JP3473369B2 - Silicon purification method - Google Patents

Silicon purification method

Info

Publication number
JP3473369B2
JP3473369B2 JP00967298A JP967298A JP3473369B2 JP 3473369 B2 JP3473369 B2 JP 3473369B2 JP 00967298 A JP00967298 A JP 00967298A JP 967298 A JP967298 A JP 967298A JP 3473369 B2 JP3473369 B2 JP 3473369B2
Authority
JP
Japan
Prior art keywords
silicon
electron beam
mold
molten
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00967298A
Other languages
Japanese (ja)
Other versions
JPH11209195A (en
Inventor
和浩 花澤
正道 阿部
裕幸 馬場
尚道 中村
憲吉 湯下
嘉英 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP00967298A priority Critical patent/JP3473369B2/en
Publication of JPH11209195A publication Critical patent/JPH11209195A/en
Application granted granted Critical
Publication of JP3473369B2 publication Critical patent/JP3473369B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Silicon Compounds (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、シリコンの精製方
法に係わり、とりわけ、電子ビーム溶解においてシリコ
ンの蒸発量を抑制し、且つP、Al、Caなどの揮発性
不純物元素の経時変動がないシリコン・インゴットを得
るように工夫したシリコンの精製技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for refining silicon, and more particularly, it suppresses the evaporation amount of silicon in electron beam melting and does not change volatile impurity elements such as P, Al and Ca with time. -Relating to silicon refining technology devised to obtain ingots.

【0002】[0002]

【従来の技術】近年、エネルギー源の多様化要求から太
陽光発電が脚光を浴び、低価格発電の実用化に向けての
研究開発が盛んに行われている。このような状況の中
で、太陽電池用原料としてのシリコンは、最も汎用され
やすい材料であり、しかも、動力用電力供給に使われる
材料として、多結晶系シリコンが最も重要視されてい
る。
2. Description of the Related Art In recent years, photovoltaic power generation has been in the spotlight due to the demand for diversification of energy sources, and research and development for practical use of low-cost power generation have been actively conducted. Under such circumstances, silicon as a raw material for solar cells is the most widely used material, and moreover, polycrystalline silicon is regarded as the most important material used for power supply for power.

【0003】太陽電池用原料として用いられるシリコン
としては、純度が99.9999%(6N)以上の高純
度が必要とされ、シリコン中に含有される不純物元素の
濃度は、ppmオーダー以下まで低減する必要がある。
従来、市販の金属シリコン(純度99.5%)から上記
した程度の高純度シリコンを製造する方法として、F
e、Ti、Al等の金属不純物元素は、固液分配係数の
小さいことを利用した一方向凝固精製により除去し、S
iCで含まれるCは、凝固の際に表面に析出させ、また
シリコンに固溶しているCは、COガスとして除去し、
また、Bは、H2O、CO2 あるいはO2 を添加したA
rプラズマ溶解により酸化除去する技術が提案されてい
る。
Silicon used as a raw material for solar cells is required to have a high purity of 99.9999% (6N) or more, and the concentration of impurity elements contained in silicon is reduced to ppm order or less. There is a need.
Conventionally, as a method for producing high-purity silicon having the above-mentioned degree from commercially available metallic silicon (purity 99.5%), F
Metallic impurity elements such as e, Ti, and Al are removed by unidirectional solidification refining utilizing the fact that the solid-liquid partition coefficient is small.
C contained in iC is precipitated on the surface during solidification, and C dissolved in silicon is removed as CO gas,
B is A with H 2 O, CO 2 or O 2 added.
A technique of oxidizing and removing by r plasma melting has been proposed.

【0004】一方、Pは、蒸気圧の高いことを利用して
減圧除去する方法が提案されている。従来、このPの減
圧除去には、長時間を要するという問題があったが、最
近、電子ビーム溶解によりシリコン中のPが短時間で除
去可能なことが報告されており(ISIJ Inter
national,vol.32(1992).No.
5 p635−642)、脱P工程の短時間化が期待さ
れている。さらに、この電子ビーム溶解の利点として、
P以外にも、Al、Caが同時に除去されることが挙げ
られている。
On the other hand, there has been proposed a method for removing P under reduced pressure by utilizing its high vapor pressure. Conventionally, there has been a problem that it takes a long time to remove P under reduced pressure, but recently, it has been reported that P in silicon can be removed in a short time by electron beam melting (ISIJ Inter.
national, vol. 32 (1992). No.
5 p635-642), the shortening of the P-removing step is expected. Furthermore, as an advantage of this electron beam melting,
Besides P, it is mentioned that Al and Ca are simultaneously removed.

【0005】しかしながら、上記に開示された電子ビー
ム溶解による方法ではシリコン中のP、Al、Caの除
去限界はそれぞれ、約3ppm、約470ppm、約1
50ppmであり、溶解時間が15分以上経過すると、
シリコン中のP、Al、Ca濃度はほぼ一定値に落ち着
き、それ以上のP、Al、Caの低減は望めず、太陽電
池用シリコンに要求される純度としては、いまだ十分と
は言えない。また、通常の電子ビーム溶解法では、シリ
コンを保持する容器として水冷銅容器が用いられ、溶解
の熱効率が悪いという問題もあった。
However, in the above-mentioned method by electron beam melting, the removal limits of P, Al and Ca in silicon are about 3 ppm, about 470 ppm and about 1, respectively.
It is 50 ppm, and when the dissolution time exceeds 15 minutes,
The P, Al, and Ca concentrations in silicon settled at almost constant values, and further reductions in P, Al, and Ca could not be expected, and the purity required for silicon for solar cells is still not sufficient. Further, in the usual electron beam melting method, a water-cooled copper container is used as a container for holding silicon, and there is a problem that the thermal efficiency of melting is poor.

【0006】[0006]

【発明が解決しようとする課題】そこで、本出願人は、
先に、特願平8−347961号で、シリコンの高純度
化が難しい理由を以下のように解明し、前記問題の解決
方法を提案した。すなわち、電子ビーム溶解は、溶解し
ようとする物質の上部へ一方向から加熱する溶解方法で
あるため、その良否は、溶解時の溶解量や電子ビーム出
力に依存する。特に、溶解したシリコンの底部及び側部
には、P、Al、Caを多量に含有する未溶解原料が残
留したり、あるいは溶解中にP、Al、Caを多量に含
有するシリコンが蒸発し、坩堝に固着する。そのため、
溶解後に、それらのP,Al,Ca等が溶融シリコンへ
徐々に拡散するようになる。実際に、電子ビームにより
溶解したシリコンを、坩堝中で凝固させ、坩堝内におけ
るシリコン中のP、Al、Ca濃度分布を調査したとこ
ろ、溶融シリコン底部および側壁付近のP、Al、Ca
濃度が、他の部分に比べ、10倍以上も高いことが確認
された。したがって、この汚染を防止すれば、シリコン
中のP、Al、Caをさらに低減することができること
が明らかになった。また、シリコン中の上記不純物元素
の濃度は、ppmオーダであるため、特に汚染等の問題
が顕著に現れたものと考えられる。
Therefore, the applicant of the present invention is
Previously, in Japanese Patent Application No. 8-347961, the reason why it was difficult to purify silicon was clarified as follows, and a solution to the above problem was proposed. That is, the electron beam melting is a melting method in which the substance to be melted is heated from one direction to the upper part, and therefore its quality depends on the melting amount and the electron beam output at the time of melting. In particular, undissolved raw material containing a large amount of P, Al, Ca remains at the bottom and side portions of the dissolved silicon, or silicon containing a large amount of P, Al, Ca evaporates during melting, Stick to the crucible. for that reason,
After melting, those P, Al, Ca, etc. gradually diffuse into the molten silicon. Actually, the silicon melted by the electron beam was solidified in the crucible, and the concentration distribution of P, Al, and Ca in the silicon in the crucible was investigated, and it was found that P, Al, and Ca near the bottom and side walls of the molten silicon were melted.
It was confirmed that the concentration was 10 times higher than that of other portions. Therefore, it was revealed that P, Al, and Ca in silicon can be further reduced by preventing this contamination. Further, since the concentration of the above-mentioned impurity element in silicon is on the order of ppm, it is considered that problems such as contamination are particularly prominent.

【0007】本出願人は、前記特願平8−347961
号において、この汚染問題を複数個の黒鉛坩堝を用いる
ことで解決を試みたのである。複数個の坩堝を用いて溶
融シリコンを、順次他の坩堝に供給すれば、2つ目以後
の坩堝には、その坩堝より前の坩堝中でP、Al、Ca
がある程度除去されたシリコンのみが供給され、前の坩
堝の底部又は壁面に残留していたP、Al、Ca濃度の
高いシリコンが供給されなくなるからである。また、蒸
発したシリコン中のP、Al、Caの濃度は、下位の坩
堝ほど少なくなるため、壁面に固着する蒸発したシリコ
ンからの汚染も下位の坩堝ほど少なくなるからでもあ
る。 なお、その際、黒鉛坩堝を採用した理由は、高
温、高真空で安定であり、坩堝から溶融シリコンへの汚
染物質として炭素があるが、その量は100ppmm程
度と少なく、また後の工程で酸化除去し易いからであ
る。また、周囲が真空断熱層となるので、熱損失を最小
限に抑え、溶解の熱効率向上が図れることも考慮されて
いる。
The applicant of the present invention has filed the above-mentioned Japanese Patent Application No. 8-347961.
In this issue, we tried to solve this pollution problem by using a plurality of graphite crucibles. If molten silicon is sequentially supplied to other crucibles using a plurality of crucibles, the second and subsequent crucibles will have P, Al, and Ca in the crucible before the crucible.
This is because only silicon with a certain amount removed is supplied, and silicon having a high P, Al, Ca concentration remaining on the bottom or wall surface of the previous crucible is no longer supplied. Also, since the concentrations of P, Al, and Ca in the evaporated silicon are lower in the lower crucible, the contamination from the evaporated silicon fixed to the wall surface is also lower in the lower crucible. At this time, the reason why the graphite crucible was adopted is that it is stable at high temperature and high vacuum, and carbon is a pollutant from the crucible to the molten silicon, but its amount is as small as about 100 ppmm, and it is oxidized in the subsequent process. This is because it is easy to remove. In addition, it is also considered that since the vacuum insulating layer is provided around the periphery, heat loss can be minimized and the thermal efficiency of melting can be improved.

【0008】しかしながら、その後の本出願人の研究に
よれば、この方法では、蒸発に利用されるシリコンの表
面積が増えるため、従来よりシリコンの蒸発量が多くな
り、シリコン歩留が低いという欠点が明らかになった。
これでは、P,Al,Ca濃度の低いシリコンはできて
も、製造コストが上昇し、太陽電池用材料に安価なシリ
コンを供給するという本出願人の目的は達成できない。
また、原料の供給及び溶解を連続的に行うためか、製品
中の不純物濃度が経時的に変動(バラツキ)するという
問題も新たに発生した。つまり、原料である金属シリコ
ン中のP,Al,Ca濃度及び供給量の経時変動が、鋳
型に供給される溶融シリコンの不純物濃度の変動に反映
するのである。溶解後に鋳型内で行う一方向凝固精製で
は、金属不純物元素の精製は可能であるが、揮発性不純
物元素の精製は不十分である。従って、得られるインゴ
ットの高さ方向で、P,Al,Caの偏析が生じること
になる。
However, according to the subsequent research by the applicant of the present invention, this method has a drawback that the surface area of silicon used for evaporation increases, so that the evaporation amount of silicon is larger than that of the conventional method and the silicon yield is low. It was revealed.
In this case, even if silicon having a low P, Al, Ca concentration is produced, the manufacturing cost rises, and the applicant's purpose of supplying inexpensive silicon to the solar cell material cannot be achieved.
In addition, the problem that the concentration of impurities in the product fluctuates (varies) with time, probably because the raw materials are continuously supplied and dissolved. In other words, changes over time in the concentrations of P, Al, and Ca in the raw material metal silicon and the supply amount are reflected in the changes in the impurity concentration of the molten silicon supplied to the mold. In the unidirectional solidification refining performed in the template after melting, the metal impurity element can be purified, but the volatile impurity element is insufficient. Therefore, segregation of P, Al, and Ca occurs in the height direction of the obtained ingot.

【0009】本発明は、かかる事情に鑑み、複数個の黒
鉛坩堝を用いたシリコンの電子ビームによる連続溶解で
も、シリコンの蒸発量を抑制し、且つP、Al、Ca濃
度の経時的変動の少ないシリコンの精製方法を提供する
ことを目的としている。
In view of the above circumstances, the present invention suppresses the evaporation amount of silicon even when the silicon is continuously melted by an electron beam using a plurality of graphite crucibles, and the concentration of P, Al and Ca does not change with time. It is intended to provide a method for purifying silicon.

【0010】[0010]

【課題を解決するための手段】発明者は、上記目的を達
成するため多くの実験研究を重ね、シリコンの電子ビー
ム溶解の最適な操業条件の発見に鋭意努力した。そし
て、その成果を本発明として完成させた。すなわち、本
発明は、減圧室内に配置した容器に原料シリコンを供給
し、電子ビームの照射で溶解して、該原料シリコン中の
揮発性不純物元素を蒸発除去し、引き続き、その溶融し
たシリコンを、前記容器より下位に配置した鋳型に注湯
し、電子ビームを照射しながら該溶融シリコンを一方向
凝固し、それが含有する金属不純物元素を除去するシリ
コンの精製方法において、前記容器を複数個の黒鉛坩堝
とし、それらを溶湯が順次オーバーフローで移行するよ
うに配置すると共に、減圧室の炉内圧を6.67×10
-3 〜1.33 Pa,溶解に用いる電子ビームの照射密
度を0.02〜0.2kW/cm2及び該複数個の容器
内での溶融シリコンの滞留時間を0.5時間以上として
前記原料シリコンを連続的に溶解することを特徴とする
シリコンの精製方法である。
Means for Solving the Problems The inventor has conducted many experiments and researches in order to achieve the above object, and has made an earnest effort to find an optimum operating condition for electron beam melting of silicon. And the result was completed as this invention. That is, the present invention supplies the raw material silicon to the container placed in the decompression chamber, dissolves by irradiation of the electron beam, evaporates and removes the volatile impurity element in the raw material silicon, and subsequently, the molten silicon, In a method for purifying silicon, in which a molten metal is unidirectionally solidified while pouring into a mold disposed below the container and irradiating with an electron beam, and a metal impurity element contained in the molten silicon is removed, a plurality of containers are provided. A graphite crucible was arranged so that the molten metal would sequentially migrate by overflow, and the furnace pressure in the decompression chamber was set to 6.67 × 10.
-3 to 1.33 Pa , the irradiation density of the electron beam used for melting is 0.02 to 0.2 kW / cm 2, and the residence time of the molten silicon in the plurality of containers is 0.5 hours or more It is a method for purifying silicon, which comprises melting silicon continuously.

【0011】また、本発明は、前記鋳型を水冷銅容器と
し、鋳型内の溶融シリコンを照射する電子ビームの照射
密度を0.05〜0.3kW/cm2 ,凝固速度を2m
m/分以下とすることを特徴とするシリコンの精製方法
である。さらに、本発明は、前記鋳型を、30rpm以
下で回転させることを特徴とするシリコンの精製方法で
もある。
In the present invention, the mold is a water-cooled copper container, the irradiation density of the electron beam for irradiating the molten silicon in the mold is 0.05 to 0.3 kW / cm 2 , and the solidification rate is 2 m.
The method for purifying silicon is characterized in that the rate is not more than m / min. Further, the present invention is also a method for purifying silicon, characterized in that the mold is rotated at 30 rpm or less.

【0012】本発明によれば、電子ビームを用いたシリ
コンの連続溶解であっても、容器周囲の雰囲気を適正な
高真空にすると共に、電子ビーム密度及びシリコンの容
器内滞留時間を適切に選ぶようにしたので、シリコンの
蒸発が抑えられるようになる。また、原料の供給量や揮
発性不純物濃度の変動があっても、鋳型へ注湯する溶融
シリコンでの該不純物元素濃度の変動が抑えられるよう
になる。
According to the present invention, even in the case of continuous melting of silicon by using an electron beam, the atmosphere around the container is set to an appropriate high vacuum, and the electron beam density and the residence time of silicon in the container are appropriately selected. As a result, the evaporation of silicon can be suppressed. Further, even if the supply amount of the raw material and the concentration of the volatile impurities are varied, the variation of the concentration of the impurity element in the molten silicon poured into the mold can be suppressed.

【0013】[0013]

【発明の実施の形態】本発明に係るシリコンの精製方法
を実施した装置を、黒鉛坩堝を2個とした場合で、図1
に示す。減圧室40内に、黒鉛坩堝1a、1bを2個設
置し、最大出力150kW級の電子銃10、12を黒鉛
坩堝1a、1bの上部に2台備えている。また、精製さ
れたシリコン22は、鋳型(受器)31中に注入できる
ようにした。この黒鉛坩堝は、2個に限るものではな
く、前記未溶解物や蒸発固着物からの不純物元素による
シリコンの汚染を少なくするには、数が多い方が良い。
ただし、あまり多いと、たとえ黒鉛坩堝内の表面積を、
坩堝が1個の場合と複数個の場合で同じにしても、オー
バーフローの段階で溶湯表面積が増加し、シリコンの蒸
発量が増加するばかりでなく、設備費の増加、出湯作業
及び容器セッティングの複雑化等が生じるので、2〜3
個程度が好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The apparatus for carrying out the method for purifying silicon according to the present invention has two graphite crucibles.
Shown in. Two graphite crucibles 1a and 1b are installed in the decompression chamber 40, and two electron guns 10 and 12 having a maximum output of 150 kW class are provided above the graphite crucibles 1a and 1b. In addition, the purified silicon 22 was allowed to be injected into the mold (receiver) 31. The number of graphite crucibles is not limited to two, and it is preferable that the number of graphite crucibles is large in order to reduce contamination of silicon by the impurity element from the undissolved substance or the evaporation fixed substance.
However, if there is too much, even if the surface area inside the graphite crucible is
Even if the number of crucibles is the same in the case of one crucible and in the case of plural crucibles, not only does the surface area of the molten metal increase at the overflow stage, the evaporation amount of silicon increases, but also the equipment cost increases, and tapping work and vessel setting are complicated. 2-3
The number of pieces is preferable.

【0014】まず、本発明では、前記減圧室の内部圧力
6.67×10 -3 〜1.33 Paの範囲に限定す
る。6.67×10 -3 Paより真空度を高くすると、供
給する原料シリコン量がいかなる量であろうとも、シリ
コンの蒸発が活発で、液体として次の容器あるいは鋳型
へ流れる量が減少、つまり、シリコン歩留が低減するか
らである。また、1.33Pa未満とすると、電子ビー
ムの発生自体が不安定になり、原料の加熱が安定して行
えなくなると共に、シリコン中のP,Al,Ca等の蒸
発速度が低減し、それらの除去が円滑に行えないからで
ある。
First, in the present invention, the internal pressure of the decompression chamber is limited to the range of 6.67 × 10 −3 to 1.33 Pa . When the degree of vacuum is higher than 6.67 × 10 −3 Pa , no matter what amount of raw material silicon is supplied, the evaporation of silicon is active and the amount of liquid flowing to the next container or mold is reduced, that is, This is because the silicon yield is reduced. If it is less than 1.33 Pa , the generation of the electron beam itself becomes unstable, the heating of the raw material cannot be performed stably, and the evaporation rate of P, Al, Ca, etc. in the silicon is reduced, and their removal Because it cannot be done smoothly.

【0015】また、減圧室の内部圧力が上記範囲内にあ
っても、通常の操業では、原料純度の変動(P:25±
5ppm)及び原料供給量の変動(基準量±10%程度
/分)があるので、その変動に応じ電子ビームの照射量
を調整する必要がある。そこで、本発明では、電子ビー
ムを溶融したシリコンの単位面積当たりの照射量を照射
密度と定義し、原料供給量の変動に応じて照射量を変え
るようにした。すなわち、本発明では、シリコン蒸発量
を低く抑え、P,Al,Ca等の除去を効率良く行うた
め、電子ビームの照射密度を0.02〜0.2kW/c
2 に限定する。
Even if the internal pressure of the decompression chamber is within the above range, the fluctuation of the raw material purity (P: 25 ±
5 ppm) and the fluctuation of the raw material supply amount (reference amount ± 10% / min), it is necessary to adjust the irradiation amount of the electron beam according to the fluctuation. Therefore, in the present invention, the irradiation amount per unit area of silicon obtained by melting the electron beam is defined as the irradiation density, and the irradiation amount is changed according to the fluctuation of the raw material supply amount. That is, in the present invention, the electron beam irradiation density is 0.02 to 0.2 kW / c in order to suppress the evaporation amount of silicon to be low and to efficiently remove P, Al, Ca and the like.
Limited to m 2 .

【0016】0.02kW/cm2 未満だと、加熱が不
十分で昇温せず、シリコンの溶解量が少ないばかりでな
く、P等の蒸発速度も遅くなり、また、0.2kW/c
2超えだと、溶融シリコンの温度が高くなり過ぎ(推
定1900℃程度)、シリコンの蒸発量が多大になるか
らである。さらに、本発明では、上記2つの限定に加
え、容器内での溶融シリコンの滞留時間にも制限を設
け、0.5時間以上は滞留するようにした。それ未満の
時間しか滞留しないと、各容器間でのシリコンの移行が
オーバ・フロー方式であるため、溶解したらすぐに次の
容器に流れるものがあり、結果として不純物濃度のバラ
ツキが大きくなるからである。具体的には、原料供給量
の調整並びにシリコンの流出口への電子ビーム照射パタ
ーンを調整することで行われる。
If it is less than 0.02 kW / cm 2 , heating is insufficient and the temperature does not rise, so that not only the amount of silicon dissolved is small, but also the evaporation rate of P and the like becomes slower, and 0.2 kW / c.
This is because if it exceeds m 2 , the temperature of the molten silicon becomes too high (estimated to be about 1900 ° C.), and the evaporation amount of silicon becomes large. Further, in the present invention, in addition to the above two limits, the retention time of the molten silicon in the container is also limited so that the retention time is 0.5 hours or more. If it stays for less than that time, the transfer of silicon between each container is an overflow method.Therefore, there is some that flows into the next container as soon as it is melted, resulting in large variations in impurity concentration. is there. Specifically, it is performed by adjusting the amount of raw material supply and the electron beam irradiation pattern to the silicon outlet.

【0017】以上述べたように、本発明は、3つの操業
条件を限定することで、シリコンの蒸発量を従来より抑
え、且つP,Ca,Al等の揮発性不純物元素の経時的
なバラツキを低減させるものである。次に、発明者は、
上記で得た揮発性不純物元素が低く、バラツキの少ない
溶融シリコンを鋳型に注湯し、そこで一方向凝固を行
い、Fe,Ti等の金属不純物元素をppmオーダまで
除去する。しかし、本発明では、その際にもP,Al,
Ca等の蒸発除去、及びシリコンの蒸発抑制に留意し、
前記効果の徹底を図るようにした。
As described above, according to the present invention, by limiting the three operating conditions, the evaporation amount of silicon is suppressed as compared with the conventional one, and variation with time of volatile impurity elements such as P, Ca and Al is suppressed. To reduce. Next, the inventor
Molten silicon having a low volatile impurity element and a small variation obtained above is poured into a mold and unidirectionally solidified to remove metal impurity elements such as Fe and Ti up to ppm order. However, in the present invention, P, Al,
Pay attention to the evaporation removal of Ca etc. and the suppression of evaporation of silicon,
The above effects were thoroughly tried.

【0018】それは、鋳型内にある溶融シリコンの表面
を、電子ビームの照射密度に0.05〜0.3kW/c
2 の制限を設けて加熱することである。0.05kW
/cm2 未満では、P,Al,Ca等の除去速度が遅過
ぎ、0.3kWを超えると、シリコンの温度が上昇しす
ぎて、その蒸発が活発になるからである。また、凝固速
度(固液界面の移動速度)は、2mm/分以下に抑える
ようにした。それを超えると金属不純物元素を含んだま
まシリコンが凝固し、精製が十分に行われないからであ
る。このようにすれば、前記シリコンの溶解から、脱
P,Al,Caを経て凝固精製までの、シリコンの蒸発
抑制及び揮発性不純物元素のバラツキが従来より一層低
減できるのである。
This is because the surface of the molten silicon in the mold has an electron beam irradiation density of 0.05 to 0.3 kW / c.
That is, heating is performed with a limit of m 2 . 0.05kW
If it is less than / cm 2 , the removal rate of P, Al, Ca, etc. is too slow, and if it exceeds 0.3 kW, the temperature of silicon rises too much and its evaporation becomes active. Further, the solidification speed (movement speed of the solid-liquid interface) was suppressed to 2 mm / min or less. This is because if it exceeds that, silicon is solidified while containing the metal impurity element, and purification is not sufficiently performed. By doing so, it is possible to further suppress the evaporation of silicon and the variation of the volatile impurity element from the melting of the silicon, through the removal of P, Al, and Ca to the solidification and refining.

【0019】さらに、従来、凝固精製時にシリコンの歩
留向上を狙いとして鋳型を回転させることもあるが、本
発明では、その場合の回転速度を30rpm以下に制限
するようにもした。30rpm以上では、溶融シリコン
が凝固したシリコンと一緒に回転してしまい、シリコン
の歩留が低下するからである。
Further, conventionally, the mold may be rotated for the purpose of improving the yield of silicon during solidification refining, but in the present invention, the rotation speed in that case is limited to 30 rpm or less. At 30 rpm or more, the molten silicon rotates together with the solidified silicon, and the yield of silicon decreases.

【0020】[0020]

【実施例】〔従来例〕使用した従来の装置を図2に示
す。それは、減圧室40内に黒鉛坩堝1aを1個設置
し、最大出力150kW級の電子銃10、12を黒鉛坩
堝1a上部に2台備えたものであり、前記した図1に示
す溶解装置と同様の能力を有する。また、黒鉛坩堝内で
精製されたシリコンは、水冷銅鋳型(受器)31中で、
凝固精製するようになっている。ここで、黒鉛坩堝1a
の形状は、溶湯表面で150×480mm、深さ60m
mであり、また、出湯口の高さは40mmである。
EXAMPLES [Prior Art] FIG. 2 shows a conventional apparatus used. It is one in which one graphite crucible 1a is installed in the decompression chamber 40, and two electron guns 10 and 12 with a maximum output of 150 kW class are provided above the graphite crucible 1a, which is similar to the melting apparatus shown in FIG. Have the ability of. In addition, the silicon refined in the graphite crucible is in the water-cooled copper mold (receiver) 31,
It is designed to coagulate and purify. Here, graphite crucible 1a
Shape is 150 × 480mm on the surface of the molten metal, 60m deep
m, and the height of the tap is 40 mm.

【0021】まず、P、Al、Caをそれぞれ、25p
pm、700ppm、100ppm含有する金属シリコ
ン(純度99.5%、直径1〜3mmの粉末状)を黒鉛
坩堝1aに2.5kg装入し、電子銃10からの電子ビ
ーム11で溶湯表面上を走査させながら該金属シリコン
を5分間で溶解した。その後、原料供給装置15から同
じ金属シリコンを所定速度で、該黒鉛坩堝1aに流入さ
せた。なお、この場合、減圧室の真空度は、1.33×
10 -2 Paとし、黒鉛坩堝1a内の溶融シリコン22を
照射した電子ビームの密度は、0.14kW/cm2
した。
First, P, Al, and Ca are each 25 p
2.5 kg of metallic silicon (purity 99.5%, powder form with a diameter of 1 to 3 mm) containing pm, 700 ppm and 100 ppm is charged into a graphite crucible 1a, and the surface of the molten metal is scanned with an electron beam 11 from an electron gun 10. The metallic silicon was melted for 5 minutes while being stirred. Then, the same metallic silicon was flown into the graphite crucible 1a from the raw material supply device 15 at a predetermined speed. In this case, the degree of vacuum in the decompression chamber is 1.33 ×
The density of the electron beam with which the molten silicon 22 in the graphite crucible 1a was irradiated was set to 10 −2 Pa and 0.14 kW / cm 2 .

【0022】次に、黒鉛坩堝1bのオーバーフロー口3
からオーバーフローした溶融シリコン22は、水冷銅鋳
型(受器)31に流れ込み、該鋳型(受器)31内に約
20kgの精製されたシリコン32がたまるまで電子ビ
ーム溶解を行った。ここで、水冷銅鋳型の形状は、30
0mmφ×300mm高さである。なお、この時の電子
ビーム密度は、0.17kW/cm2 である。その後、
鋳型下部に配置された冷却ジャケット(図示せず)の水
量を調整すると共に、鋳型を回転させずに、凝固速度
0.3〜1.0 mm/分で該精製シリコンの一方向凝
固を行った。
Next, the overflow port 3 of the graphite crucible 1b
The molten silicon 22 that overflowed from the above flowed into the water-cooled copper mold (receiver) 31 and was subjected to electron beam melting until about 20 kg of purified silicon 32 was accumulated in the mold (receiver) 31. Here, the shape of the water-cooled copper mold is 30
The height is 0 mmφ × 300 mm. The electron beam density at this time is 0.17 kW / cm 2 . afterwards,
Unidirectional solidification of the purified silicon was performed at a solidification rate of 0.3 to 1.0 mm / min without rotating the mold while adjusting the amount of water in a cooling jacket (not shown) arranged in the lower part of the mold. .

【0023】以上のような条件で得られたシリコンの成
分分析をICP(誘起プラズマ)発光分光分析法により
行ったところ表1のような結果が得られた。表1による
と、黒鉛坩堝を1個しか使用しなければ、前述したよう
に、未溶解原料や蒸着物からの汚染で、シリコン中の
P、Al、Ca濃度は、それぞれ、約1ppm、約15
0ppm、10ppm程度までしか低減できない。ま
た、シリコンの歩留は、原料供給速度が約3kg/時
間、凝固速度が0.3mm/分の時、P濃度はさほど低
減していないにもかかわらず、約70%と低いレベルで
あった。
When the component analysis of the silicon obtained under the above conditions was conducted by ICP (induced plasma) emission spectroscopy, the results shown in Table 1 were obtained. According to Table 1, if only one graphite crucible is used, as described above, the P, Al, and Ca concentrations in silicon are about 1 ppm and about 15 respectively due to contamination from undissolved raw materials and vapor deposition.
It can only be reduced to about 0 ppm and 10 ppm. Further, the silicon yield was at a low level of about 70% when the raw material supply rate was about 3 kg / hour and the solidification rate was 0.3 mm / min, although the P concentration was not significantly reduced. .

【0024】[0024]

【表1】 [Table 1]

【0025】〔発明例〕黒鉛坩堝を2個配置した装置
(図1参照)を用い、前記と同じ金属シリコン(純度9
9.5%、直径1〜3mmの粉末状)を溶解し、その後
鋳型で一方向凝固させてシリコン・インゴットを製造し
た。ここで、黒鉛坩堝1a,1bの形状は、溶湯表面で
150×240mm,深さ60mmであり、前述した
来例で用いた坩堝に比べ、それぞれ半分の溶湯表面積を
有する。また、出湯口の高さは40mmである。
[Invention Example] The same metallic silicon (purity 9) as described above was used by using an apparatus (see FIG. 1) in which two graphite crucibles were arranged.
9.5%, powdery form having a diameter of 1 to 3 mm) was melted and then unidirectionally solidified with a mold to manufacture a silicon ingot. Here, the shapes of the graphite crucibles 1a and 1b are 150 × 240 mm on the surface of the molten metal and 60 mm in depth, and each has a molten metal surface area that is half that of the crucible used in the above-mentioned conventional example. Further, the height of the tap hole is 40 mm.

【0026】まず、前記金属シリコンを黒鉛坩堝1aに
2.5kg装入し、電子銃10からの電子ビーム11で
溶湯表面上を走査させながら該金属シリコンを5分間で
溶解した。その後、原料供給装置15から同じ金属シリ
コンを所定速度で、該黒鉛坩堝1aに流入させた。黒鉛
坩堝1aのオーバーフロー口3からは、溶融シリコン2
2がオーバーフローし、第2の黒鉛坩堝1bに流入する
ようになる。なお、この場合、減圧室の真空度は、1.
33×10 -2 Paとし、黒鉛坩堝1a及び黒鉛坩堝1b
中の溶融シリコン22を照射した電子ビームの密度は、
それぞれ0.14kW/cm2 とした。また、シリコン
が2つの黒鉛坩堝に滞留する合計時間を、0.67時間
とした。
First, 2.5 kg of the metallic silicon was charged into the graphite crucible 1a, and the metallic silicon was melted in 5 minutes while scanning the surface of the molten metal with the electron beam 11 from the electron gun 10. Then, the same metallic silicon was flown into the graphite crucible 1a from the raw material supply device 15 at a predetermined speed. From the overflow port 3 of the graphite crucible 1a, molten silicon 2
2 overflows and comes into the second graphite crucible 1b. In this case, the degree of vacuum in the decompression chamber is 1.
33 × 10 -2 Pa , graphite crucible 1a and graphite crucible 1b
The density of the electron beam irradiating the molten silicon 22 inside is
Each was set to 0.14 kW / cm 2 . The total time for which silicon stays in the two graphite crucibles was set to 0.67 hours.

【0027】次に、黒鉛坩堝1bのオーバーフロー口3
からオーバーフローした溶融シリコン22は、水冷銅鋳
型(受器)31に流れ込み、該鋳型(受器)31内に約
20kgの精製されたシリコン32がたまるまで電子ビ
ーム溶解を行った。この時の電子ビーム密度は、0.1
7kW/cm2 である。その後、鋳型下部に配置された
冷却ジャケット(図示せず)の水量を調整すると共に、
鋳型を25rpmで回転しつつ、凝固速度1.7mm/
分で該精製シリコンの一方向凝固を行った。
Next, the overflow port 3 of the graphite crucible 1b
The molten silicon 22 that overflowed from the above flowed into the water-cooled copper mold (receiver) 31 and was subjected to electron beam melting until about 20 kg of purified silicon 32 was accumulated in the mold (receiver) 31. The electron beam density at this time is 0.1
It is 7 kW / cm 2 . After that, while adjusting the amount of water in the cooling jacket (not shown) arranged at the bottom of the mold,
While rotating the mold at 25 rpm, the solidification rate is 1.7 mm /
The purified silicon was unidirectionally solidified in minutes.

【0028】以上のような条件で得られたシリコン・イ
ンゴットの成分分析を、ICP(誘起プラズマ)発光分
光法により行い、表2のような結果を得た。この結果に
よると、シリコン・インゴット中央部の高さ方向で成分
分析値に殆ど差がなく、均一で、低いP、Al、Ca濃
度が達成されていることが明らかである。つまり、揮発
性不純物元素の経時変動が抑えられたのである。また、
原料の金属シリコン供給量と得られたシリコン・インゴ
ット量からシリコン歩留を求めたところ、約85%とな
り、前記従来例(P濃度が約1ppm)での約70%に
比べて大幅に向上していた。
The components of the silicon ingot obtained under the above conditions were analyzed by ICP (induced plasma) emission spectroscopy, and the results shown in Table 2 were obtained. From this result, it is clear that there is almost no difference in the component analysis values in the height direction of the central portion of the silicon ingot, and the uniform and low P, Al, and Ca concentrations are achieved. That is, the temporal change of the volatile impurity element was suppressed. Also,
The silicon yield was calculated from the supply amount of metallic silicon as the raw material and the obtained silicon ingot amount, and it was about 85%, which was significantly improved compared to about 70% in the conventional example (P concentration of about 1 ppm). Was there.

【0029】[0029]

【表2】 [Table 2]

【0030】〔参考例〕 上記発明例と同じ装置、金属シリコン及び手順を用い、
下記条件のみが異なるようにしてシリコン・インゴット
を製造した。 減圧室の真空度 4×10 -3 Torr 溶解時の電子ビーム密度 0.22 kW/cm2 滞留時間 0.44 時間 鋳型内シリコン加熱時の電子ビーム密度 0.32 kW/cm2 凝固速度 1.5 mm/分 鋳型の回転速度 25 rpm 以上のような条件で得られたシリコン・インゴットの成
分分析を、ICP(誘起プラズマ発光分光法により行っ
たところ、表3のような結果が得られた。この結果によ
ると、P,Al,Ca濃度は、インゴットの平均値で上
記実施例の結果とほぼ匹敵するほど、低くなっている。
しかし、シリコン・インゴットの高さ方向では、分析値
がバラツキ、不均一であることがわかる。また、原料の
金属シリコン供給量と得られたシリコン・インゴット量
からシリコン歩留を求めたところ、約80%であった。
Reference Example Using the same equipment, metallic silicon and procedure as in the above-mentioned invention example,
A silicon ingot was manufactured by changing only the following conditions. Degree of vacuum in vacuum chamber 4 × 10 −3 Torr Electron beam density during melting 0.22 kW / cm 2 Residence time 0.44 hours Electron beam density during heating silicon in mold 0.32 kW / cm 2 Solidification rate 1. 5 mm / min Rotation speed of mold 25 rpm Component analysis of the silicon ingot obtained under the above conditions was carried out by ICP (induced plasma emission spectroscopy), and the results shown in Table 3 were obtained. According to this result, the P, Al, and Ca concentrations are so low that the average value of the ingot is almost comparable to the result of the above embodiment.
However, in the height direction of the silicon ingot, it can be seen that the analysis values vary and are non-uniform. Further, the silicon yield was calculated from the supply amount of raw material metallic silicon and the obtained silicon ingot amount, and it was about 80%.

【0031】[0031]

【発明の効果】以上述べたように、本発明により、金属
シリコンを減圧下で電子ビーム溶解及び一方向凝固を用
いて精製する際の、シリコンの蒸発量の抑制及び揮発性
不純物元素の経時変動が防止できるようになった。
As described above, according to the present invention, when refining metallic silicon by using electron beam melting and directional solidification under reduced pressure, the amount of evaporation of silicon is suppressed and the volatile impurity element changes with time. Can be prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るシリコンの精製方法を実施した装
置を示す図である。
FIG. 1 is a view showing an apparatus for carrying out a silicon refining method according to the present invention.

【図2】従来のシリコンの精製方法を実施した装置を示
す説明図である。
FIG. 2 is an explanatory view showing an apparatus for carrying out a conventional silicon refining method.

【符号の説明】[Explanation of symbols]

1a、1b 黒鉛坩堝 3 オーバーフロー口 10、12 電子銃 11、13 電子ビーム 15 原料供給装置 21、22、32 シリコン 31 水冷銅鋳型(受器) 33 蒸着物 40 減圧室 1a, 1b Graphite crucible 3 overflow port 10, 12 electron gun 11, 13 electron beam 15 Raw material supply device 21, 22, 32 Silicon 31 Water-cooled copper mold (receiver) 33 vapor deposition 40 decompression chamber

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中村 尚道 千葉県千葉市中央区川崎町1番地 川崎 製鉄株式会社 技術研究所内 (72)発明者 湯下 憲吉 千葉県千葉市中央区川崎町1番地 川崎 製鉄株式会社 技術研究所内 (72)発明者 加藤 嘉英 千葉県千葉市中央区川崎町1番地 川崎 製鉄株式会社 技術研究所内 (56)参考文献 特開 平6−345416(JP,A) 特開 平7−309614(JP,A) 特開 平7−315827(JP,A) 特開 平9−48606(JP,A) 特開 平9−309716(JP,A) 特開 平10−139415(JP,A) 特開 平10−182132(JP,A) 特開 平10−251008(JP,A) 特開 平11−199382(JP,A) 国際公開98/16466(WO,A1) (58)調査した分野(Int.Cl.7,DB名) C30B 1/00 - 35/00 C01B 33/037 EUROPAT(QUESTEL)─────────────────────────────────────────────────── ─── Continuation of the front page (72) Naomi Nakamura, 1st Kawasaki-cho, Chuo-ku, Chiba, Chiba Prefecture, Technical Research Institute, Kawasaki Steel Co., Ltd. (72) Kenkichi Yushita 1st Kawasaki-cho, Chuo-ku, Chiba, Chiba Prefecture Kawasaki Inside the Steel Research Laboratory (72) Inventor Yoshihide Kato 1 Kawasaki-cho, Chuo-ku, Chiba, Chiba Inside Kawasaki Steel Research Laboratory (56) Reference JP-A-6-345416 (JP, A) JP-A-7 -309614 (JP, A) JP-A-7-315827 (JP, A) JP-A-9-48606 (JP, A) JP-A-9-309716 (JP, A) JP-A-10-139415 (JP, A) ) JP-A-10-182132 (JP, A) JP-A-10-251008 (JP, A) JP-A-11-199382 (JP, A) International Publication 98/16466 (WO, A1) (58) Fields investigated (Int.Cl. 7 , DB name) C3 0B 1/00-35/00 C01B 33/037 EUROPAT (QUESTEL)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 減圧室内に配置した容器に原料シリコン
を供給し、電子ビームの照射で溶解して、該原料シリコ
ン中の揮発性不純物元素を蒸発除去し、引き続き、その
溶融したシリコンを、前記容器より下位に配置した鋳型
に注湯し、電子ビームを照射しながら該溶融シリコンを
一方向凝固し、それが含有する金属不純物元素を除去す
るシリコンの精製方法において、 前記容器を複数個の黒鉛坩堝とし、それらを溶湯が順次
オーバーフローで移行するように配置すると共に、減圧
室の炉内圧を6.67×10 -3 〜 1.33Pa,溶解
に用いる電子ビームの照射密度を0.02〜0.2kW
/cm2 及び該複数個の容器内での溶融シリコンの滞留
時間を0.5時間以上として前記原料シリコンを連続的
に溶解することを特徴とするシリコンの精製方法。
1. Raw material silicon is supplied to a container arranged in a decompression chamber and melted by irradiation of an electron beam to evaporate and remove volatile impurity elements in the raw material silicon. In a method for purifying silicon, in which a molten metal is unidirectionally solidified while irradiating with an electron beam, and a metal impurity element contained in the molten metal is unidirectionally solidified by pouring the molten metal into a mold arranged below the container, The crucible is arranged so that the molten metal is sequentially transferred by overflow, the furnace pressure in the decompression chamber is 6.67 × 10 −3 to 1.33 Pa , and the irradiation density of the electron beam used for melting is 0.02 to 0. .2 kW
/ Cm 2 and the residence time of the molten silicon in the plurality of vessels is 0.5 hours or more, and the raw material silicon is continuously melted.
【請求項2】 前記鋳型を水冷銅容器とし、鋳型内の溶
融シリコンを照射する電子ビームの照射密度を0.05
〜0.3kW/cm2 ,凝固速度を2mm/分以下とす
ることを特徴とする請求項1記載のシリコンの精製方
法。
2. The water-cooled copper container is used as the mold, and the irradiation density of the electron beam for irradiating the molten silicon in the mold is 0.05.
The method for purifying silicon according to claim 1, wherein the solidification rate is ˜0.3 kW / cm 2 , and the solidification rate is 2 mm / min or less.
【請求項3】 前記鋳型を、30rpm以下で回転させ
ることを特徴とする請求項2記載のシリコンの精製方
法。
3. The method for purifying silicon according to claim 2, wherein the mold is rotated at 30 rpm or less.
JP00967298A 1998-01-21 1998-01-21 Silicon purification method Expired - Fee Related JP3473369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00967298A JP3473369B2 (en) 1998-01-21 1998-01-21 Silicon purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00967298A JP3473369B2 (en) 1998-01-21 1998-01-21 Silicon purification method

Publications (2)

Publication Number Publication Date
JPH11209195A JPH11209195A (en) 1999-08-03
JP3473369B2 true JP3473369B2 (en) 2003-12-02

Family

ID=11726710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00967298A Expired - Fee Related JP3473369B2 (en) 1998-01-21 1998-01-21 Silicon purification method

Country Status (1)

Country Link
JP (1) JP3473369B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012100485A1 (en) * 2011-01-29 2012-08-02 大连隆田科技有限公司 Method and apparatus for smelting and purifying polycrstalline silicon by means of electron beam and shallow melt pool

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101122047B (en) * 2007-09-14 2011-02-16 李绍光 Method for manufacturing polycrystalline silicon used for solar battery
JP5144999B2 (en) * 2007-09-26 2013-02-13 株式会社アルバック Material purification method
FR2928641B1 (en) 2008-03-14 2010-03-26 Centre Nat Rech Scient SILICON PURIFICATION PROCESS FOR PHOTOVOLTAIC APPLICATIONS
KR101275218B1 (en) * 2008-08-01 2013-06-17 가부시키가이샤 아루박 Method for refining metal
US8409319B2 (en) 2008-08-12 2013-04-02 Ulvac, Inc. Silicon purification method
KR101356442B1 (en) * 2010-11-29 2014-02-03 한국에너지기술연구원 Method of manufacturing polysilicon using apparatus for manufacturing polysilicon based electron-beam melting using dummy bar
KR101309521B1 (en) * 2010-11-29 2013-09-23 한국에너지기술연구원 Apparatus for manufacturing polysilicon with high purity using electron-beam melting and method of manufacturing polysilicon using the same
JP5938093B2 (en) 2012-03-09 2016-06-22 シリシオ フェロソラール ソシエダーダ リミターダ Silicon purification equipment
KR101396478B1 (en) * 2012-04-05 2014-05-19 한국에너지기술연구원 Poly Silicon Manufacturing Apparatus Using Sloped One-Way Coagulation Part
CN102701213B (en) * 2012-06-28 2015-02-11 佳科太阳能硅(龙岩)有限公司 Solar polycrystalline silicon purification equipment employing directional solidification metallurgical method
KR101397979B1 (en) * 2012-07-10 2014-05-30 한국에너지기술연구원 Apparatus for Refining Silicon
KR101441856B1 (en) * 2012-07-10 2014-09-19 한국에너지기술연구원 Apparatus for Refining Silicon
JP5178939B1 (en) * 2012-07-11 2013-04-10 和宏 永田 Method for producing silicon by microwave and microwave reduction furnace
KR101394161B1 (en) * 2012-08-23 2014-05-15 한국에너지기술연구원 Apparatus for Refining Silicon
KR101475755B1 (en) * 2012-08-23 2014-12-30 한국에너지기술연구원 Apparatus for Refining Silicon
CN103420379B (en) * 2013-08-28 2016-03-02 青岛隆盛晶硅科技有限公司 Method and the device thereof of solar-grade polysilicon are prepared in electron beam serialization melting
CN103420380B (en) * 2013-08-28 2015-06-03 青岛隆盛晶硅科技有限公司 Method and device for manufacturing polycrystalline silicon by coupling electron beam smelting technology and directional solidification technology
KR101400884B1 (en) * 2013-09-26 2014-05-29 한국에너지기술연구원 Apparatus for manufacturing polysilicon based electron-beam melting using dummy bar
CN104651929B (en) * 2013-11-22 2018-08-21 青岛昌盛日电太阳能科技股份有限公司 A kind of method and apparatus that the deoxygenation of electron-beam smelting polysilicon is coupled with ingot casting
CN103741210B (en) * 2013-11-22 2016-08-17 青岛隆盛晶硅科技有限公司 A kind of electronic torch melting polysilicon deoxygenation and the method and apparatus of continuous casting
CN104651930A (en) * 2013-11-22 2015-05-27 青岛隆盛晶硅科技有限公司 Apparatus for preparing polysilicon through electron beam deoxygenation and preliminary ingot casting coupling, and method thereof
EP3053881A1 (en) * 2015-02-04 2016-08-10 Centre National De La Recherche Scientifique Silicon purification device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012100485A1 (en) * 2011-01-29 2012-08-02 大连隆田科技有限公司 Method and apparatus for smelting and purifying polycrstalline silicon by means of electron beam and shallow melt pool

Also Published As

Publication number Publication date
JPH11209195A (en) 1999-08-03

Similar Documents

Publication Publication Date Title
JP3473369B2 (en) Silicon purification method
JP3325900B2 (en) Method and apparatus for producing polycrystalline silicon, and method for producing silicon substrate for solar cell
US7682585B2 (en) Silicon refining process
US8501140B2 (en) Method and apparatus for purifying metallurgical silicon for solar cells
WO2006006436A1 (en) Method for purifying metal
AU2008299523A1 (en) Process for the production of medium and high purity silicon from metallurgical grade silicon
JPH10245216A (en) Production of silicon for solar cell
JP4788925B2 (en) Method for purifying metallic silicon
JP2010241650A (en) Method for producing silicon ingot, apparatus for producing silicon ingot, and method for producing silicon crystal
JPH07309614A (en) Method for purifying silicon
JP2010116310A (en) Refining method and refiner of silicon
JP3140300B2 (en) Method and apparatus for purifying silicon
JPWO2008149985A1 (en) Solidification method of metallic silicon
JPH07206420A (en) Production of high-purity silicon
KR20080100337A (en) Method for production of silicon suitable for solar purposes
JP2007314403A (en) Silicon purification method and apparatus
JPH05262512A (en) Purification of silicon
JP2005255417A (en) Method for purifying silicon
JP2000247623A (en) Method for refining silicon and apparatus therefor
JPH10251008A (en) Method for solidifying and refining metal silicon
Lee et al. Directional solidification behaviors of polycrystalline silicon by electron-beam melting
JP2009292687A (en) Refining method and refiner of silicon
JPH10139415A (en) Solidification and purification of molten silicon
JP2000327488A (en) Production of silicon substrate for solar battery
JPH10182135A (en) Solidification refining of silicon

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030819

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees