nondestructive quality evaluation method
JP2019522784A (en) * 2016-09-01 2019-08-15 マルチーパス カンパニー,リミテッド Non-contact type electrical conductivity and non-conductor dielectric constant change measurement device using RF signal
JP2022041881A (en) * 2020-08-31 2022-03-11 セニック・インコーポレイテッド Method and device for measuring graphite-containing material and ingot growth system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002516995A (en) * 1998-05-28 2002-06-11 フレゼニウス メディカル ケアー ドイチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Apparatus and method for contactlessly measuring the conductivity of a liquid present in a flow passage
JP2001201476A (en) * 2000-01-20 2001-07-27 Sumitomo Metal Ind Ltd Acid densitometer and method for measuring acid concentration
JP2003302431A (en) * 2002-02-08 2003-10-24 Daihen Corp Output terminal characteristic analytical method of impedance matching device, impedance matching device and output terminal characteristic analytical system for impedance matching device
JP2004085446A (en) * 2002-08-28 2004-03-18 Daihen Corp Impedance matching device, and method and system for analyzing output terminal characteristic of the same
JP2006506621A (en) * 2002-11-13 2006-02-23 ノースロップ グラマン コーポレーション Non-contact type surface conductivity measurement probe
JP2004177274A (en) * 2002-11-27 2004-06-24 Tohoku Techno Arch Co Ltd Non-contact electric conductivity measurement system
JP2008032556A (en) * 2006-07-28 2008-02-14 Takara Keiki Seisakusho:Kk Nondestructive quality evaluation device for vegetables, and non-destructive quality evaluation method
JP2011237444A (en) * 2011-07-15 2011-11-24 Takara Scale Co Ltd Nondestructive quality evaluation device for fruit vegetables and nondestructive quality evaluation method
JP2019522784A (en) * 2016-09-01 2019-08-15 マルチーパス カンパニー,リミテッド Non-contact type electrical conductivity and non-conductor dielectric constant change measurement device using RF signal
JP2022041881A (en) * 2020-08-31 2022-03-11 セニック・インコーポレイテッド Method and device for measuring graphite-containing material and ingot growth system

Similar Documents

Publication Publication Date Title
Dehmelt Continuous Stern-Gerlach effect: Principle and idealized apparatus
US3000805A (en) Electrode measuring device
JP2751139B2 (en) Waveform chemical analyzer and method
JPH07318600A (en) Non-contact conductivity measuring instrument
KR20000075628A (en) Method and apparatus for detecting a magnetically responsive substance
EP0027005A1 (en) A method of electrochemical sensing and a sensor for oxygen, halothane and nitrous oxide
MX148623A (en) IMPROVEMENTS TO A DEVICE TO MEASURE PH IN A BLOOD SAMPLE
CN102323305A (en) Simultaneous determination of L-tyrosine and L-tryptophan in compound amino acid by using chemical oscillation reaction
EP0645623A2 (en) Method of monitoring acid concentration in plating baths
Oldenziel et al. High resolution nuclear magnetic resonance spectroscopy in liquids and gases at pressures up to 2500 bar: I. High pressure NMR spectrometer and experimental technique
US5266899A (en) Salt analyzer switchably capable of employing contact and non-contact conductivity probes
CN104569112A (en) Continuous on-line water ion concentration detection method based on ion selective electrode
Ferretti et al. Transient Nutations in Nuclear Magnetic Double Resonance. Assignment of Transitions to an Energy‐Level Diagram
US4803428A (en) Method and apparatus for non-destructive material testing, particularly for determination of thickness of coating layers on a base material by measuring electrical conductivity or magnetic permeability at the finished specimen
CN111044597A (en) Gas-liquid two-phase oxygen analyzer and working method
EP0626577B1 (en) Method of monitoring metal ion content in plating baths
US2645563A (en) Method of determining the end point of a titration
CN206583844U (en) Steam dryness testing equipment and system
Haapanen et al. Recording of the ionic efflux during single action potentials in Nitellopsis obtusa by means of high‐frequency reflectometry
US4058438A (en) Rapid universal sensing cell
CN113662528B (en) Quantum detection therapeutic instrument and quantum resonance analysis method
Blahins et al. Old principle of liquid ion-impedance spectrometry (particularly in milk) realised by new components
JPS6138557A (en) Analysis of dissolved material
JP2523608B2 (en) Phase difference detection method in AC applied polarization reaction
Effemey et al. Investigation of the heterodyne beat method of measurement of magnetic susceptibility