JPH07296800A - Electrode and battery using it - Google Patents

Electrode and battery using it

Info

Publication number
JPH07296800A
JPH07296800A JP6107749A JP10774994A JPH07296800A JP H07296800 A JPH07296800 A JP H07296800A JP 6107749 A JP6107749 A JP 6107749A JP 10774994 A JP10774994 A JP 10774994A JP H07296800 A JPH07296800 A JP H07296800A
Authority
JP
Japan
Prior art keywords
electrode
battery
molecular weight
weight
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6107749A
Other languages
Japanese (ja)
Inventor
Keiichi Asami
圭一 浅見
Toshiya Motonami
利哉 本波
Yoshiaki Iwaya
嘉昭 岩屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP6107749A priority Critical patent/JPH07296800A/en
Publication of JPH07296800A publication Critical patent/JPH07296800A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide an electrode and battery having satisfactory charge and discharge characteristic and a long charge and discharge cycle life by forming the electrode by a super-high molecular weight polyethylene and an electrode active material which have specified weight % values, respectively, and forming the battery by use of this electrode. CONSTITUTION:An electrode is formed by 5-90wt.% of super-high molecular weight polyethylene having high mechanical characteristic and sliding characteristic and 10-95wt.% of an electrode active material. A battery is formed by use of this electrode. Thus, an electrode and battery having satisfactory charge and discharge characteristic and a long charge and discharge cycle life can be provided. In a secondary battery, particularly, battery characteristic is enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電極及びこの電極を用い
た電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode and a battery using this electrode.

【0002】[0002]

【従来の技術】例えば、二次電池の電極としては、コイ
ン型電池に見られるように電極活物質と導電材料を混合
し、これらを結着剤で結着させたものが用いられてお
り、結着剤として、電解質に不溶なスチレン−ブタジエ
ンゴム等のゴム系樹脂、ポリテトラフルオロエチレン
(PTFE)等のフッ素系樹脂、ポリプロピレン、ポリ
エチレン等の熱可塑性樹脂が用いられていた。特に、フ
ッ素系樹脂が好まれて用いられており、特開平2−22
0368号公報にはPTFEを結着剤とした例が、ま
た、特開平2−284354号公報にはポリフッ化ビニ
リデンを結着剤とした例が開示されている。しかし、結
着剤としてフッ素系樹脂を使用した場合、結着性が悪
く、充分な性能の電極が得られない。また、フッ系樹脂
の中には電池に使用する電解液と反応するという問題が
あった。このような問題を解決するために、特開昭63
−193463号公報には、ポリエチレンを結着剤とし
て用いた炭素電極が開示されているが、低分子量ポリエ
チレンを用いているので結着性が充分でなく、充放電サ
イクル特性が充分に得られないという問題を有してい
た。このように、電池の電極に関しては、電池の高エネ
ルギー密度化、高出力化を図るため、多方面から研究が
なされている。
2. Description of the Related Art For example, as an electrode of a secondary battery, a mixture of an electrode active material and a conductive material as seen in a coin-type battery and binding them with a binder is used. As the binder, a rubber-based resin such as styrene-butadiene rubber which is insoluble in the electrolyte, a fluorine-based resin such as polytetrafluoroethylene (PTFE), and a thermoplastic resin such as polypropylene and polyethylene have been used. Particularly, a fluorine-based resin is preferably used and is disclosed in JP-A-2-22.
Japanese Unexamined Patent Publication No. 2-284354 discloses an example in which PTFE is used as a binder, and Japanese Patent Application Laid-Open No. 2-284354 discloses an example in which polyvinylidene fluoride is used as a binder. However, when a fluorine-based resin is used as the binder, the binding property is poor and an electrode with sufficient performance cannot be obtained. In addition, there is a problem that some of the fluorine-based resins react with the electrolytic solution used in the battery. In order to solve such a problem, Japanese Patent Laid-Open No. Sho 63-63
Japanese Patent Laid-Open No. 193463 discloses a carbon electrode using polyethylene as a binder. However, since low molecular weight polyethylene is used, the binding property is not sufficient and charge / discharge cycle characteristics cannot be sufficiently obtained. Had a problem. As described above, with respect to battery electrodes, research has been conducted in various fields in order to achieve high energy density and high output of batteries.

【0003】[0003]

【発明が解決しようとする課題】このような状況に鑑
み、本発明の課題は、電極活物質と結着剤との結着性が
優れているので、充放電特性が良好で、充放電サイクル
の寿命が長い電極及びこの電極を使用した電池を提供す
ることにある。
In view of the above situation, the object of the present invention is to provide excellent charge / discharge characteristics and charge / discharge cycle because the binding property between the electrode active material and the binder is excellent. An object of the present invention is to provide an electrode having a long life and a battery using the electrode.

【0004】[0004]

【課題を解決するための手段】本発明者らは上記課題を
解決すべく種々検討の結果、電池特に二次電池の電極と
して後述する組成よりなる電極を用いると優れた電池特
性を発揮するということを見出し、本発明に到達した。
すなわち、第1の発明は、超高分子量ポリエチレン5〜
90重量%と電極活物質10〜95重量%とよりなるこ
とを特徴とする電極を要旨とするものである。また、第
2の発明は、この電極を用いたことを特徴とする電池を
要旨とするものである。
As a result of various studies to solve the above problems, the inventors of the present invention have shown that excellent battery characteristics are exhibited when an electrode having a composition described below is used as an electrode of a battery, especially a secondary battery. The inventors have found that and reached the present invention.
That is, the first invention is ultrahigh molecular weight polyethylene 5-5.
The gist of the electrode is that it is composed of 90% by weight and 10 to 95% by weight of the electrode active material. A second aspect of the invention is a gist of a battery characterized by using this electrode.

【0005】以下、本発明を詳細に説明する。本発明で
用いられる超高分子量ポリエチレンの分子量としては、
粘度法による測定値で100万を超えるものがあげら
れ、特に200〜800万のものが好ましく用いられ
る。分子量が100万以下であると得られた電極の強度
が十分でなく、800万を超えると成形が困難になる傾
向にある。このような超高分子量ポリエチレンは、分子
量が数10万以下の通常のポリエチレンとは異なり、優
れた力学的特性、摺動特性を示す材料である。
The present invention will be described in detail below. As the molecular weight of the ultra high molecular weight polyethylene used in the present invention,
The value measured by the viscosity method is more than 1 million, and the value of 2 to 8 million is particularly preferably used. If the molecular weight is 1,000,000 or less, the strength of the obtained electrode is not sufficient, and if it exceeds 8,000,000, molding tends to be difficult. Such ultra-high molecular weight polyethylene is a material that exhibits excellent mechanical properties and sliding properties, unlike ordinary polyethylene having a molecular weight of several hundred thousand or less.

【0006】本発明において用いられる、電極活物質と
しては、例えば、TiS2 、MoS2 、CoO2 、V2
5 、FeS2 、NbS2 、ZrS2 、NiPS3 、V
Se2 、MnO2 、LiCoO2 などの遷移金属カルコ
ゲン化合物、有機物の熱重合物である一次元グラファ イ
ト化物、フッ化カーボン、グラファイト、あるいは、ド
ープ状態で10- 2 s/cm以上の電気電導度を有する
導電性高分子[具体的には、ポリアセチレン、ポリピロ
ール、ポリアニリン、ポリアズレン、ポリフェニレン、
ポリアセン、ポリフタロシアニン、ポリ−3−メチルチ
オフェン、ポリピリジン、ポリジフェニルベンジジンな
どの高分子及びこれらの誘導体]、及びこれらの混合物
が挙げられる。さらに、金属リチウム、Li−Al合金
などのリチウム合金、あるいは、炭素質材料が用いられ
る。この炭素質材料としては、リチウムをドープ、脱ド
ープできるものであって、熱分解炭素類、メソフェーズ
系カーボン類、コークス類(ピッチコークス、ニードル
コークス、石油コークス等)、グラファイト類、グラッ
シーカーボン類、有機高分子化合物の焼成体(フェノー
ル樹脂、フラン樹脂、ポリイミド樹脂等を適当な温度で
焼成したもの)、炭素繊維、活性炭等を用いることがで
きる。
The electrode active material used in the present invention is, for example, TiS 2 , MoS 2 , CoO 2 , V 2
O 5 , FeS 2 , NbS 2 , ZrS 2 , NiPS 3 , V
Se 2, MnO 2, transition metal chalcogen compound such as LiCoO 2, one-dimensional grapher site product is a thermal polymerization product of organic matter, carbon fluoride, graphite or, in the doped state 10 - 2 s / cm or more electrical conductivity A conductive polymer having: [specifically, polyacetylene, polypyrrole, polyaniline, polyazulene, polyphenylene,
Polymers such as polyacene, polyphthalocyanine, poly-3-methylthiophene, polypyridine, polydiphenylbenzidine and their derivatives], and mixtures thereof. Furthermore, metallic lithium, a lithium alloy such as a Li-Al alloy, or a carbonaceous material is used. This carbonaceous material can be doped or dedoped with lithium, and includes pyrolytic carbons, mesophase carbons, cokes (pitch coke, needle coke, petroleum coke, etc.), graphites, glassy carbons, A fired body of an organic polymer compound (phenol resin, furan resin, polyimide resin or the like fired at an appropriate temperature), carbon fiber, activated carbon or the like can be used.

【0007】電極における電極活物質の含有量として
は、電極全重量に対し5〜95重量%、好ましくは60
〜90重量%である。電極活物質が5重量%未満である
と充分な電気特性が得られず、95重量%を超えると得
られる電極の強度が充分でない。
The content of the electrode active material in the electrode is 5 to 95% by weight, preferably 60% by weight based on the total weight of the electrode.
Is about 90% by weight. When the electrode active material is less than 5% by weight, sufficient electric characteristics cannot be obtained, and when it exceeds 95% by weight, the strength of the obtained electrode is insufficient.

【0008】本発明の電極は、超高分子量ポリエチレン
と電極活物質とを混合し、混合物を金型等に充填して加
熱・圧縮・成形することにより製造することができる。
このため、本発明で用いる超高分子量ポリエチレンの形
状としては、粒状が好ましく、粒径は、5〜800μ
m、特に10〜250μmが好ましい。粒径が5μm未
満のものは、二次凝集を起こしやすく、また、800μ
mを超えるものは十分な強度を有する電極が得られない
傾向にある。そのため、必要に応じ、粉砕、ふるい分け
等を行ってもよい。そのような超高分子量ポリエチレン
としては、公知の如何なるものも使用でき、市販品(例
えばミペロン、三井石油化学社製)としても入手し得
る。
The electrode of the present invention can be manufactured by mixing ultrahigh molecular weight polyethylene and an electrode active material, filling the mixture in a mold or the like, and heating, compressing and molding.
Therefore, the shape of the ultrahigh molecular weight polyethylene used in the present invention is preferably granular, and the particle size is 5 to 800 μm.
m, particularly preferably 10 to 250 μm. If the particle size is less than 5 μm, secondary aggregation is likely to occur, and 800 μm
If it exceeds m, an electrode having sufficient strength tends not to be obtained. Therefore, crushing, sieving and the like may be carried out if necessary. As such ultra-high molecular weight polyethylene, any known one can be used, and it can be obtained as a commercially available product (for example, Miperon, manufactured by Mitsui Petrochemical Co., Ltd.).

【0009】電極活物質の形状としては、粉末状のもの
が好ましく、その粒径は、5〜800μm、特に、10
〜200μmが好ましい。5μm未満では二次凝集しや
すく、800μmを超えると超高分子量ポリエチレンと
均一に混ざり難くくなる傾向にある。
The shape of the electrode active material is preferably powdery, and the particle size thereof is 5 to 800 μm, particularly 10
˜200 μm is preferable. If it is less than 5 μm, secondary agglomeration tends to occur, and if it exceeds 800 μm, it tends to be difficult to uniformly mix it with the ultrahigh molecular weight polyethylene.

【0010】さらに、電極の導電性を向上させるため
に、混合する際に、カーボン粉末、金属粉末(具体的に
は、ステンレス綱、金、白金、ニッケル、アルミニウ
ム、モリブデン、チタン等)などの導電剤を添加しても
よい。
Further, in order to improve the conductivity of the electrode, when mixed, conductivity of carbon powder, metal powder (specifically, stainless steel, gold, platinum, nickel, aluminum, molybdenum, titanium, etc.) is used. Agents may be added.

【0011】次に、本発明の電極の製造方法の好ましい
一例について説明する。まず、超高分子量ポリエチレン
と電極活物質を、例えば、ドライブレンド、スーパーミ
キサー、ヘンシェルミキサー等により混合した後、加熱
・圧縮・成形する。加熱・圧縮・成形の条件としては、
超高分子量ポリエチレンと電極活物質の混合物を金型に
充填し、加熱・圧縮法により行えばよい。すなわち、混
合物を充填した金型を熱板に挟み高圧下で成形し、その
ままで冷却して電極を得る。温度としては、120〜2
00℃が好ましく、圧力としては、20〜1000kg
/cm2 が好ましい。また加熱時間としては、1〜90
0秒間が好ましい。120℃未満、20kg/cm2
満、1秒間未満では充分な強度が得られず、200℃、
1000kg/cm2 、900秒間を超えると経済的で
はなくなるので好ましくない。
Next, a preferred example of the method for producing the electrode of the present invention will be described. First, ultrahigh molecular weight polyethylene and the electrode active material are mixed by, for example, a dry blend, a super mixer, a Henschel mixer, and then heated, compressed and molded. The conditions for heating, compression and molding are:
It may be carried out by filling a mold with a mixture of ultra-high molecular weight polyethylene and an electrode active material and heating and compressing. That is, a mold filled with the mixture is sandwiched between hot plates, molded under high pressure, and cooled as it is to obtain an electrode. The temperature is 120 to 2
00 ° C is preferable, and the pressure is 20 to 1000 kg
/ Cm 2 is preferred. The heating time is 1 to 90
0 seconds is preferred. If the temperature is less than 120 ° C., less than 20 kg / cm 2 and less than 1 second, sufficient strength cannot be obtained.
If it exceeds 1000 kg / cm 2 and 900 seconds, it is not economically preferable, which is not preferable.

【0012】このようにして得られる電極としては、曲
げ強度5kg/cm2 以上を有するものが好ましい。ま
た、このようにして得られた電極は電池の態様に合わせ
て、さらに成形して用いてもよい。
The electrode thus obtained preferably has a bending strength of 5 kg / cm 2 or more. Further, the electrode thus obtained may be further molded and used according to the mode of the battery.

【0013】本発明の電極は一次又は二次電池の正極又
は負極として用いることができる。次に本発明の電極を
二次電池の電極として用いる場合の二次電池の構成につ
いて説明する。二次電池は、基本的には正極、負極及び
電解液より構成され、電極間にセパレーターを設けるこ
とができる。電解液は、溶媒及び電解質により構成さ
れ、固体電解質を用いることも可能である。
The electrode of the present invention can be used as a positive electrode or a negative electrode of a primary or secondary battery. Next, the structure of the secondary battery when the electrode of the present invention is used as the electrode of the secondary battery will be described. The secondary battery is basically composed of a positive electrode, a negative electrode and an electrolytic solution, and a separator can be provided between the electrodes. The electrolytic solution is composed of a solvent and an electrolyte, and it is also possible to use a solid electrolyte.

【0014】二次電池の電解液の電解質の具体例として
は、LiPF6 、LiSbF6 、LiAsF6 、LiC
lO4 、[(n−Bu)4 N]+ ・AsF6 - 、[(n
−Bu)4 N]+ ・BF4 - 、LiAlCl4 、LiB
4 、LiCF3 SO3 、LiN(CF3 SO2 2
を挙げることができる。
[0014] Specific examples of the electrolyte of the electrolytic solution of the secondary battery, LiPF 6, LiSbF 6, LiAsF 6, LiC
lO 4, [(n-Bu ) 4 N] + · AsF 6 -, [(n
-Bu) 4 N] + · BF 4 -, LiAlCl 4, LiB
F 4, LiCF 3 SO 3, LiN (CF 3 SO 2) can be cited 2.

【0015】電極にドーピング可能な陰イオンとして
は、PF6 - 、SbF6 - 、AsF6 - 、SbCl6 -
のようなVa属の元素のハロゲン化物アニオン、BF4
- 、BR4 - (R:フェニル、アルキル基)のようなII
Ia属の元素のハルゲン化物アニオン、ClO4 - のよう
な過塩素酸アニオン、Cl- 、Br- 、I- のようなハ
ロゲンアニオン、トリフルオロメタンスルホン酸等が例
示でき、陽イオンとしては、Li+ 、Na+ 、K+ のよ
うなアルカリ金属イオン、(R4 N)+ (R:炭素数1
〜20の炭化水素基)等が例示できる。
Anions that can be doped into the electrode include PF 6 , SbF 6 , AsF 6 , SbCl 6 −.
Halide anions of Va group elements such as BF 4
-, BR 4 - (R: phenyl, alkyl group) II such as
Harugen compound anions of Ia metal selected, ClO 4 - perchlorate anions such as, Cl -, Br -, I - halogen anion, can be exemplified such as trifluoromethanesulfonic acid, such as, as a cation, Li + , Alkali metal ions such as Na + and K + , (R 4 N) + (R: carbon number 1
To 20 hydrocarbon groups) and the like.

【0016】電解液を得るための溶媒としては、特に限
定はされないが、比較的極性の大きい溶媒が好適に用い
られる。具体的には、プロピレンカーボネート、エチレ
ンカーボネート、ベンゾニトリル、アセトニトリル、テ
トラヒドロフラン、2−メチルテトラヒドロフラン、γ
−ブチルラクトン、ジオキソラン、トリエチルフォスフ
ァイト、ジメチルホルムアミド、ジメチルアセトアミ
ド、ジメチルスルフォキシド、ジオキサン、ジメトキシ
エタン、ポリエチレングリコール、スルフォランジクロ
ロエタン、クロルベンゼン、ニトロベンゼンなどの有機
溶媒の1種又は、2種以上の混合液を挙げることができ
る。
The solvent for obtaining the electrolytic solution is not particularly limited, but a solvent having a relatively large polarity is preferably used. Specifically, propylene carbonate, ethylene carbonate, benzonitrile, acetonitrile, tetrahydrofuran, 2-methyltetrahydrofuran, γ
One or more organic solvents such as butyl lactone, dioxolane, triethyl phosphite, dimethylformamide, dimethylacetamide, dimethylsulfoxide, dioxane, dimethoxyethane, polyethylene glycol, sulfolane dichloroethane, chlorobenzene, nitrobenzene, etc. A mixed solution can be mentioned.

【0017】セパレータとしては、電解液のイオン移動
に対して低抵抗であり、且つ溶液保持性に優れたものが
用いられる。例えば、ガラス繊維フィルタ、又は、ポリ
エステル、テフロン、ポリフロン、ポリプロピレン等の
高分子ボアフィルタ不織布、あるいは、ガラス繊維とこ
れらの高分子からなる不織布等を用いることができる。
As the separator, one having a low resistance to the movement of ions of the electrolytic solution and having excellent solution holding property is used. For example, it is possible to use a glass fiber filter, a polymeric bore filter non-woven fabric such as polyester, Teflon, polyflon, or polypropylene, or a non-woven fabric composed of glass fiber and these polymers.

【0018】また、前記電解液及びセパレータに代わる
物質として固体電解質を用いることもできる。例えば、
無機系では、AgCl、AgBr、AgI、LiIなど
の金属ハロゲン化物、RbAg4 5 、RbAg4 4
CNなどが挙げられる。また、有機系ではポリエチレン
オキサイド、ポリプロピレンオキサイド、ポリフッ化ビ
ニリデン、ポリアクリルアミドなどをポリマーマトリッ
クスとし、先に述べた電解質塩をポリマーマトリックス
中に溶解せしめた複合体、あるいはこれらのゲル架橋
体、低分子量ポリエチレンオキサイド、クラウンエーテ
ルなどのイオン解離基をポリマー主鎖にグラフト化した
高分子固体電解質が用いられる。
Further, a solid electrolyte may be used as a substance replacing the electrolytic solution and the separator. For example,
In the inorganic system, metal halides such as AgCl, AgBr, AgI and LiI, RbAg 4 I 5 and RbAg 4 I 4 are used.
CN etc. are mentioned. In organic systems, polyethylene oxide, polypropylene oxide, polyvinylidene fluoride, polyacrylamide, etc. are used as the polymer matrix, and the above-mentioned electrolyte salt is dissolved in the polymer matrix to form a complex, or a gel cross-linked product of these, or a low molecular weight polyethylene. A polymer solid electrolyte in which an ion dissociative group such as oxide or crown ether is grafted on the polymer main chain is used.

【0019】電池の形態としては、特に限定されるもの
ではないが、コイン型、シート型、筒型等が挙げらる。
The form of the battery is not particularly limited, and examples thereof include a coin type, a sheet type, and a cylinder type.

【0020】[0020]

【実施例】以下、実施例にて本発明を具体的に説明す
る。 実施例1 超高分子量ポリエチレン(ミペロン、三井石油化学社
製)20重量部と炭素粉末(MCMB、大阪ガス社製)
80重量部をドライブレンドし、金型に充填して100
kg/cm2 、180℃で5分間かけて加熱・圧縮・成
形した。その後、100kg/cm2 、室温で冷却し、
直径15mm、厚み0.44mm、密度1.20g/c
3 、体積抵抗率0.2Ω・cmの電極を得た。
EXAMPLES The present invention will be specifically described below with reference to examples. Example 1 20 parts by weight of ultra-high molecular weight polyethylene (Miperon, manufactured by Mitsui Petrochemical Co., Ltd.) and carbon powder (MCMB, manufactured by Osaka Gas Co., Ltd.)
80 parts by weight are dry blended and filled in a mold to 100
It was heated / compressed / molded at 180 ° C. for 5 minutes at 180 kg / cm 2 . After that, cool at 100 kg / cm 2 at room temperature,
Diameter 15 mm, thickness 0.44 mm, density 1.20 g / c
An electrode having m 3 and a volume resistivity of 0.2 Ω · cm was obtained.

【0021】実施例2 超高分子量ポリエチレン(ミペロン、三井石油化学社
製)40重量部と炭素粉末(MCMB、大阪ガス社製)
60重量部をドライブレンドし、金型に充填して100
kg/cm2 、180℃で5分間かけて加熱・圧縮・成
形した。その後、100kg/cm2 、室温で冷却し、
直径15mm、厚み0.46mm、密度1.05g/c
3 、体積抵抗率1.0Ω・cmの電極を得た。
Example 2 40 parts by weight of ultra-high molecular weight polyethylene (Miperon, manufactured by Mitsui Petrochemical Co., Ltd.) and carbon powder (MCMB, manufactured by Osaka Gas Co., Ltd.)
Dry blend 60 parts by weight and fill in a mold to 100
It was heated / compressed / molded at 180 ° C. for 5 minutes at 180 kg / cm 2 . After that, cool at 100 kg / cm 2 at room temperature,
Diameter 15 mm, thickness 0.46 mm, density 1.05 g / c
An electrode having m 3 and a volume resistivity of 1.0 Ω · cm was obtained.

【0022】比較例1 ポリテトラフルオロエチレン(PTFE)粉末(F−1
04、ダイキン工業社製)20重量部と炭素粉末(MC
MB、大阪ガス社製)80重量部を乳鉢にてブレンド
し、金型に充填して2000kg/cm2 、室温で圧縮
・成形し、直径15mm、厚み0.3mm、密度1.2
5g/cm3 、体積抵抗率0.62Ω・cmの電極を得
た。
Comparative Example 1 Polytetrafluoroethylene (PTFE) powder (F-1
04, manufactured by Daikin Industries, Ltd., 20 parts by weight and carbon powder (MC
MB, manufactured by Osaka Gas Co., Ltd.) 80 parts by weight are blended in a mortar, filled in a mold and compressed / molded at 2000 kg / cm 2 at room temperature, diameter 15 mm, thickness 0.3 mm, density 1.2.
An electrode having a volume resistivity of 5 g / cm 3 and a volume resistivity of 0.62 Ω · cm was obtained.

【0023】比較例2 高密度ポリエチレン粉末(フローセンM 住友精化社
製)20重量部と炭素粉末(MCMB、大阪ガス社製)
80重量部をドライブレンドし、金型に充填して100
kg/cm2 、180℃で5分間かけて加熱・圧縮・成
形した。その後100kg/cm2 、室温で冷却し、直
径15mm、厚み0.45mm、密度0.92g/cm
3 、体積抵抗率12Ω・cmの電極を得た。
Comparative Example 2 20 parts by weight of high-density polyethylene powder (FLOWCEN M, Sumitomo Seika) and carbon powder (MCMB, Osaka Gas)
80 parts by weight are dry blended and filled in a mold to 100
It was heated / compressed / molded at 180 ° C. for 5 minutes at 180 kg / cm 2 . Then cooled to 100 kg / cm 2 , room temperature, diameter 15 mm, thickness 0.45 mm, density 0.92 g / cm.
3 , an electrode having a volume resistivity of 12 Ω · cm was obtained.

【0024】実施例3 超高分子量ポリエチレン(ミペロン、三井石油化学社
製)20重量部とV2 5 80重量部、グラファイト
(KS−6、ロンザ社製)40重量部をドライブレンド
し、金型に充填して100kg/cm2 180℃で5分
間かけて加熱・圧縮・成形した。その後100kg/c
2 、室温で冷却し、直径15mm、厚み0.35m
m、密度1.5g/cm3 、体積抵抗率5.7Ω・cm
の電極を得た。
Example 3 20 parts by weight of ultra-high molecular weight polyethylene (Miperon, manufactured by Mitsui Petrochemical Co., Ltd.), 80 parts by weight of V 2 O 5 and 40 parts by weight of graphite (KS-6, manufactured by Lonza Co., Ltd.) were dry-blended to obtain gold. The mold was filled and heated, compressed and molded at 100 kg / cm 2 at 180 ° C. for 5 minutes. Then 100 kg / c
m 2 , cooled at room temperature, diameter 15 mm, thickness 0.35 m
m, density 1.5 g / cm 3 , volume resistivity 5.7 Ω · cm
The electrode of was obtained.

【0025】比較例3 PTFE粉末20重量部、V2 5 80重量部、グラフ
ァイト(KS−6、ロンザ社製)40重量部をドライブ
レンドし、金型に充填して2000kg/cm2 、室温
で圧縮・成形し、直径15mm、厚み0.3mm、密度
1.56g/cm3 、体積抵抗率3.6Ω・cmの電極
を得た。
Comparative Example 3 20 parts by weight of PTFE powder, 80 parts by weight of V 2 O 5, and 40 parts by weight of graphite (KS-6, manufactured by Lonza Co., Ltd.) were dry-blended and filled in a mold to 2000 kg / cm 2 , room temperature. Then, it was compressed / molded to obtain an electrode having a diameter of 15 mm, a thickness of 0.3 mm, a density of 1.56 g / cm 3 , and a volume resistivity of 3.6 Ω · cm.

【0026】比較例4 高密度ポリエチレン粉末(フローセンM 住友精化社
製)20重量部とV2 5 80重量部、グラファイト
(KS−6、ロンザ社製)40重量部をドライブレンド
し、金型に充填して、2000kg/cm2 、室温で圧
縮・成形し、直径15mm、厚み0.4mm、密度1.
35g/cm3 、体積抵抗率11Ω・cmの電極を得
た。
Comparative Example 4 20 parts by weight of high-density polyethylene powder (FLOWCEN M, manufactured by Sumitomo Seika), 80 parts by weight of V 2 O 5, and 40 parts by weight of graphite (KS-6, manufactured by Lonza) were dry blended to obtain gold. Filled in a mold, compressed and molded at 2000 kg / cm 2 at room temperature, diameter 15 mm, thickness 0.4 mm, density 1.
An electrode having a volume resistivity of 35 g / cm 3 and a volume resistivity of 11 Ω · cm was obtained.

【0027】実施例4、5及び比較例5、6(電池の作
製) 実施例1、2、比較例1、2の電極を負極に、Li
(0.3mm厚、直径15mm)を正極に用い、電解液
としてLiClO4 のエチレンカーボネート/ジメトキ
シエタン(EC/DME)=7/3の3モル/l溶液を
用い、ビーカーセルを用いて負極の放電容量及びクーロ
ン効率を測定した。充電は0.0Vの定電位で10時間
行い、放電は0.2mA/cm2 で1.5Vまで、行っ
た。その結果を表1に示す。
Examples 4 and 5 and Comparative Examples 5 and 6 (Preparation of Batteries) The electrodes of Examples 1 and 2 and Comparative Examples 1 and 2 were used as negative electrodes, and Li was used.
(0.3 mm thickness, 15 mm diameter) was used as a positive electrode, and a 3 mol / l solution of ethylene carbonate / dimethoxyethane (EC / DME) = 7/3 of LiClO 4 was used as an electrolytic solution. The discharge capacity and Coulombic efficiency were measured. Charging was performed at a constant potential of 0.0 V for 10 hours, and discharging was performed at 0.2 mA / cm 2 up to 1.5 V. The results are shown in Table 1.

【0028】[0028]

【表1】 [Table 1]

【0029】実施例6及び比較例7、8(電池の作製) 実施例3、比較例3、4の電極を正極に、Liを負極に
用い、電解液としてLiClO4 のEC/DME=7/
3の3モル/l溶液を用い、ビーカーセルを用い0.2
mA/cm2 の定電流及び2.5−3.7Vの範囲で充
放電を行い正極の放電容量及びクーロン効率(放電量/
充電量)を測定した。その結果を表2に示す。
Example 6 and Comparative Examples 7 and 8 (Preparation of Batteries) The electrodes of Examples 3 and Comparative Examples 3 and 4 were used as the positive electrode and Li was used as the negative electrode, and EC / DME of LiClO 4 as the electrolytic solution was 7 /
3 using a 3 mol / l solution of 3 and using a beaker cell 0.2
Charge and discharge were performed at a constant current of mA / cm 2 and in the range of 2.5 to 3.7 V, and the discharge capacity and Coulombic efficiency of the positive electrode (discharge amount /
The charge amount) was measured. The results are shown in Table 2.

【0030】[0030]

【表2】 [Table 2]

【0031】以上の結果から明らかな様に、結着剤に超
高分子量ポリエチレンを使用すると、PTFEや高密度
ポリエチレンを使用した場合に比べ、放電容量が高く、
充放電を繰り返しても放電容量及びクーロン効率の減衰
が低いことがわかる。
As is clear from the above results, when ultra-high molecular weight polyethylene is used as the binder, the discharge capacity is higher than when PTFE or high-density polyethylene is used.
It can be seen that the discharge capacity and the coulombic efficiency are attenuated low even after repeated charging and discharging.

【0032】[0032]

【発明の効果】本発明の電極は、充放電特性が良好で、
充放電サイクルの寿命が長い。また、この電極を用いた
電池、特に二次電池は電池特性が良好である。
The electrode of the present invention has good charge / discharge characteristics,
Long charge / discharge cycle life. A battery using this electrode, especially a secondary battery, has good battery characteristics.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 超高分子量ポリエチレン5〜90重量%
と電極活物質10〜95重量%とよりなることを特徴と
する電極。
1. Ultrahigh molecular weight polyethylene 5 to 90% by weight
And 10 to 95% by weight of the electrode active material.
【請求項2】 請求項1記載の電極を用いたことを特徴
とする電池。
2. A battery using the electrode according to claim 1.
JP6107749A 1994-04-21 1994-04-21 Electrode and battery using it Pending JPH07296800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6107749A JPH07296800A (en) 1994-04-21 1994-04-21 Electrode and battery using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6107749A JPH07296800A (en) 1994-04-21 1994-04-21 Electrode and battery using it

Publications (1)

Publication Number Publication Date
JPH07296800A true JPH07296800A (en) 1995-11-10

Family

ID=14467002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6107749A Pending JPH07296800A (en) 1994-04-21 1994-04-21 Electrode and battery using it

Country Status (1)

Country Link
JP (1) JPH07296800A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11111270A (en) * 1997-10-08 1999-04-23 Japan Storage Battery Co Ltd Lithium secondary battery
JP2007273313A (en) * 2006-03-31 2007-10-18 Dainippon Printing Co Ltd Electrode plate for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery
WO2023182081A1 (en) * 2022-03-22 2023-09-28 三井化学株式会社 Electrode binder, electrode, lithium ion secondary battery, and method for producing electrode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11111270A (en) * 1997-10-08 1999-04-23 Japan Storage Battery Co Ltd Lithium secondary battery
JP2007273313A (en) * 2006-03-31 2007-10-18 Dainippon Printing Co Ltd Electrode plate for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery
WO2023182081A1 (en) * 2022-03-22 2023-09-28 三井化学株式会社 Electrode binder, electrode, lithium ion secondary battery, and method for producing electrode

Similar Documents

Publication Publication Date Title
US6174621B1 (en) Electroactive high storage capacity polyacetylene-co-polysulfur materials and electrolytic cells containing same
US5529860A (en) Electroactive high storage capacity polyacetylene-co-polysulfur materials and electrolytic cells containing same
US5437943A (en) Positive electrode and secondary battery using the same
US8663846B2 (en) Cathode active material, method of preparing the same, and cathode and lithium battery containing the material
US5176969A (en) Electrode for secondary battery
US7749653B2 (en) Lithium ion battery
JP4081895B2 (en) Gel electrolyte for lithium ion secondary battery and gel electrolyte lithium ion secondary battery
US20210028439A1 (en) Solid electrolyte, method for preparing same, and all-solid-state battery including same
KR102006717B1 (en) Polymer Electrolyte comprising Lithium Nitrate and All-Solid-State Battery comprising The Same
JPH1197011A (en) Nonaqueous lithium secondary battery
CN100355117C (en) Lithium polymer battery and method for manufacturing same
KR20180087169A (en) Negative electrode for lithium secondary battery, lithium secondary battery comprising the same, and preparing method thereof
JP3046055B2 (en) Non-aqueous secondary battery
Chen et al. Structure regulation induced high capacity and ultra-stable cycling of conjugated organic cathodes for Li-ion batteries
KR100762796B1 (en) Manufacturing Method of Negative Active Material For Lithium Secondary Battery And Lithium Secondary Battery Comprising The Same
JPH07296800A (en) Electrode and battery using it
JP2009158496A (en) Lithium polymer battery
JP3690122B2 (en) Non-aqueous secondary battery
JP3529802B2 (en) Negative electrode for secondary battery
US6309778B1 (en) Electroactive high storage capacity polyacetylene-co-polysulfur materials and electrolytic cells containing same
JP3297116B2 (en) Carbonaceous material and battery using it
JP3398771B2 (en) Carbon electrode and secondary battery using the same
JPH05266891A (en) Electrochemical active composite particulate and secondary battery electrode using same particulate
JPH06103970A (en) Negative electrode for secondary battery and secondary battery employing aforesaid negative electrode
JPH06132028A (en) Positive electrode and secondary battery using positive electrode thereof