JPH0729446A - Manufacture of electrode for vacuum interrupter - Google Patents

Manufacture of electrode for vacuum interrupter

Info

Publication number
JPH0729446A
JPH0729446A JP5173876A JP17387693A JPH0729446A JP H0729446 A JPH0729446 A JP H0729446A JP 5173876 A JP5173876 A JP 5173876A JP 17387693 A JP17387693 A JP 17387693A JP H0729446 A JPH0729446 A JP H0729446A
Authority
JP
Japan
Prior art keywords
electrode
pressure
vacuum interrupter
powder
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5173876A
Other languages
Japanese (ja)
Inventor
Nobuyuki Yoshioka
信行 吉岡
Taiji Noda
泰司 野田
Toshimasa Fukai
利眞 深井
Nobunao Suzuki
伸尚 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP5173876A priority Critical patent/JPH0729446A/en
Publication of JPH0729446A publication Critical patent/JPH0729446A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/0203Contacts characterised by the material thereof specially adapted for vacuum switches

Abstract

PURPOSE:To provide a method for manufacturing an electrode for vacuum interrupter excellent in contact resistance and interrupting performance and having high productivity. CONSTITUTION:A mixed powder obtained by mixing Cu having a particle size less than 100mum with a Cr powder having an average particle size of 8mum in which the content of particle sizes less than 20mum is 80% or more in a weight ratio of 82:18 is charged in a metal mold having an electrode form, and pressure- molded with a pressure of 5 ton/cm''. The resulting compact is heated at 1060 deg.C just under the melting point of Cu for 2 hours under a vacuum pressure to which Ar gas is introduced to have a partial pressure of 0.1Torr to provide a sintered body, which is then used as an electrode for vacuum interrupter as it is.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は真空インタラプタ用電極
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a vacuum interrupter electrode.

【0002】[0002]

【従来の技術】一般に、真空インタラプタ用電極として
は、アークを横に拡散するスパイラル形状のもの、縦磁
界を加える縦磁界印加方式のものなどが提供されてい
る。このような電極は主に粉末治金法、溶浸法、焼結・
溶浸法などにより作られている。
2. Description of the Related Art Generally, as a vacuum interrupter electrode, a spiral electrode for laterally diffusing an arc, a vertical magnetic field applying system for applying a vertical magnetic field, and the like are provided. Such electrodes are mainly used for powder metallurgy, infiltration, sintering,
It is made by the infiltration method.

【0003】銅(以下、Cuと記す)−クロム(以下、
Crと記す)系電極のような二成分の複合電極を例にあ
げて、これらの方法を説明する。粉末治金法は、Cu
粉体、Cr粉体を混合後、混合粉体を金型に充填してプ
レス成形し、得られた成形体をCuの融点以下の温度で
加熱焼結し、場合によってで得られた焼結体をさら
に加圧し、場合によってはで得られた焼結体をさら
に焼結し、のいずれかにより得られたものを機械
加工により電極形状とするものである。
Copper (hereinafter, referred to as Cu) -Chromium (hereinafter,
These methods will be described by taking as an example a two-component composite electrode such as a system electrode (referred to as Cr). The powder metallurgy method is Cu
After mixing the powder and the Cr powder, the mixed powder is filled in a mold and press-molded, and the obtained molded body is heated and sintered at a temperature equal to or lower than the melting point of Cu. The body is further pressed, and the sintered body obtained in 1 is further sintered in some cases, and the product obtained by any of the above is machined into an electrode shape.

【0004】溶浸法は、Cr粉体を1000℃以上の
温度で十分に脱ガス、焼結し、得られたスケルトンにC
u塊を載置し、Cuの融点以上の温度に加熱して、スケ
ルトンの空隙にCuを溶浸する方法、Cr粉体を加圧
圧縮したものをと同様の工程により、焼結し、溶浸す
る方法である。
In the infiltration method, Cr powder is sufficiently degassed and sintered at a temperature of 1000 ° C. or higher, and the obtained skeleton is converted into C.
A method of infiltrating Cu into the voids of the skeleton by placing a lump of u and heating it to a temperature equal to or higher than the melting point of Cu, and pressing and compressing Cr powder are sintered and melted by the same process. It is a method of soaking.

【0005】焼結・溶浸法は、Cu−Cr焼結体にCu
を溶浸する粉末治金法と溶浸法とを併用したものであ
る。
The sintering / infiltration method uses Cu--Cr sintered bodies and Cu
This is a combination of the powder metallurgical method for infiltrating and the infiltration method.

【0006】溶浸法、焼結・溶浸法いずれの場合も、得
られたインゴットを機械加工して電極とする。スパイラ
ル形電極とする場合には、図5に示すようにスパイラル
状に機械加工する。図5においては、1がスパイラル形
の電極、2がスパイラル溝、3がペダルである。粉末治
金法により得られたインゴットの機械加工も同様にして
なされる。
In both the infiltration method and the sintering / infiltration method, the obtained ingot is machined to form an electrode. When forming a spiral electrode, it is machined into a spiral shape as shown in FIG. In FIG. 5, 1 is a spiral electrode, 2 is a spiral groove, and 3 is a pedal. Machining of an ingot obtained by the powder metallurgy method is similarly performed.

【0007】しかし、上記製造方法では、スパイラル形
電極とするためには機械加工が必要である。そのため、
上記製造方法による電極には、切削加工によることか
ら素材のロスが大きい、機械加工によることから加工
費が嵩む、納期が長くなることから製品の日程管理、
在庫調整が煩雑である、近年の素材価格の上昇、加工
費用、人件費の増大により電極のコストも上昇してい
る、という問題がある。
However, in the above manufacturing method, machining is required to form the spiral electrode. for that reason,
The electrode produced by the above manufacturing method has a large loss of material due to the cutting process, the processing cost is high due to the machining process, and the delivery schedule is long, so the product schedule management,
There is a problem that inventory adjustment is complicated, and the cost of the electrode is also rising due to the recent increase in material price, processing cost, and labor cost.

【0008】上記問題を解決するため、粉末治金法によ
る無加工をめざし、価格低下を図った電極材料の製造方
法として、特開昭53−149676号公報等に開示の
ものが提供されている。この方法は、金属の粉末材料を
スパイラル形電極形状に加圧成形し、これを焼結するも
のである。
In order to solve the above problems, a method disclosed in Japanese Patent Application Laid-Open No. 53-149676 is provided as a method for manufacturing an electrode material aiming at non-processing by the powder metallurgy method and reducing the price. . In this method, a metal powder material is pressure-molded into a spiral electrode shape, and this is sintered.

【0009】[0009]

【発明が解決しようとする課題】ところで、上記製造方
法において、成形体の焼結を真空中で行うと、Cuの蒸
気圧が高いため、成形体中のCuが選択的に飛散し、電
極表面がCrリッチとなり、接触抵抗が上昇してしまう
という問題があった。また、真空中で焼結する場合、加
熱工程で原料粉体が含有している水分、ガスが放出さ
れ、真空度が低下してしまうという問題もあった。尚、
真空中で、焼結する技術は、特公昭61−31172号
公報などに開示されているものである。
By the way, in the above manufacturing method, when the compact is sintered in a vacuum, the vapor pressure of Cu is high, so that Cu in the compact is selectively scattered and the electrode surface However, there is a problem that Cr becomes rich and contact resistance increases. Further, in the case of sintering in a vacuum, there is also a problem that moisture and gas contained in the raw material powder are released in the heating step, and the degree of vacuum is lowered. still,
The technology of sintering in vacuum is disclosed in Japanese Patent Publication No. 61-31172.

【0010】そのため、炉内に設置する成形体の数量が
限定されてしまい、また、焼結時の昇温速度をゆるやか
にしたり昇温過程での保持回数、時間を多くとる必要が
あった。このような状況から、生産性の高い電極材料製
造方法が望まれていた。しかし、その一方において、近
年における真空インタラプタの性能向上等の要求に応え
るため、遮断性能の向上を図る必要もある。
For this reason, the number of compacts to be installed in the furnace is limited, and it is necessary to slow the temperature rising rate during sintering and increase the number of holdings and time during the temperature rising process. Under such circumstances, an electrode material manufacturing method having high productivity has been desired. However, on the other hand, in order to meet the recent demand for improved performance of vacuum interrupters, it is necessary to improve the breaking performance.

【0011】[0011]

【課題を解決するための手段】そこで、先ず、粒径8μ
mのCrの粉体とCuの粉体とを配合比を変えて混合
し、得られた混合粉末を金型に充填し、5ton/cm2 の圧
力で加圧成形し、成形体を得た。得られた成形体を炉内
に設置し、炉内を5×10-3Torrに排気し、次いで、ア
ルゴン(以下Arと記す)ガスを炉内に導入し、分圧が
0.1Torrとなるように調整し、Arガスを流しながら加
熱を開始した。加熱は、Cuの融点直下の1060℃
で、2時間行った。
[Means for Solving the Problem] First, the particle size is 8 μm.
The Cr powder of m and the powder of Cu were mixed at different compounding ratios, and the obtained mixed powder was filled in a mold and pressure-molded at a pressure of 5 ton / cm 2 to obtain a molded body. . The obtained molded body was placed in a furnace, the interior of the furnace was evacuated to 5 × 10 −3 Torr, and then an argon (hereinafter referred to as Ar) gas was introduced into the furnace to reduce the partial pressure.
It was adjusted to 0.1 Torr, and heating was started while Ar gas was flown. Heating is 1060 ° C just below the melting point of Cu
So I went for 2 hours.

【0012】焼結により得られた電極の充填密度は98
%であった。この電極を真空インタラプタの電極として
組み込み、接触抵抗を測定後、遮断試験を実施した。そ
の結果を表1及び図1に示す。
The packing density of the electrode obtained by sintering is 98.
%Met. This electrode was incorporated as an electrode of a vacuum interrupter, contact resistance was measured, and then a breaking test was performed. The results are shown in Table 1 and FIG.

【0013】[0013]

【表1】 [Table 1]

【0014】表1及び図1より、Crの含有量が13重
量%以上になると、遮断電流特性が向上することがわか
る。ただし、Crの割合が35重量%以上になると、初
期の接触抵抗が高くなり、遮断後は一層高くなり、接点
としての使用に向かないものとなる。
It can be seen from Table 1 and FIG. 1 that when the Cr content is 13% by weight or more, the breaking current characteristic is improved. However, when the proportion of Cr is 35% by weight or more, the initial contact resistance becomes high and becomes even higher after breaking, which makes it unsuitable for use as a contact.

【0015】また、真空インタラプタの遮断性能はCr
の粉末の粒径に左右されることが知られている。Crの
平均粒径を8μm、40μm、100μmと変えて前述
を同様にして作製した電極の遮断性能は、表2に示すよ
うに粒径が大きくなると低下することがわかる。これを
図で表すと、図2の如くなる。Cr粒径が13μmより
大きくなると、遮断性能の低下が実用上不適のものとな
る。しかし、Cr粒径が5μmより小さくなると、製造
自体が困難であり、粉砕工程中にFe等の不純物が混入
してきてしまう。
The breaking performance of the vacuum interrupter is Cr
It is known to depend on the particle size of the powder. As shown in Table 2, it can be seen that the blocking performance of the electrodes manufactured in the same manner as described above while changing the average particle size of Cr to 8 μm, 40 μm, and 100 μm decreases as the particle size increases. This is shown in the diagram in FIG. If the Cr particle size is larger than 13 μm, the reduction of the barrier performance becomes unsuitable for practical use. However, if the Cr particle size is smaller than 5 μm, the production itself is difficult, and impurities such as Fe are mixed in during the pulverization process.

【0016】[0016]

【表2】 [Table 2]

【0017】Crの平均粒径が5〜13μmであって
も、その分布が不適切であると、所期の遮断性能が得ら
れない。そこで、粒度分布を調べたところ、粒径20μ
mのものが80%以上含まれていることが必要であるこ
とがわかった。これより少ないと、粒径の大きいものが
増し、場所により大きな粒子が存在することとなり、遮
断性能の低下を招くことになるからである。
Even if the average particle size of Cr is 5 to 13 μm, if the distribution is not appropriate, the desired breaking performance cannot be obtained. Therefore, when the particle size distribution was examined, the particle size was 20μ.
It was found that 80% or more of m must be contained. If it is less than this, the number of particles having a large particle size increases, and larger particles are present in some places, resulting in deterioration of the blocking performance.

【0018】また、焼結に際し、Cuの蒸発を防止する
ためには炉内の圧力を調整することが効果的である。そ
のため、炉内に不活性ガスとしてArガスを導入し、A
rガスの分圧を焼結温度におけるCuの蒸気圧より大き
くしたのである。
Further, it is effective to adjust the pressure in the furnace in order to prevent the evaporation of Cu during sintering. Therefore, Ar gas was introduced as an inert gas into the furnace, and A
The partial pressure of r gas was made larger than the vapor pressure of Cu at the sintering temperature.

【0019】残留酸素、窒素を除去するため大気から真
空ポンプで10-3Torr程度まで排気後Arガスを導入
し、加熱を開始する。不活性ガス雰囲気を作製する場
合、一般にはArガスの他に安価な窒素ガスを用いる
が、焼結加熱中でのCrの窒化を避けるためArガスを
用いる。
In order to remove residual oxygen and nitrogen, Ar gas is introduced after evacuation from the atmosphere to about 10 -3 Torr by a vacuum pump, and heating is started. When producing an inert gas atmosphere, generally, inexpensive nitrogen gas is used in addition to Ar gas, but Ar gas is used in order to avoid nitriding of Cr during heating for sintering.

【0020】Arガスの分圧は、焼結温度、即ちCuの
融点直下の温度1060℃におけるCuの蒸気圧である
1×10-4Torrより大きい範囲とする。実際には、炉内
の構造、ガス導入条件に依存する。例えば、架台に設置
した成形体の位置、架台の構造、ガス導入位置、導入口
の数と排気位置、ガス導入の流量などに依存するのであ
る。このため、実用的には、1×10-2Torrより大きい
圧力で安定して製作される。圧力が大きい場合の効果は
同等であるので、ガスの消費量を少なくするため、5×
100 Torr程度とする。
The partial pressure of Ar gas is set to a range higher than the sintering temperature, that is, 1 × 10 −4 Torr which is the vapor pressure of Cu at a temperature of 1060 ° C. just below the melting point of Cu. Actually, it depends on the structure inside the furnace and the gas introduction conditions. For example, it depends on the position of the molded body installed on the pedestal, the structure of the gantry, the gas introduction position, the number of inlets and the exhaust position, the gas introduction flow rate, and the like. Therefore, practically, it is stably manufactured at a pressure higher than 1 × 10 -2 Torr. The effect is the same when the pressure is large, so to reduce the gas consumption, 5 ×
And about 10 0 Torr.

【0021】表3には、Arガスの分圧0.1Torr下で焼
結した場合の電極と、5×10-5Torrの真空下で焼結し
た場合のものとを比較して示す。
Table 3 shows a comparison between an electrode sintered under a partial pressure of Ar gas of 0.1 Torr and an electrode sintered under a vacuum of 5 × 10 -5 Torr.

【0022】[0022]

【表3】 [Table 3]

【0023】この表3に示すように、得られた電極の表
面はArガス導入のものは淡銅色をなし、Arガスを導
入しなかったものは灰銅色を程する。これは、Arガス
の導入により、Cuの蒸発が抑制されたことによるもの
と考えられる。電極の断面の顕微鏡写真をみると、真空
下で焼結を行ったものは表面層のCuが減少してしまっ
ているのに対し、Arガス導入下で焼結を行ったもの
は、Cuの減少が抑制されていることがわかる。事実得
られた電極をそれぞれ真空インタラプタに組み込み、接
触抵抗を調べたところ、Arガス導入のものの方が良い
値を示した。
As shown in Table 3, the surface of the obtained electrode is light copper color when Ar gas is introduced, and gray copper color when Ar gas is not introduced. It is considered that this is because the evaporation of Cu was suppressed by the introduction of Ar gas. A microscopic photograph of the cross section of the electrode shows that the surface layer of Cu that had been sintered under vacuum had reduced Cu, whereas the one that had been sintered under Ar gas introduction had Cu It can be seen that the decrease is suppressed. In fact, when the electrodes obtained were each incorporated in a vacuum interrupter and the contact resistance was examined, the one in which Ar gas was introduced showed a better value.

【0024】さらに、CuとCrの混合粉末を金型で加
圧成形し、それを金型から取り出して炉内に設置するこ
とから、成形体がハンドリング等に支障のないものであ
ることが必要である。そこで、前述の成分、粒度の混合
粉末について、種々の成形密度で成形体を成形し、加熱
焼結して電極材料を得たところ、理論密度に対する成形
体の密度を70%以上とすると、ハンドリング等に支障
がなく、成形体にカケなども生ぜず、また、焼結後の導
電率を問題がないことがわかった。
Furthermore, since the mixed powder of Cu and Cr is pressure-molded in a mold and taken out from the mold and placed in a furnace, it is necessary that the molded body does not hinder handling and the like. Is. Therefore, when a molded body was molded with various molding densities of the mixed powders having the above-mentioned components and particle sizes and heat-sintered to obtain an electrode material, when the density of the molded body with respect to the theoretical density was 70% or more, handling was performed. It was found that there was no problem with the above, no cracks were formed on the molded body, and there was no problem with the conductivity after sintering.

【0025】以上の実験結果からの考察により、所期の
目的を達成する本発明に係る真空インタラプタ用電極の
製造方法は、平均粒径が5〜15μmで、かつ粒径20
μm以下の含有量が80%以上である13重量%から3
5重量%のCr粉末と65重量%から87重量%のCu
粉末との混合粉末を加圧成形し、得られた成形体を高純
度のアルゴンガス導入下の真空中で加熱焼結することを
特徴とするものである。
In consideration of the above experimental results, the method for manufacturing the electrode for a vacuum interrupter according to the present invention which achieves the intended purpose has an average particle size of 5 to 15 μm and a particle size of 20 μm.
Content of less than μm is 80% or more from 13% by weight to 3
5 wt% Cr powder and 65 wt% to 87 wt% Cu
It is characterized in that the mixed powder with the powder is pressure-molded, and the obtained molded body is heated and sintered in a vacuum under the introduction of high-purity argon gas.

【0026】また、上記製造方法において、前記混合粉
末をスパイラル形に加圧成形することを特徴とするもの
である。
Further, in the above-mentioned manufacturing method, the mixed powder is pressure-molded into a spiral shape.

【0027】さらに、上記製造方法において、前記成形
体の密度が理論密度の70%以上であることを特徴とす
るものである。
Furthermore, in the above manufacturing method, the density of the molded body is 70% or more of the theoretical density.

【0028】[0028]

【実施例】次に、本発明に係る電極材料の製造方法の一
実施例について説明する。出発原料として、粒径−10
0μmのCu粉体と、平均粒径が8μmCr粉末とを8
2:18の重量比で、V型混合器で1時間十分に混合し
た。使用したCr粉末は、その粒度分布を図3に示すよ
うに、粒径20μm以下のものが80%以上含まれるも
のである。
EXAMPLES Next, one example of the method for producing an electrode material according to the present invention will be described. As a starting material, a particle size of -10
8 μm Cu powder and 8 μm Cr powder with an average particle size of 8
Mix well in a V-mixer for 1 hour at a 2:18 weight ratio. The Cr powder used contains 80% or more of particles having a particle size of 20 μm or less as shown in the particle size distribution of FIG.

【0029】得られた混合粉末をスパイラル電極形状の
直径60mmの金型に充填し、5ton/cm2 の圧力で加圧成
形し、成形体を得る。この成形体の密度は、理論密度の
70%以上とする。
The obtained mixed powder is filled in a mold having a spiral electrode shape and a diameter of 60 mm, and pressure molding is performed at a pressure of 5 ton / cm 2 to obtain a molded body. The density of this molded body is 70% or more of the theoretical density.

【0030】得られた成形体を金型から取り出し、炉内
に設置する。このとき、成形体は所定の密度で形成され
ているので、ハンドリングの際に支障が生じることはな
い。
The obtained molded body is taken out of the mold and placed in a furnace. At this time, since the molded body is formed with a predetermined density, no trouble occurs during handling.

【0031】次に、真空ポンプにより炉内を真空引き
し、5×10-3Torr程度の真空圧とする。次いで、炉内
にArガスを導入し、分圧が0.1Torrとなるように調整
する。Arガスとしては、酸素含有量が1ppm 以下、窒
素含有量が5ppm 以下の純度99.99%以上のものを使
った。
Next, the inside of the furnace is evacuated by a vacuum pump to a vacuum pressure of about 5 × 10 -3 Torr. Then, Ar gas is introduced into the furnace, and the partial pressure is adjusted to 0.1 Torr. As the Ar gas, one having an oxygen content of 1 ppm or less and a nitrogen content of 5 ppm or less and a purity of 99.99% or more was used.

【0032】Arガスを流しながら、分圧0.1Torrを保
った状態で加熱を行った。加熱は、Cuの融点直下の1
060℃で2時間行い、成形体を焼結した。焼結後の電
極の充填密度は98%であった。
Heating was carried out while flowing Ar gas while maintaining a partial pressure of 0.1 Torr. Heating is 1 below the melting point of Cu.
The molding was sintered at 060 ° C. for 2 hours. The packing density of the electrode after sintering was 98%.

【0033】図4に示すように、得られた電極を固定電
極21、可動電極22として、固定リード棒23、可動
リード24にそれぞれろう付けし、真空インタラプタ2
5を得た。この真空インタラプタ25の接触抵抗を測定
後、遮断試験を実施した結果、同一組成物を機械加工し
て得られた電極を使用した真空インタラプタと同等の遮
断性能を有していた。また、この真空インタラプタ25
を操作機構に取付けて開閉寿命試験を20000回実施
したが、電極21、22に割れや欠け等の異常は生じな
かった。
As shown in FIG. 4, the obtained electrodes are brazed to the fixed lead rod 23 and the movable lead 24 as the fixed electrode 21 and the movable electrode 22, respectively, and the vacuum interrupter 2
Got 5. After measuring the contact resistance of the vacuum interrupter 25, a breaking test was carried out. As a result, it had a breaking performance equivalent to that of a vacuum interrupter using an electrode obtained by machining the same composition. In addition, this vacuum interrupter 25
Was attached to the operating mechanism and the open / close life test was performed 20000 times, but no abnormality such as cracking or chipping occurred in the electrodes 21 and 22.

【0034】尚、本発明はスパイラル形電極だけでな
く、縦磁界印加形の電極にも同様適用できる。
The present invention can be applied not only to the spiral type electrode but also to the longitudinal magnetic field application type electrode.

【0035】[0035]

【発明の効果】本発明に係る真空インタラプタ用電極の
製造方法によれば、平均粒径が5〜15μmで、かつ粒
径20μm以下の含有量が80%以上である微細Cr粉
末を用いていることから、遮断性能のすぐれた電極を得
ることができ、ひいては、真空インタラプタの小型化を
図ることができる。また、真空圧下で、しかもArガス
導入下で加熱焼結を行うようにしたので、電極表面から
のCuの飛散が防止でき、接触抵抗を低減した電極を得
ることができる。
According to the method of manufacturing the electrode for a vacuum interrupter of the present invention, fine Cr powder having an average particle size of 5 to 15 μm and a content of 20 μm or less is 80% or more is used. Therefore, it is possible to obtain an electrode having excellent blocking performance, which in turn makes it possible to reduce the size of the vacuum interrupter. Further, since the heating and sintering are performed under a vacuum pressure and with the introduction of Ar gas, it is possible to prevent the scattering of Cu from the electrode surface and obtain an electrode with reduced contact resistance.

【0036】本発明に係る真空インタラプタ用電極の製
造方法によれば、Cr−Cu粉末を成形体密度が理論密
度の70%以上となるように加圧成形し、得られた成形
体をCuの融点以下の温度で焼結して電極材料を得ると
いうように、出発原料、成形時の密度、焼結温度を特定
したことにより、カケ、ワレのない焼結体を得ることが
できる。電極形状で成形し、加熱焼結するため、得られ
た焼結体がそのまま電極として使用できることから、機
械加工がなく、材料の無駄がなく、材料費の低減が図
れ、機械加工費も不要となり、さらに短期製造が可能と
なり、ひいては、生産工程の管理、在庫管理が容易とな
る。
According to the method for manufacturing the electrode for a vacuum interrupter of the present invention, Cr-Cu powder is pressure-molded so that the density of the compact is 70% or more of the theoretical density, and the obtained compact is made of Cu. By specifying the starting material, the density at the time of molding, and the sintering temperature such that the electrode material is obtained by sintering at a temperature equal to or lower than the melting point, it is possible to obtain a sintered body without chipping or cracking. Since it is formed into an electrode shape and heated and sintered, the obtained sintered body can be used as an electrode as it is, so there is no machining, no waste of material, material cost can be reduced, and machining cost is unnecessary. Furthermore, short-term manufacturing becomes possible, which in turn facilitates production process management and inventory management.

【0037】設備の面から、設備のメンテナンスや作業
時間の短縮ができ、また投入量の増加による生産性の向
上とコストの低減ができる。さらに、高真空を得るため
の高価な排気装置が不要となり、排気から加熱工程への
時間も短縮する。加熱時、粉体から発生したガスは、A
rガスが速やかに運び去るため真空焼結のように発生ガ
スにより昇温スピードを緩やかにしたり、昇温工程での
保持時間を長くしたりする必要がない。
From the aspect of equipment, maintenance of equipment and working time can be shortened, and productivity can be improved and cost can be reduced by increasing the input amount. Furthermore, an expensive exhaust device for obtaining a high vacuum is not required, and the time from exhaust to the heating process is shortened. During heating, the gas generated from the powder is A
Since the r gas is carried away quickly, it is not necessary to slow down the temperature rising speed by the generated gas or lengthen the holding time in the temperature rising process as in vacuum sintering.

【図面の簡単な説明】[Brief description of drawings]

【図1】Crの含有量と遮断性能との関係を示すグラフ
である。
FIG. 1 is a graph showing the relationship between the Cr content and the breaking performance.

【図2】Cr粒径と遮断性能との関係を示すグラフであ
る。
FIG. 2 is a graph showing the relationship between Cr grain size and barrier performance.

【図3】実施例で使用したCu粉末の粒度分布を示すグ
ラフである。
FIG. 3 is a graph showing the particle size distribution of Cu powder used in the examples.

【図4】得られた電極を組み込んだ真空インタラプタの
断面図である。
FIG. 4 is a sectional view of a vacuum interrupter incorporating the obtained electrode.

【図5】スパイラル形真空インタラプタ用電極の平面図
と側面図である。
5A and 5B are a plan view and a side view of a spiral type vacuum interrupter electrode.

【符号の説明】[Explanation of symbols]

1 電極 2 スパイラル溝 21 固定電極 22 可動電極 23 固定リード棒 24 可動リード棒 25 真空インタラプタ DESCRIPTION OF SYMBOLS 1 Electrode 2 Spiral groove 21 Fixed electrode 22 Movable electrode 23 Fixed lead rod 24 Movable lead rod 25 Vacuum interrupter

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 伸尚 東京都品川区大崎二丁目1番17号 株式会 社明電舎内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Nobuhisa Suzuki 2-1-1 Osaki, Shinagawa-ku, Tokyo Inside the Meidensha Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 平均粒径が5〜15μmで、かつ粒径2
0μm以下の含有量が80%以上である13重量%から
35重量%のクロム粉末と65重量%から87重量%の
銅粉末との混合粉末を加圧成形し、得られた成形体を高
純度のアルゴンガス導入下の真空中で加熱焼結すること
を特徴とする真空インタラプタ用電極の製造方法。
1. An average particle diameter of 5 to 15 μm and a particle diameter of 2
A mixed powder of 13 wt% to 35 wt% chromium powder and 65 wt% to 87 wt% copper powder having a content of 0 μm or less of 80% or more is pressure-molded, and the obtained molded body has high purity. A method for manufacturing an electrode for a vacuum interrupter, which comprises heating and sintering in a vacuum under the introduction of argon gas.
【請求項2】 前記混合粉末をスパイラル形に加圧成形
する請求項1に記載の真空インタラプタ用電極の製造方
法。
2. The method for manufacturing an electrode for a vacuum interrupter according to claim 1, wherein the mixed powder is pressure-molded into a spiral shape.
【請求項3】 前記成形体の密度が理論密度の70%以
上である請求項1に記載の真空インタラプタ用電極の製
造方法。
3. The method for manufacturing a vacuum interrupter electrode according to claim 1, wherein the density of the molded body is 70% or more of a theoretical density.
JP5173876A 1993-07-14 1993-07-14 Manufacture of electrode for vacuum interrupter Pending JPH0729446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5173876A JPH0729446A (en) 1993-07-14 1993-07-14 Manufacture of electrode for vacuum interrupter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5173876A JPH0729446A (en) 1993-07-14 1993-07-14 Manufacture of electrode for vacuum interrupter

Publications (1)

Publication Number Publication Date
JPH0729446A true JPH0729446A (en) 1995-01-31

Family

ID=15968768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5173876A Pending JPH0729446A (en) 1993-07-14 1993-07-14 Manufacture of electrode for vacuum interrupter

Country Status (1)

Country Link
JP (1) JPH0729446A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6597428B1 (en) 1997-07-10 2003-07-22 Fuji Photo Film Co., Ltd. Method and apparatus for forming photographic images
JP2009076218A (en) * 2007-09-19 2009-04-09 Hitachi Ltd Electrical contact
KR101503318B1 (en) * 2013-12-20 2015-03-17 엘에스산전 주식회사 Manufacturing Method of Vacuum Interrupter for Vacuum Circuit Breaker
JP2019192464A (en) * 2018-04-24 2019-10-31 株式会社東芝 Contact material for vacuum valve and manufacturing method of contact material for vacuum valve

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6597428B1 (en) 1997-07-10 2003-07-22 Fuji Photo Film Co., Ltd. Method and apparatus for forming photographic images
JP2009076218A (en) * 2007-09-19 2009-04-09 Hitachi Ltd Electrical contact
KR101503318B1 (en) * 2013-12-20 2015-03-17 엘에스산전 주식회사 Manufacturing Method of Vacuum Interrupter for Vacuum Circuit Breaker
JP2019192464A (en) * 2018-04-24 2019-10-31 株式会社東芝 Contact material for vacuum valve and manufacturing method of contact material for vacuum valve

Similar Documents

Publication Publication Date Title
EP0469578B1 (en) Electrical contact material
CN1031723C (en) Method of forming compacts
JP3825275B2 (en) Electrical contact member and its manufacturing method
JPH0512965A (en) Manufacture of contact alloy for vacuum valve
JP7369046B2 (en) Method for manufacturing scandium aluminum nitride powder and method for manufacturing target
JPH0729446A (en) Manufacture of electrode for vacuum interrupter
CN1260382C (en) Copper base alloy electric vacuum contact material and preparation method thereof
WO2021019991A1 (en) Sputtering target
CN114892064A (en) FeCrCuVCo high-entropy alloy and preparation method thereof
CN1239723C (en) Copper base alloy electric vacuum contact material and method for making same
US6312495B1 (en) Powder-metallurgically produced composite material and method for its production
KR20050068439A (en) Method for manufacturing alumium based alloyed powder having superior compactability
JPH05217473A (en) Manufacture of electrode material
US5853083A (en) Contact material for a vacuum circuit breaker and a method for manufacturing the same
JP3321906B2 (en) Method for producing Cu-Cr based composite material
JPH0635602B2 (en) Manufacturing method of aluminum alloy sintered forgings
JPH05101750A (en) Manufacture of electrode material
JP2002194536A (en) Sputtering target with low oxygen content
JPH07278703A (en) Electrode material for vacuum interrupter
JPH0682532B2 (en) Method for manufacturing contact alloy for vacuum valve
JPH1040761A (en) Contact material for vacuum circuit breaker, its manufacture, and vacuum circuit breaker
JP2022044768A (en) Sputtering target
JP2021107572A (en) Sputtering target
JP2021107573A (en) Sputtering target
JPH06128604A (en) Production of metallic material

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040406