JPH07309614A - Method for purifying silicon - Google Patents

Method for purifying silicon

Info

Publication number
JPH07309614A
JPH07309614A JP29707294A JP29707294A JPH07309614A JP H07309614 A JPH07309614 A JP H07309614A JP 29707294 A JP29707294 A JP 29707294A JP 29707294 A JP29707294 A JP 29707294A JP H07309614 A JPH07309614 A JP H07309614A
Authority
JP
Japan
Prior art keywords
silicon
melting
electron beam
crucible
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29707294A
Other languages
Japanese (ja)
Inventor
Kazuhiro Hanazawa
和浩 花澤
Hiroyuki Baba
裕幸 馬場
Kenkichi Yushimo
憲吉 湯下
Yasuhiko Sakaguchi
泰彦 阪口
Hisae Terajima
久榮 寺嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP29707294A priority Critical patent/JPH07309614A/en
Publication of JPH07309614A publication Critical patent/JPH07309614A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/037Purification

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

PURPOSE:To efficiently remove impurities and to obtain high purity silicon by subjecting silicon to electron beam melting in a crucible put in a melting furnace while keeping the interior of the furnace under a specified pressure. CONSTITUTION:When silicon is melted by heating with electron beams in a crucible put in a melting furnace, electron beam melting is carried out while keeping the interior of the furnace under 1X10<-4>-5X10<-3>Torr pressure. The crucible is preferably a water-cooled crucible and it is preferable that silicon having purity higher than the silicon to be melted is previously melted and the molten high purity silicon is stuck and solidified on the water-cooled crucible in the form of a film. In this method for purifying silicon, clean electron beams are used as a heating source, the atmosphere is high vacuum and the water- cooled crucible is used so as to form a filmlike layer of the same metal as the molten metal on the inside of the crucible. Such advantages of electron beam melting as to prevent the contamination of the molten metal by impurities from the crucible are maximumly utilized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、シリコンの精製に係わ
り、とりわけ電子ビーム溶解による不純物の除去を効率
的に行い、高純度のシリコンを得ることのできるシリコ
ンの精製方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the purification of silicon, and more particularly to a method of purifying silicon which can efficiently remove impurities by electron beam melting and obtain highly pure silicon.

【0002】[0002]

【従来の技術】近年エネルギー源の多様化の要求から太
陽光発電がエネルギー源として脚光を浴び、低価格発電
装置の実用化に向け研究開発が盛んに行われている。こ
のような状況の中で、太陽電池用原料としてシリコンは
最も汎用され易い材料であり、しかも、動力用電力供給
に使われる材料として最も重要視されている。
2. Description of the Related Art In recent years, photovoltaic power generation has come into the spotlight as an energy source due to the demand for diversification of energy sources, and research and development have been actively conducted toward the practical application of low-cost power generators. Under such circumstances, silicon is the most commonly used material as a raw material for solar cells, and is most regarded as a material used for power supply for power.

【0003】太陽電池用原料として用いられるシリコン
の純度は、99.9999 %(6N)以上が必要とされてい
る。従来、市販の金属シリコン(純度99.5%)から上記
高純度シリコンを製造するには、Al、Fe、Ti等の金属不
純物元素については固液分配係数の小さいことを利用し
た一方向凝固精製により除去し、CについてはSiC の場
合は凝固の際に表面に析出させ、また固溶しているCの
場合はCOとして除去し、一方、Pは蒸気圧の高いことを
利用して減圧除去し、BについてはH2O 、CO2 あるいは
2 を添加したArプラズマ溶解により除去する方法が
提案されている。
The purity of silicon used as a raw material for solar cells is required to be 99.9999% (6N) or higher. Conventionally, in order to produce the above-mentioned high-purity silicon from commercially available metallic silicon (purity 99.5%), metal impurity elements such as Al, Fe, and Ti are removed by unidirectional solidification refining utilizing the fact that the solid-liquid partition coefficient is small. However, in the case of SiC, it is precipitated on the surface during solidification in the case of SiC, and is removed as CO in the case of solid solution C, while P is removed under reduced pressure by utilizing the high vapor pressure. A method of removing B by Ar plasma melting with H 2 O, CO 2 or O 2 added is proposed.

【0004】しかし、上記製造方法では、各不純物元素
の除去方法がそれぞれに異なり、工程が煩雑になるばか
りでなく、次工程に移行する際のロスによる歩留りの低
下等の問題があった。一方、最近、電子ビーム溶解によ
り市販の金属シリコン中のP、Ca、Al、C、Bの同時除
去が可能であることが報告されており(ISIJ Internati
onal, vol.32(1992). No.5 p635 −642 )、上記製造工
程の簡略化が期待されている。また、電子ビーム溶解中
のシリコンへの外部からの汚染をなくすため、水冷した
鋳型を用いた電子ビーム溶解により太陽電池用高純度結
晶シリコンを得る試みもなされてきた(特開昭61−2322
95号公報)。
However, in the above manufacturing method, the method of removing each impurity element is different, which not only complicates the process, but also causes a problem such as a decrease in yield due to a loss when the process moves to the next process. On the other hand, it has recently been reported that P, Ca, Al, C and B in commercially available metallic silicon can be simultaneously removed by electron beam melting (ISIJ Internati
onal, vol.32 (1992). No.5 p635-642), simplification of the above manufacturing process is expected. Further, in order to eliminate external contamination of silicon during electron beam melting, attempts have been made to obtain high-purity crystalline silicon for solar cells by electron beam melting using a water-cooled mold (JP-A-61-2322).
No. 95).

【0005】しかしながら、太陽電池用高純度シリコン
に要求される純度を得るための電子ビーム溶解による効
率的な不純物の蒸発除去法に関する検討は十分でなく、
また電子ビーム溶解中の外部からの汚染に関する検討も
十分であるとは言えない。一方、電子ビーム溶解を利用
した一方向凝固精製により、不純物を除去する方法(特
公平5-124809号公報)も提案されているが、一方向凝固
精製は蒸発による精製とは精製の機構が異なり、固液分
配係数が1に近い不純物であるP等の効率的な除去を行
うのは困難であった。
However, studies on an efficient method for removing impurities by electron beam melting to obtain the purity required for high-purity silicon for solar cells are not sufficient,
Moreover, it cannot be said that the study on external contamination during electron beam melting is sufficient. On the other hand, a method of removing impurities by unidirectional solidification refining utilizing electron beam melting (Japanese Patent Publication No. 5-124809) has also been proposed, but unidirectional solidification refining has a different purifying mechanism from that by evaporation. However, it was difficult to efficiently remove impurities such as P having a solid-liquid distribution coefficient close to 1.

【0006】[0006]

【発明が解決しようとする課題】本発明は、このような
従来技術の現状に鑑みて、電子ビーム溶解による不純物
の蒸発除去法の利点を生かして電子ビームを加熱源と
し、更に電子ビーム溶解中の炉内圧力を制御することに
より、また更には電子ビーム溶解中の溶融シリコン外部
からの汚染を防止することにより、効率的で安定的かつ
容易に高純度シリコンを得ることのできるシリコンの精
製方法を提供することを目的とするものである。
In view of the state of the art as described above, the present invention takes advantage of the impurity evaporation removal method by electron beam melting to use an electron beam as a heating source, and during electron beam melting. A method for purifying silicon, in which high-purity silicon can be obtained efficiently, stably, and easily by controlling the pressure in the furnace of the reactor and further by preventing contamination from the outside of the molten silicon during electron beam melting. It is intended to provide.

【0007】[0007]

【課題を解決するための手段】本発明は、溶解炉内に配
置したるつぼ中でシリコンを電子ビームにより加熱溶解
するに当たり、炉内圧力を1×10-4〜5×10-3Torrに維
持しつつ、電子ビーム溶解を行うことを特徴とするシリ
コンの精製方法であり、また本発明は、溶解炉内に配置
したるつぼ中でシリコンを電子ビームにより加熱溶解す
るに当たり、炉内圧力を1×10-4〜5×10-3Torrに維持
しつつ、溶融したシリコンの表面にArガスを吹き付け
ながら電子ビーム溶解を行うことを特徴とするシリコン
の精製方法であり、また望ましくは、上記の各シリコン
の精製方法において、溶解炉内に配置したるつぼが水冷
るつぼであり、さらに望ましくは溶解しようとするシリ
コンよりも高純度であるシリコンを別途あらかじめ溶解
し、その高純度の溶解シリコンを膜状に付着・固化させ
た水冷るつぼを用いるシリコンの精製方法である。
According to the present invention, when the silicon is heated and melted by an electron beam in a crucible arranged in a melting furnace, the pressure inside the furnace is maintained at 1 × 10 −4 to 5 × 10 −3 Torr. In addition, the present invention is a method for purifying silicon characterized by performing electron beam melting, and the present invention is characterized in that when the silicon is heated and melted by the electron beam in the crucible arranged in the melting furnace, the furnace pressure is 1 ×. A method for purifying silicon, characterized in that electron beam melting is performed while Ar gas is sprayed onto the surface of molten silicon while maintaining the pressure at 10 −4 to 5 × 10 −3 Torr. In the method for purifying silicon, the crucible placed in the melting furnace is a water-cooled crucible, and more desirably, the silicon having a higher purity than the silicon to be melted is melted separately in advance, and the high-purity melting crucible is melted. This is a method for purifying silicon using a water-cooled crucible in which a recon is adhered and solidified in a film form.

【0008】また本発明は、溶解炉内に配置した水冷る
つぼ中でシリコンを電子ビームにより加熱溶解するに当
たり、該水冷るつぼの上方部を覆う蒸着板の面積が溶湯
表面積より広い蒸着板を配置し、該蒸着板を移動させな
がら電子ビーム溶解することを特徴とするシリコンの精
製方法であり、またこの場合、さらに望ましくは、まず
前記溶解炉内の圧力が1×10-6〜1×10-5Torrとなるま
で真空排気した後、炉内にArガスを導入し、炉内圧力
を1×10-4〜5×10-3Torrに維持しつつ、電子ビーム溶
解を行うシリコンの精製方法である。
In addition, according to the present invention, when silicon is heated and melted by an electron beam in a water-cooled crucible arranged in a melting furnace, a vapor deposition plate covering an upper portion of the water-cooled crucible has an area larger than a surface area of the molten metal. The method for refining silicon is characterized by performing electron beam melting while moving the vapor deposition plate, and in this case, more preferably, first, the pressure in the melting furnace is 1 × 10 −6 to 1 × 10 −. After evacuating to 5 Torr, Ar gas was introduced into the furnace to maintain the furnace pressure at 1 × 10 −4 to 5 × 10 −3 Torr, while performing electron beam melting to purify silicon. is there.

【0009】[0009]

【作用】本発明は、(1)加熱源が清浄な電子ビームで
ある、(2)雰囲気が高真空である、(3)水冷された
るつぼを用いる、ことによってその内面に溶融金属と同
種の金属の膜状の層を形成し、これにより、るつぼから
の溶融金属への不純物の汚染を防げる等の、電子ビーム
溶解の利点を最大限に生かし、さらに、炉内圧力等の電
子ビーム溶解条件と不純物の除去速度、シリコンの蒸発
損失量との関係を把握し完成されたものである。
According to the present invention, (1) the heating source is a clean electron beam, (2) the atmosphere is a high vacuum, and (3) a water-cooled crucible is used. By forming a film-like layer of metal, this maximizes the advantages of electron beam melting, such as preventing contamination of molten metal from the crucible with impurities, and further, electron beam melting conditions such as furnace pressure It was completed by grasping the relationship between the removal rate of impurities and the rate of evaporation loss of silicon.

【0010】本発明者らは、上述した考えに基づき鋭意
研究を行ったところ、電子ビームが安定して照射可能な
炉内圧力の範囲では、不純物の除去速度は炉内圧力にほ
とんど依存しないが、シリコンの蒸発損失量は炉内圧力
の低下に伴い急激に増加することを見出し、電子ビーム
溶解により不純物の除去を行う際の炉内圧力を電子ビー
ムが安定して照射可能な範囲で高くすれば、不純物の除
去効果を損なうことなくシリコンの蒸発損失量の低減が
図れることを明らかにした。
The inventors of the present invention have made earnest studies based on the above-mentioned idea. As a result, the removal rate of impurities hardly depends on the pressure in the furnace within the range of the pressure in the furnace where the electron beam can be stably irradiated. , It was found that the evaporation loss of silicon rapidly increases with the decrease of the furnace pressure, and the furnace pressure when removing impurities by electron beam melting can be increased within the range where the electron beam can be stably irradiated. It was clarified that the evaporation loss of silicon can be reduced without impairing the effect of removing impurities.

【0011】本発明では、溶解炉内に配置したるつぼ中
でシリコンを電子ビームにより加熱溶解するに当たり、
炉内圧力を1×10-4〜5×10-3Torrに維持しつつ、電子
ビーム溶解を行うことを特徴としているが、溶解炉内の
圧力を1×10-4〜5×10-3Torrに限定する理由について
説明する。炉内圧力は、電子ビームが照射可能な範囲で
高い方がコスト面からは望ましいが、シリコンの蒸発に
よる損失と、不純物の除去能力により決定される。ここ
で、炉内圧力の上限を5×10-3Torrとした理由は、炉内
圧力がこれを超える範囲では不純物の除去効果が十分に
発揮されないためであり、また、電子ビーム形が乱れ放
電等の原因にもなり、電子ビームを安定して照射するこ
とが難しいためである。本発明者らは、不純物の除去速
度が上限の5×10-3Torr以下では不変であることを見出
したが、炉内圧力の下限を1×10-4Torrとした理由は、
炉内圧力がこれ未満の範囲ではシリコンの蒸発による損
失が大きいためである。さらに望ましい炉内圧力の下限
は5×10-4Torrである。
In the present invention, in heating and melting silicon by an electron beam in a crucible arranged in a melting furnace,
It is characterized by performing electron beam melting while maintaining the pressure in the furnace at 1 × 10 -4 to 5 × 10 -3 Torr, but the pressure in the melting furnace is 1 × 10 -4 to 5 × 10 -3. Explain the reason for limiting to Torr. The furnace pressure is preferably as high as possible in the range where electron beams can be irradiated, but is determined by the loss due to evaporation of silicon and the ability to remove impurities. Here, the reason why the upper limit of the furnace pressure is set to 5 × 10 −3 Torr is that the effect of removing impurities is not sufficiently exerted in the range where the furnace pressure exceeds this range. This is because it is difficult to stably irradiate the electron beam. The present inventors have found that the removal rate of impurities is invariable below the upper limit of 5 × 10 −3 Torr, but the reason for setting the lower limit of the furnace pressure to 1 × 10 −4 Torr is as follows.
This is because if the pressure in the furnace is below this range, the loss due to evaporation of silicon is large. A more desirable lower limit of the furnace pressure is 5 × 10 -4 Torr.

【0012】ところで、不純物の除去速度、シリコンの
蒸発速度の炉内圧力依存性は、気体側の物質移動が律速
となる圧力範囲に依存すると考えられるが、その詳細に
ついては明らかではない。また、本発明者らは、溶融シ
リコン表面へのArガスの吹き付けにより、さらに不純
物の蒸発除去を効率的に行えることを見出した。このA
rガスの吹き付けによる不純物除去の効率化は、気体側
の物質移動が促進されるためと考えられる。
By the way, it is considered that the furnace pressure dependence of the removal rate of impurities and the evaporation rate of silicon depends on the pressure range in which the mass transfer on the gas side is rate-determining, but the details are not clear. Further, the present inventors have found that by spraying Ar gas onto the surface of molten silicon, the impurities can be evaporated and removed more efficiently. This A
It is considered that the efficiency of removing impurities by spraying r gas is promoted by mass transfer on the gas side.

【0013】また、本発明者らは、電子ビーム溶解中に
溶融シリコンの蒸発とともに発生する不純物を多量に含
有する蒸着物、ならびに、溶融したシリコンに接触する
水冷るつぼに付着したシリコン、および溶解雰囲気中に
存在する異物からの汚染を防止すれば、シリコンの更な
る高純度化が図れることを見出した。シリコン(融点14
10℃)を高真空下で電子ビーム溶解すると、電子ビーム
による局所的なエネルギー集中のため溶湯表面温度が融
点よりもかなり高温となり、シリコンとともにシリコン
中に含まれていたP、Ca、Al、C、B等の不純物が蒸発
する。このためシリコンの高純度化がなされるのである
が、不純物を多量含有する該シリコン蒸気は溶解炉内
壁、とりわけ溶湯面上方の天上板に蒸着する。溶解時間
とともに蒸着物の厚みは増大し、ある厚みになると天上
板から剥離し、シリコン溶湯に落下する。このため高純
度化したシリコンは再度汚染される可能性もあることを
見出した。
Further, the inventors of the present invention have found that a deposit containing a large amount of impurities generated along with the evaporation of molten silicon during electron beam melting, silicon attached to a water-cooled crucible in contact with molten silicon, and a melting atmosphere. It has been found that silicon can be further purified by preventing contamination from foreign substances present therein. Silicon (melting point 14
(10 ℃) under high vacuum electron beam melting, the surface temperature of the molten metal becomes considerably higher than the melting point due to local energy concentration by the electron beam, and P, Ca, Al, C contained in silicon together with silicon. , B and other impurities are evaporated. Therefore, the silicon is highly purified, but the silicon vapor containing a large amount of impurities is vapor-deposited on the inner wall of the melting furnace, especially on the ceiling plate above the surface of the molten metal. The thickness of the deposit increases with the melting time, and when it reaches a certain thickness, it peels from the top plate and falls into the molten silicon. Therefore, it has been found that highly purified silicon may be contaminated again.

【0014】不純物を含有するシリコン蒸気が溶解炉内
壁、とりわけ溶湯面上方の天上板に蒸着し、ある厚みに
なると、天上板から剥離しシリコン溶湯に落下し、高純
度化したシリコンが再度汚染される可能性がある場合、
これを防止するためシリコン溶湯面上方に蒸発物が蒸着
する蒸着板を取り付け、該蒸着板を移動させつつ、シリ
コンを電子ビーム溶解することが望ましい。蒸着板が移
動するため蒸着した面が送り出され、蒸着していない面
が送り込まれることとなり、該蒸着板には、蒸着物が剥
離して落下をする程の厚みに蒸着層が形成されることが
ない。蒸着板の大きさは、シリコンの溶湯表面積以上の
面積をカバーすることが望ましい。また蒸着板の取り付
け位置は電子銃からシリコン溶湯面へ放出される電子ビ
ームの経路を妨害するものであってはならないことは言
うまでもない。
Silicon vapor containing impurities is vapor-deposited on the inner wall of the melting furnace, especially on the ceiling plate above the surface of the molten metal, and when it reaches a certain thickness, it peels off from the ceiling plate and falls into the molten silicon, again contaminating the highly purified silicon. If there is a possibility that
In order to prevent this, it is desirable to attach a vapor deposition plate on which vaporized materials are vapor deposited above the surface of the molten silicon and move the vapor deposition plate to melt the silicon by electron beam. Since the vapor deposition plate moves, the vapor-deposited surface is sent out, and the non-vapor-deposited surface is fed in, and the vapor deposition layer is formed on the vapor deposition plate in such a thickness that the vapor deposition material peels off and falls. There is no. It is desirable that the size of the vapor deposition plate cover an area equal to or larger than the surface area of the molten metal of silicon. Needless to say, the mounting position of the vapor deposition plate should not interfere with the path of the electron beam emitted from the electron gun to the surface of the molten silicon.

【0015】蒸着板の形状およびその移動機構としては
以下のものが考えられる。第一は実施例における実験に
用いたもので、図2に示すように、シリコンの溶湯面上
に、回転機構を有するロール11と自由に回転するロール
12とを設け、両ロールにエンドレスステンレス鋼製の蒸
着板9をかけている。蒸着板の幅はシリコン溶湯表面の
幅より大きく、両ロール間の長さは同じくシリコン溶湯
表面の長さより十分に大きくしている。回転機構を有す
るロール11を徐々に回転させることにより、蒸着板9は
徐々に移動することになる。
The following may be considered as the shape of the vapor deposition plate and its moving mechanism. The first was used for the experiment in the example, and as shown in FIG. 2, a roll 11 having a rotating mechanism and a roll freely rotating on the molten metal surface of silicon.
12 is provided, and an endless stainless steel vapor deposition plate 9 is hung on both rolls. The width of the vapor deposition plate is larger than the width of the silicon melt surface, and the length between both rolls is also sufficiently larger than the length of the silicon melt surface. The vapor deposition plate 9 is gradually moved by gradually rotating the roll 11 having a rotating mechanism.

【0016】なお、エンドレスステンレス鋼製の蒸着板
9を移動しつつも、溶解が長時間にわたる場合には、該
蒸着板9に付着する蒸着物13は厚くなり剥離しやすくな
るが、自然に剥離し落下する前にロールに巻きつく場所
で曲げ応力が加わるためこの場所で優先的に剥離する。
このため、蒸着物が溶湯内に落下することは防止でき
る。
When the endless stainless steel vapor deposition plate 9 is moved and melted for a long period of time, the deposit 13 attached to the vapor deposition plate 9 becomes thick and easily peels off, but naturally peels off. Before falling, bending stress is applied at the place where it is wound around the roll, so peeling occurs preferentially at this place.
Therefore, it is possible to prevent the deposit from falling into the molten metal.

【0017】第二の例としては第一の例の変形であり、
エンドレスステンレス鋼製の蒸着板に換えて、一方のロ
ールにステンレス製の蒸着板を巻きつけておき、電子ビ
ーム溶解時、他方のロールで該蒸着板を徐々に巻き取っ
ていく方法がある。第三の例としては、シリコン溶湯表
面を十分にカバーする面積を有するステンレス鋼製の蒸
着板を一定時間おきに新しいものと交換していく方法が
ある。
The second example is a modification of the first example,
There is a method in which a stainless steel vapor deposition plate is wound around one roll in place of the endless stainless steel vapor deposition plate and the other roll is gradually wound up when the electron beam is melted. As a third example, there is a method in which a stainless steel vapor deposition plate having an area sufficient to cover the surface of the molten silicon is replaced with a new one at regular intervals.

【0018】本発明の蒸着板は、上記の例に限定される
ことなく、蒸着板が移動し、シリコン溶湯面への蒸着物
の落下を防止しうる機能を有していれば、どのようなも
のでもかまわない。なお、蒸着板の材質としてはステン
レス鋼に限らず、シリコン溶湯からの放射熱に耐えられ
るものであれば良い。次に、溶解したシリコンを保持す
るるつぼが水冷るつぼであることが望ましく、さらに高
純度のシリコンを膜状に付着・固化させた水冷るつぼを
用いることが望ましい理由を説明する。
The vapor deposition plate of the present invention is not limited to the above examples, and any vapor deposition plate may be used as long as it has a function of preventing the vapor deposition substance from falling on the surface of the molten silicon. It doesn't matter. The material of the vapor deposition plate is not limited to stainless steel, and any material that can withstand the radiant heat from the molten silicon can be used. Next, the reason why the crucible holding the melted silicon is preferably a water-cooling crucible, and it is more preferable to use a water-cooling crucible in which high-purity silicon is adhered and solidified in a film shape will be described.

【0019】チタン、ニオブ、ジルコニウムなどのいわ
ゆる高融点活性金属の溶解に際し、該溶湯を保持するる
つぼに酸化物等の耐火物を用いた場合には、溶湯とるつ
ぼ材とが反応し、分解したるつぼ材の構成元素が該溶湯
を汚染する。このため高融点活性金属の溶解には銅製の
水冷るつぼを用い、水冷るつぼに接する融解金属を膜状
に付着・固化して(これをスカルと呼ぶことが多い)、
その内部で融解金属を保持する。すなわち、溶解せんと
する金属と同種の金属を付着・固化したるつぼの中で金
属を溶解しるつぼからの汚染を防ぐことは公知である。
When a so-called high melting point active metal such as titanium, niobium or zirconium is melted, when a refractory such as an oxide is used for the crucible holding the molten metal, the molten metal reacts with the crucible material to decompose. The constituent elements of the crucible material contaminate the molten metal. For this reason, a water-cooled crucible made of copper is used to dissolve the high-melting-point active metal, and the molten metal in contact with the water-cooled crucible is adhered and solidified in a film form (this is often called a skull),
Holds the molten metal within it. That is, it is known to prevent contamination from a crucible that dissolves a metal in a crucible in which the same kind of metal as the metal to be melted is adhered and solidified.

【0020】ところで、水冷るつぼで不純物の多い精製
前のシリコンを溶解すると、るつぼに接するシリコンは
直ちに膜状に固化し、その内部で溶解したシリコンの高
純度化が進行することとなるが、固体と液体のシリコン
が接触する界面では、固体側から液体側へ不純物が拡散
することになるため、高純度化した溶解シリコンが汚染
され、すみやかな純度の向上が妨げられる。
By the way, when unpurified silicon containing a large amount of impurities is dissolved in a water-cooled crucible, the silicon in contact with the crucible is immediately solidified into a film shape, and the highly purified silicon dissolved therein progresses. Since impurities diffuse from the solid side to the liquid side at the interface where the liquid silicon contacts with the liquid silicon, the highly purified dissolved silicon is contaminated, and immediate improvement of the purity is hindered.

【0021】これを防止するため、あらかじめ目的とす
る純度のシリコンよりも高純度のシリコン、例えば半導
体用シリコン(純度11N)を溶解し、膜状に付着・固化
させておくのが望ましい。また、溶解炉内の圧力が1×
10-6〜1×10-5Torrとなるまで真空排気した後、炉内に
Arガスを導入し、次いで排気し、炉内圧力を1×10-4
〜5×10-3Torrに維持しつつ電子ビーム溶解を行うこと
が望ましい。まず、炉内圧力が1×10-6〜1×10-5Torr
となるまで行う最初の真空排気は、溶融シリコンに侵入
する恐れのある炉内雰囲気中のC等をあらかじめ除去す
るために行うものである。ここで最初の真空排気におけ
る炉内圧力を上記範囲に限定した理由は、炉内圧力が1
×10 -6Torr未満の場合、排気に長時間を要しコスト的に
無理があり、また炉内圧力が1×10-5Torr超の場合、炉
内雰囲気中のC等の除去効果が発揮されないためであ
る。
In order to prevent this, the purpose is set in advance.
Pure silicon, for example, semiconductor
Melt body silicon (purity 11N), attach and solidify into a film
It is desirable to leave it. Also, the pressure in the melting furnace is 1 ×
Ten-6~ 1 x 10-FiveAfter vacuum evacuation to Torr, in the furnace
Ar gas was introduced, then exhausted, and the furnace pressure was set to 1 × 10-Four
~ 5 x 10-3Performing electron beam melting while maintaining Torr
Is desirable. First, the furnace pressure is 1 x 10-6~ 1 x 10-FiveTorr
The first vacuum evacuation until
C, etc. in the furnace atmosphere that may cause
This is done in order to do so. In the first evacuation here
The reason for limiting the furnace pressure to the above range is that the furnace pressure is 1
× 10 -6If it is less than Torr, it takes a long time to exhaust and it is costly.
It is impossible and the pressure inside the furnace is 1 × 10-FiveIf over Torr, the furnace
This is because the effect of removing C and the like in the internal atmosphere is not exerted.
It

【0022】次に、Arガスを導入する理由は、コスト
が安く、また、炉壁へのガス成分の付着による真空排気
能力の低下が避けられるためである。
Next, the reason why Ar gas is introduced is that the cost is low and that the vacuum exhaust capability due to the adhesion of gas components to the furnace wall can be avoided.

【0023】[0023]

【実施例】【Example】

〔実施例A〕本発明で使用した電子ビーム溶解装置の概
略図を図1に示す。鋼鉄製の溶解炉1の中央床面に銅製
の水冷るつぼ2が置かれ、その上方に最大出力 150kW級
の電子銃3が設置され電子ビーム4が溶融シリコン5の
溶湯表面を照射する。
Example A A schematic view of an electron beam melting apparatus used in the present invention is shown in FIG. A water-cooled crucible 2 made of copper is placed on the center floor of a melting furnace 1 made of steel, an electron gun 3 having a maximum output of 150 kW is installed above the crucible 2, and an electron beam 4 irradiates a molten metal 5 surface.

【0024】水冷るつぼ2内壁には、予め市販の電子材
料用高純度シリコン(11N)を膜状に付着・固化させた
シリコン層6を形成した。水冷るつぼ2に市販の金属シ
リコン(純度99.5%)1500gを装入し、炉内圧力を1×
10-4〜5×10-3Torrに維持しつつ、電子ビーム溶解を行
った。この時の溶湯表面積は 150×200mm2、深さは60mm
で、電子ビームの出力は30kW、照射時間は60min とし
た。
On the inner wall of the water-cooled crucible 2, a silicon layer 6 was formed by previously adhering and solidifying a commercially available high-purity silicon (11N) for electronic material in a film shape. 1500 g of commercially available metallic silicon (purity 99.5%) is charged into the water-cooled crucible 2 and the furnace pressure is set to 1 ×.
Electron beam melting was performed while maintaining at 10 −4 to 5 × 10 −3 Torr. The surface area of the molten metal at this time is 150 x 200 mm 2 , and the depth is 60 mm.
The electron beam output was 30 kW and the irradiation time was 60 min.

【0025】また、Arガス15を石英管14により溶湯表
面に2l/min で吹き付ける実験も行った。なお、電子
ビーム照射中、溶解炉1内は真空ポンプ7により常に一
定の真空度に保持される。以上の条件で得られたシリコ
ン中の不純物(P、Al、Ca、C)の濃度をICP(indu
ctively coupled plasma)発光分析法により分析したと
ころ、表1に示す結果が得られた。この結果から、シリ
コンを電子ビーム溶解する際の炉内圧力は、1×10-4
5×10-3Torrであることが望ましいことがわかる。また
Arガスを溶湯表面に吹き付けた場合、不純物濃度がよ
り低下しており、さらに効率的な不純物除去が行えるこ
とがわかる。
An experiment was also conducted in which Ar gas 15 was sprayed onto the surface of the molten metal at a rate of 2 l / min through a quartz tube 14. During the irradiation of the electron beam, the inside of the melting furnace 1 is always kept at a constant vacuum degree by the vacuum pump 7. The concentration of impurities (P, Al, Ca, C) in silicon obtained under the above conditions is determined by ICP (indu
ctively coupled plasma) Optical emission analysis was performed, and the results shown in Table 1 were obtained. From this result, the pressure in the furnace when melting the silicon by electron beam is 1 × 10 -4 ~
It can be seen that 5 × 10 −3 Torr is desirable. Further, when Ar gas is sprayed on the surface of the molten metal, the impurity concentration is further lowered, and it can be seen that the impurities can be removed more efficiently.

【0026】[0026]

【表1】 [Table 1]

【0027】この実施例では、5×10-3Torrを超える圧
力範囲では電子ビーム照射を安定して行うことができな
かったが、もし、電子ビームを安定して照射可能なら
ば、表1の結果から類推すると、炉内圧力は不純物の除
去速度が低下しない範囲で高い方がコスト面から好まし
いものと考えられる。なお、この実施例では水冷るつぼ
として銅製のるつぼを使用したが、本発明ではこれに限
定されるものでなく、熱伝導率の高い、例えば銅を主成
分とする合金や鉄または鉄を主成分とする合金製であっ
てもよい。また、溶湯表面にで吹き付けるガスとしてA
rガスを用いたが、He、Ne、N2 、H2 ガスでも同
様な効果が得られた。
In this embodiment, the electron beam irradiation could not be stably carried out in the pressure range exceeding 5 × 10 -3 Torr, but if the electron beam could be stably irradiated, the results shown in Table 1 were obtained. By analogy with the results, it is considered that a higher furnace pressure is preferable from the viewpoint of cost, as long as the removal rate of impurities does not decrease. In addition, although a crucible made of copper was used as the water-cooled crucible in this example, the present invention is not limited thereto, and the thermal conductivity is high, for example, an alloy containing copper as a main component or iron or iron as a main component. May be made of an alloy. In addition, A is used as the gas sprayed on the surface of the molten metal.
Although r gas was used, similar effects were obtained with He, Ne, N 2 , and H 2 gas.

【0028】〔実施例B〕本発明で使用した電子ビーム
溶解装置の概略図を図2に示す。鋼鉄製の溶解炉1の中
央床面に銅製の水冷るつぼ2が置かれ、その斜め上方に
最大出力 150kW級の電子銃3が設置され偏光コイルを通
過して電子ビーム4が溶融シリコン5の溶湯表面を照射
する。
Example B! A schematic view of the electron beam melting apparatus used in the present invention is shown in FIG. A water-cooled crucible 2 made of copper is placed on the center floor of a steel melting furnace 1 and an electron gun 3 with a maximum output of 150 kW is installed diagonally above it, and an electron beam 4 passes through a polarizing coil and a molten silicon 5 melts. Illuminate the surface.

【0029】水冷るつぼ2内壁には、予め市販の電子材
料用高純度シリコン(11N)を膜状に付着・固化させた
シリコン層6を形成した。水冷るつぼ2に市販の金属シ
リコン(純度99.5%)1500gを装入し、炉内圧力を1×
10-4〜5×10-3Torrに維持しつつ、電子ビーム溶解を行
った。本発明では溶解炉1内の上部にモータ8によって
駆動されるエンドレスステンレス鋼製の蒸着板9を設置
し、以下の実験を行った。
On the inner wall of the water-cooled crucible 2, a silicon layer 6 was formed by previously depositing and solidifying a commercially available high-purity silicon (11N) for electronic materials in a film shape. 1500 g of commercially available metallic silicon (purity 99.5%) is charged into the water-cooled crucible 2 and the furnace pressure is set to 1 ×.
Electron beam melting was performed while maintaining at 10 −4 to 5 × 10 −3 Torr. In the present invention, an endless stainless steel vapor deposition plate 9 driven by a motor 8 was installed in the upper part of the melting furnace 1 and the following experiment was conducted.

【0030】なお、図3に示すように水冷るつぼの溶湯
面10は 150mm× 200mmであり(深さ60mm)、特に断らな
い限り蒸着板9の移動速度は1mm/sec とした。なお、
図中X1 ,X2 は溶湯面の縦横の幅、X3 はステンレス
薄板の幅を示す。実験では、市販の金属シリコン(P:
20ppmw、Al:800ppmw 、Ca:700ppmw 、C:900ppmw 、
Fe:800ppmw )1500gをるつぼに挿入し、電子ビーム出
力30kW、照射時間60min で溶解を行い、溶解後のシリコ
ン中の不純物(P、Al、Ca、C)の濃度をICP(indu
ctively coupled plasma)発光分析により求めた。
As shown in FIG. 3, the melt surface 10 of the water-cooled crucible was 150 mm × 200 mm (depth 60 mm), and the moving speed of the vapor deposition plate 9 was 1 mm / sec unless otherwise specified. In addition,
In the figure, X 1 and X 2 are the width and width of the molten metal surface, and X 3 is the width of the stainless thin plate. In the experiment, commercially available metallic silicon (P:
20ppmw, Al: 800ppmw, Ca: 700ppmw, C: 900ppmw,
Fe: 800ppmw) 1500g was inserted into the crucible and melted with electron beam output of 30kW and irradiation time of 60min, and the concentration of impurities (P, Al, Ca, C) in silicon after melting was measured by ICP (indu
ctively coupled plasma) Emission analysis was performed.

【0031】(従来例B、比較例B1、実施例B1、B
2)従来例Bとして蒸着板を設置せず、炉内圧力を2×
10-4Torrに保持しつつ電子ビーム溶解したシリコン中の
不純物濃度を表2に示す。比較例B1は、蒸着板の幅を
50mm、実施例B1は 200mm、実施例B2は 300mmとし、
炉内圧力を2×10-4Torrに保持しつつ電子ビーム溶解し
たシリコン中の不純物濃度を表2に示す。
(Conventional Example B, Comparative Example B1, Examples B1, B
2) As the conventional example B, the vapor deposition plate was not installed, and the furnace pressure was 2 ×.
Table 2 shows the impurity concentrations in the silicon that was subjected to electron beam melting while being kept at 10 −4 Torr. Comparative Example B1 has the width of the vapor deposition plate
50 mm, Example B1 is 200 mm, Example B2 is 300 mm,
Table 2 shows the impurity concentrations in the electron beam-melted silicon while maintaining the furnace pressure at 2 × 10 -4 Torr.

【0032】この結果から、シリコン溶湯面を十分にカ
バーし、かつ移動する蒸着板を設置することにより、電
子ビーム溶解により精製されたシリコンをさらに高純度
化することができることがわかる。
From these results, it can be seen that the silicon purified by electron beam melting can be further highly purified by sufficiently covering the molten silicon surface and installing a moving vapor deposition plate.

【0033】[0033]

【表2】 [Table 2]

【0034】(実施例B3、比較例B2)半導体用高純
度シリコン(純度11N)をあらかじめ内面に膜状に固化
させた銅製の水冷るつぼに市販の金属シリコンを挿入
し、炉内圧力を2×10-4Torrに保持しつつ実施例B2に
準じて電子ビーム溶解した(実施例B3)。また前記半
導体高純度シリコンにPを20ppmw添加したシリコンを作
製し、これをあらかじめ内面に膜状に固化させてある銅
製の水冷るつぼに市販の金属シリコンを挿入し、前記と
同様に溶解した(比較例B2)。
(Example B3, Comparative Example B2) Commercially available metallic silicon was inserted into a water-cooled crucible made of copper, which was obtained by solidifying high purity silicon for semiconductors (purity: 11N) on the inner surface in advance in a film form, and the furnace pressure was set to 2 ×. Electron beam melting was carried out according to Example B2 while maintaining at 10 −4 Torr (Example B3). In addition, silicon was prepared by adding 20 ppmw of P to the semiconductor high-purity silicon, and commercially available metal silicon was inserted into a water-cooled crucible made of copper, which was previously solidified into a film on the inner surface, and melted in the same manner as above (comparison). Example B2).

【0035】以上により精製されたシリコン中の不純物
濃度を表3に示す。この結果、実施例B3は実施例B
1、B2に比べてP濃度は一層低下しており、水冷るつ
ぼの内面に膜状に付着・固化させるシリコンを、溶解せ
んとするシリコンよりも高純度とすることにより、電子
ビーム溶解により精製されたシリコンをさらに高純度化
することができることがわかる。
Table 3 shows the impurity concentrations in the silicon purified as described above. As a result, Example B3 is
Compared to 1 and B2, the P concentration is much lower, and the silicon that adheres to and solidifies in the form of a film on the inner surface of the water-cooled crucible has a higher purity than the silicon used as the melting point and is purified by electron beam melting. It can be seen that the obtained silicon can be further purified.

【0036】[0036]

【表3】 [Table 3]

【0037】(実施例B4〜B13)実施例B2と同様の
方法により、ただし溶解炉内の圧力を溶解前(第1炉内
圧力)と溶解中(第2炉内圧力)とで種々に変え、その
中間で炉内にArを導入し電子ビーム溶解したシリコン中
の不純物濃度を、溶解中のシリコンロスと合わせて表4
に示す。
(Examples B4 to B13) By the same method as in Example B2, the pressure in the melting furnace was changed variously before melting (pressure in the first furnace) and during melting (pressure in the second furnace). In the meantime, the impurity concentration in the electron beam-melted silicon by introducing Ar into the furnace is combined with the silicon loss during melting, and Table 4
Shown in.

【0038】実施例B1、B2と比較すると、第1炉内
圧力が1×10-6〜1×10-5Torr、第2炉内圧力が1×10
-4〜5×10-3Torrの範囲にある実施例B4〜B6、B10
〜B12は不純物濃度がさらに低くなっている。第2炉内
圧力を9×10-5Torrと低くした実施例B9は不純物濃度
は低いがシリコンロスが大きくなった。第1炉内圧力が
5×10-5および1×10-4Torrと高く、第2炉内圧力が2
×10-4Torrの実施例B7、B8は実施例B1、B2に比
べて良くなっているとは言えない。
Compared with Examples B1 and B2, the first furnace pressure was 1 × 10 −6 to 1 × 10 −5 Torr and the second furnace pressure was 1 × 10 6.
Examples B4 to B6, B10 in the range of -4 to 5 x 10 -3 Torr
.About.B12 has a lower impurity concentration. In Example B9 in which the second furnace pressure was lowered to 9 × 10 -5 Torr, the impurity concentration was low, but the silicon loss was large. The first reactor pressure is high at 5 × 10 -5 and 1 × 10 -4 Torr, and the second reactor pressure is 2
It cannot be said that Examples B7 and B8 with × 10 -4 Torr are better than Examples B1 and B2.

【0039】[0039]

【表4】 [Table 4]

【0040】(実施例B13)実施例B3と同様に、半導
体用高純度シリコン(純度11N)をあらかじめ内面に膜
状に付着・固化させてある銅製の水冷るつぼに市販の金
属シリコンを挿入し、第1炉内圧力2×10-6Torr、第2
炉内圧力2×10-4Torrで電子ビーム溶解したシリコン中
の不純物濃度を表5に示す。
(Example B13) Similar to Example B3, commercially available metallic silicon was inserted into a water-cooled crucible made of copper in which high-purity silicon for semiconductor (purity 11N) was previously attached and solidified in a film shape on the inner surface. 1st furnace pressure 2 × 10 -6 Torr, 2nd
Table 5 shows the impurity concentration in the silicon that was electron beam melted at a furnace pressure of 2 × 10 −4 Torr.

【0041】圧力条件、溶解条件が同一の実施例B4に
比較して、シリコンは一層高純度化している。なお、こ
の実施例でも水冷るつぼとして銅製のるつぼを使用した
が、本発明ではこれに限定されるものではなく、熱伝導
率の高い、例えば銅を主成分とする合金、鉄、鉄を主成
分とする合金製であっても良い。
Compared to the embodiment B4 in which the pressure condition and the melting condition are the same, the silicon has a higher purity. In addition, although the crucible made of copper was used as the water-cooled crucible also in this example, the present invention is not limited thereto, and the thermal conductivity is high, for example, an alloy containing copper as a main component, iron, and iron as a main component. It may be made of an alloy.

【0042】[0042]

【表5】 [Table 5]

【0043】[0043]

【発明の効果】本発明は、シリコンを電子ビーム溶解す
るに当たり、炉内圧力を制御しシリコンの蒸発損失を抑
制するようにしから、電子ビーム溶解による不純物の除
去を効率的に行うことができ、さらに蒸着物、るつぼに
膜状に付着・固化したシリコンおよび炉内雰囲気の点か
ら溶融シリコンへの汚染を防ぐようにしたから、シリコ
ンの更なる高純度化が図れ、安定的かつ容易に高純度な
シリコンの精製が行えるようになった。
According to the present invention, when melting silicon by electron beam, the pressure inside the furnace is controlled to suppress the evaporation loss of silicon, so that impurities can be efficiently removed by electron beam melting. Furthermore, since it is possible to prevent the contamination of molten silicon from the vapor deposition, the silicon that has adhered to the crucible in the form of a film and solidifies, and the atmosphere in the furnace, it is possible to further purify the silicon and to stabilize and easily achieve high purity. It has become possible to purify silicon.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施状況を示す側断面図である。FIG. 1 is a side sectional view showing an implementation state of the present invention.

【図2】本発明の実施状況を示す側断面図である。FIG. 2 is a side sectional view showing an implementation state of the present invention.

【図3】本発明の実施状況を示するつぼ周りの平面図で
ある。
FIG. 3 is a plan view around a crucible showing an implementation state of the present invention.

【符号の説明】[Explanation of symbols]

1 溶解炉 2 水冷るつぼ 3 電子銃 4 電子ビーム 5 溶融シリコン 6 シリコン層 7 真空ポンプ 8 モータ 9 蒸着板 10 溶湯面 11 ロール 12 ロール 13 蒸着物 14 石英管 15 Arガス X3 ステンレス薄板の幅1 Melting Furnace 2 Water Cooling Crucible 3 Electron Gun 4 Electron Beam 5 Molten Silicon 6 Silicon Layer 7 Vacuum Pump 8 Motor 9 Deposition Plate 10 Molten Metal Surface 11 Roll 12 Roll 13 Deposition Material 14 Quartz Tube 15 Ar Gas X 3 Width of Stainless Thin Plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 湯下 憲吉 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社ハイテク研究所内 (72)発明者 阪口 泰彦 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社ハイテク研究所内 (72)発明者 寺嶋 久榮 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社ハイテク研究所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Kenkichi Yushita 1 Kawasaki-cho, Chuo-ku, Chiba, Chiba Prefecture High-Tech Research Institute, Kawasaki Steel Co., Ltd. (72) Yasuhiko Sakaguchi, 1 Kawasaki-cho, Chuo-ku, Chiba Kawasaki Iron & Steel Co., Ltd. High-Tech Research Institute (72) Inventor Hisaaki Terashima 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Steel & Co. High-Tech Research Institute

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 溶解炉内に配置したるつぼ中でシリコン
を電子ビームにより加熱溶解するに当たり、炉内圧力を
1×10-4〜5×10-3Torrに維持しつつ、電子ビーム溶解
を行うことを特徴とするシリコンの精製方法。
1. When heating and melting silicon with an electron beam in a crucible placed in a melting furnace, the electron pressure melting is performed while maintaining the pressure in the furnace at 1 × 10 −4 to 5 × 10 −3 Torr. A method for purifying silicon, which is characterized by the above.
【請求項2】 溶解炉内に配置したるつぼ中でシリコン
を電子ビームにより加熱溶解するに当たり、炉内圧力を
1×10-4〜5×10-3Torrに維持しつつ、溶融したシリコ
ンの表面にArガスを吹き付けながら電子ビーム溶解を
行うことを特徴とするシリコンの精製方法。
2. The surface of molten silicon while maintaining the internal pressure of the furnace at 1 × 10 −4 to 5 × 10 −3 Torr in heating and melting the silicon by an electron beam in a crucible arranged in the melting furnace. A method for purifying silicon, characterized in that electron beam melting is performed while Ar gas is sprayed onto the silicon.
【請求項3】 溶解炉内に配置したるつぼが水冷るつぼ
であることを特徴とする請求項1又は2記載のシリコン
の精製方法。
3. The method for purifying silicon according to claim 1 or 2, wherein the crucible arranged in the melting furnace is a water-cooled crucible.
【請求項4】 溶解炉内に配置した水冷るつぼ中でシリ
コンを電子ビームにより加熱溶解するに当たり、該水冷
るつぼの上方部を覆う蒸着板の面積が溶湯表面積より広
い蒸着板を配置し、該蒸着板を移動させながら電子ビー
ム溶解することを特徴とするシリコンの精製方法。
4. When the silicon is heated and melted by an electron beam in a water-cooled crucible placed in a melting furnace, the vapor-deposited plate covering the upper part of the water-cooled crucible has an area larger than the surface area of the molten metal, and the vapor deposition is performed. A method for purifying silicon, which comprises melting an electron beam while moving a plate.
【請求項5】 溶解しようとするシリコンよりも高純度
であるシリコンを別途あらかじめ溶解し、その高純度の
溶解シリコンを膜状に付着・固化させた水冷るつぼを用
いることを特徴とする請求項1、2、3又は4記載のシ
リコンの精製方法。
5. A water-cooled crucible in which silicon having a higher purity than the silicon to be dissolved is separately dissolved in advance, and the high-purity molten silicon is adhered and solidified in a film form is used. 2. The method for purifying silicon according to 2, 3, or 4.
【請求項6】 溶解炉内の圧力が1×10-6〜1×10-5To
rrとなるまで真空排気した後、炉内にArガスを導入
し、炉内圧力を1×10-4〜5×10-3Torrに維持しつつ、
電子ビーム溶解を行うことを特徴とする請求項4又は5
記載のシリコンの精製方法。
6. The pressure in the melting furnace is 1 × 10 −6 to 1 × 10 −5 To.
After vacuum evacuation to rr, Ar gas was introduced into the furnace to maintain the furnace pressure at 1 × 10 −4 to 5 × 10 −3 Torr,
Electron beam melting is performed, The claim 4 or 5 characterized by the above-mentioned.
The method for purifying silicon as described.
JP29707294A 1994-03-24 1994-11-30 Method for purifying silicon Pending JPH07309614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29707294A JPH07309614A (en) 1994-03-24 1994-11-30 Method for purifying silicon

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-53917 1994-03-24
JP5391794 1994-03-24
JP29707294A JPH07309614A (en) 1994-03-24 1994-11-30 Method for purifying silicon

Publications (1)

Publication Number Publication Date
JPH07309614A true JPH07309614A (en) 1995-11-28

Family

ID=26394650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29707294A Pending JPH07309614A (en) 1994-03-24 1994-11-30 Method for purifying silicon

Country Status (1)

Country Link
JP (1) JPH07309614A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0796820A1 (en) * 1996-03-19 1997-09-24 Kawasaki Steel Corporation Process and apparatus for refining silicon
JP2005231956A (en) * 2004-02-20 2005-09-02 Nippon Steel Corp Apparatus and method of purifying silicon
JP2006089361A (en) * 2004-09-27 2006-04-06 Iis Materials:Kk Method and apparatus for refining boron-containing silicon using electron beam
JP2008175479A (en) * 2007-01-19 2008-07-31 Ulvac Japan Ltd Silicon fusion vessel and fusion device using the same
JP2008179509A (en) * 2007-01-24 2008-08-07 Ulvac Japan Ltd Silicon refining device and silicon refining method
JP2009114026A (en) * 2007-11-07 2009-05-28 Shin Etsu Chem Co Ltd Method for refining metal silicon
JP2010508237A (en) * 2006-11-02 2010-03-18 コミサリア、ア、レネルジ、アトミク−セーエーアー Method for refining metallic silicon by directional solidification
WO2010119502A1 (en) * 2009-04-14 2010-10-21 信越化学工業株式会社 Method for purifying silicon metal
WO2011060717A1 (en) * 2009-11-19 2011-05-26 大连理工大学 Method and apparatus for removing phosphorus and boron from polysilicon by continuously smelting
US20110132142A1 (en) * 2008-08-12 2011-06-09 Ulvac, Inc. Silicon purification method
US8404016B2 (en) 2008-08-01 2013-03-26 Ulvac, Inc. Method for refining metal
WO2013114609A1 (en) * 2012-02-03 2013-08-08 新日鉄マテリアルズ株式会社 Silicon refining equipment and method for refining silicon
WO2013132651A1 (en) 2012-03-09 2013-09-12 新日鉄マテリアルズ株式会社 Silicon refining device
KR101309521B1 (en) * 2010-11-29 2013-09-23 한국에너지기술연구원 Apparatus for manufacturing polysilicon with high purity using electron-beam melting and method of manufacturing polysilicon using the same
KR101356442B1 (en) * 2010-11-29 2014-02-03 한국에너지기술연구원 Method of manufacturing polysilicon using apparatus for manufacturing polysilicon based electron-beam melting using dummy bar
CN103588208A (en) * 2013-11-20 2014-02-19 宁夏宁电光伏材料有限公司 Method for removing boron and metal impurities for polysilicon melting in electron-beam furnace
KR101400884B1 (en) * 2013-09-26 2014-05-29 한국에너지기술연구원 Apparatus for manufacturing polysilicon based electron-beam melting using dummy bar
CN107673356A (en) * 2017-10-09 2018-02-09 宁夏东梦能源股份有限公司 The method for preparing the device of high-purity nm polycrysalline silcon and preparing high-purity nm polycrysalline silcon

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6231826B1 (en) 1996-03-19 2001-05-15 Kawasaki Steel Corporation Process and apparatus for refining silicon
EP0796820A1 (en) * 1996-03-19 1997-09-24 Kawasaki Steel Corporation Process and apparatus for refining silicon
JP2005231956A (en) * 2004-02-20 2005-09-02 Nippon Steel Corp Apparatus and method of purifying silicon
JP4722403B2 (en) * 2004-02-20 2011-07-13 新日鉄マテリアルズ株式会社 Silicon purification apparatus and silicon purification method
JP4665479B2 (en) * 2004-09-27 2011-04-06 株式会社 アイアイエスマテリアル Method and apparatus for refining boron-containing silicon using electron beam
JP2006089361A (en) * 2004-09-27 2006-04-06 Iis Materials:Kk Method and apparatus for refining boron-containing silicon using electron beam
JP2010508237A (en) * 2006-11-02 2010-03-18 コミサリア、ア、レネルジ、アトミク−セーエーアー Method for refining metallic silicon by directional solidification
JP2008175479A (en) * 2007-01-19 2008-07-31 Ulvac Japan Ltd Silicon fusion vessel and fusion device using the same
JP2008179509A (en) * 2007-01-24 2008-08-07 Ulvac Japan Ltd Silicon refining device and silicon refining method
JP2009114026A (en) * 2007-11-07 2009-05-28 Shin Etsu Chem Co Ltd Method for refining metal silicon
US8404016B2 (en) 2008-08-01 2013-03-26 Ulvac, Inc. Method for refining metal
US20110132142A1 (en) * 2008-08-12 2011-06-09 Ulvac, Inc. Silicon purification method
US8409319B2 (en) * 2008-08-12 2013-04-02 Ulvac, Inc. Silicon purification method
KR101318239B1 (en) * 2008-08-12 2013-10-15 가부시키가이샤 아루박 Silicon purification method
WO2010119502A1 (en) * 2009-04-14 2010-10-21 信越化学工業株式会社 Method for purifying silicon metal
WO2011060717A1 (en) * 2009-11-19 2011-05-26 大连理工大学 Method and apparatus for removing phosphorus and boron from polysilicon by continuously smelting
US20120216572A1 (en) * 2009-11-19 2012-08-30 Dalian University Of Technology Method and apparatus for removing phosphorus and boron from polysilicon by continuously smelting
KR101309521B1 (en) * 2010-11-29 2013-09-23 한국에너지기술연구원 Apparatus for manufacturing polysilicon with high purity using electron-beam melting and method of manufacturing polysilicon using the same
KR101356442B1 (en) * 2010-11-29 2014-02-03 한국에너지기술연구원 Method of manufacturing polysilicon using apparatus for manufacturing polysilicon based electron-beam melting using dummy bar
WO2013114609A1 (en) * 2012-02-03 2013-08-08 新日鉄マテリアルズ株式会社 Silicon refining equipment and method for refining silicon
JPWO2013114609A1 (en) * 2012-02-03 2015-05-11 シリシオ フェロソラール ソシエダーダ リミターダ Silicon purification apparatus and silicon purification method
US9937436B2 (en) 2012-02-03 2018-04-10 Silicio Ferrosolar S.L. Silicon refining equipment and method for refining silicon
WO2013132651A1 (en) 2012-03-09 2013-09-12 新日鉄マテリアルズ株式会社 Silicon refining device
KR101400884B1 (en) * 2013-09-26 2014-05-29 한국에너지기술연구원 Apparatus for manufacturing polysilicon based electron-beam melting using dummy bar
CN103588208A (en) * 2013-11-20 2014-02-19 宁夏宁电光伏材料有限公司 Method for removing boron and metal impurities for polysilicon melting in electron-beam furnace
CN107673356A (en) * 2017-10-09 2018-02-09 宁夏东梦能源股份有限公司 The method for preparing the device of high-purity nm polycrysalline silcon and preparing high-purity nm polycrysalline silcon

Similar Documents

Publication Publication Date Title
JPH07309614A (en) Method for purifying silicon
JP3325900B2 (en) Method and apparatus for producing polycrystalline silicon, and method for producing silicon substrate for solar cell
JP3000109B2 (en) Manufacturing method of high purity silicon ingot
US6231826B1 (en) Process and apparatus for refining silicon
CA2751228C (en) Method for producing thin silicon rods
JP3473369B2 (en) Silicon purification method
EP0869102A1 (en) Process and apparatus for preparing polycrystalline silicon and process for preparing silicon substrate for solar cell
JPH10245216A (en) Production of silicon for solar cell
JP4788925B2 (en) Method for purifying metallic silicon
JP2011219286A (en) Method and system for manufacturing silicon and silicon carbide
JP3140300B2 (en) Method and apparatus for purifying silicon
JP2008179509A (en) Silicon refining device and silicon refining method
JP2000247623A (en) Method for refining silicon and apparatus therefor
US20090074650A1 (en) Method for the production of silicon suitable for solar purposes
JPH10273311A (en) Purification of silicon for solar battery and apparatus therefor
JPH05262512A (en) Purification of silicon
JPH10182134A (en) Refining of silicon
JP4963271B2 (en) Silicon melting method and silicon purification method
JPH07277722A (en) Method for purifying silicon
JPH10139415A (en) Solidification and purification of molten silicon
US5490477A (en) Process for the production of semiconductor foils and their use
JPH07267624A (en) Purification of silicon and apparatus therefor
JP2000327488A (en) Production of silicon substrate for solar battery
JP3673919B2 (en) High-purity titanium recovery method
JPH10182132A (en) Refining of silicon and refining apparatus therefor