JP2009076218A - Electrical contact - Google Patents

Electrical contact Download PDF

Info

Publication number
JP2009076218A
JP2009076218A JP2007241725A JP2007241725A JP2009076218A JP 2009076218 A JP2009076218 A JP 2009076218A JP 2007241725 A JP2007241725 A JP 2007241725A JP 2007241725 A JP2007241725 A JP 2007241725A JP 2009076218 A JP2009076218 A JP 2009076218A
Authority
JP
Japan
Prior art keywords
electrical contact
refractory metal
side electrode
electrode
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007241725A
Other languages
Japanese (ja)
Other versions
JP4988489B2 (en
Inventor
Shigeru Kikuchi
茂 菊池
Satoru Kajiwara
悟 梶原
Noboru Baba
昇 馬場
Ayumi Morita
歩 森田
Masato Yabu
雅人 藪
Makoto Terai
誠 寺井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2007241725A priority Critical patent/JP4988489B2/en
Publication of JP2009076218A publication Critical patent/JP2009076218A/en
Application granted granted Critical
Publication of JP4988489B2 publication Critical patent/JP4988489B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Switches (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
  • Contacts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrical contact which is composed of an optimal organization and composition by optimizing a relation between a Cr content, a Cr powder diameter and a low melting point metal additive content, and can fully demonstrate an effect of reducing weld-separation force and has an excellent breaking property and conductive property and can make a miniaturization of a vacuum breaker or the like to a great extent. <P>SOLUTION: The electrical contact is made of a sintered body composed of Cu and Te and a fire resisting metal, and when an average diameter of raw material powder of the fire resisting metal is d<SB>hp</SB>(μm) and a fire resisting metal content is C<SB>hp</SB>(wt.%), a content C<SB>Te</SB>of Te (wt.%) is within a range of the following formula (1). The formula (1) is shown as C<SB>Te</SB>=C<SB>hp</SB>ä(1.4/d<SB>hp</SB><SP>2</SP>)+8.75x10<SP>-4</SP>}±0.005. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、真空遮断器,真空開閉器等に用いられる新規な真空バルブ用電気接点に関する。   The present invention relates to a novel electrical contact for a vacuum valve used for a vacuum circuit breaker, a vacuum switch and the like.

真空遮断器等の受配電機器には、小型・低価格化が求められている。そのためには真空バルブ内の電気接点を低強度化し、ジュール熱により電気接点同士が溶着した際の引離し力を低減することによって、電気接点の開閉動作を行う操作機構部を小型化する必要がある。   Power receiving and distribution equipment such as a vacuum circuit breaker is required to be small and inexpensive. For this purpose, it is necessary to reduce the strength of the electrical contacts in the vacuum valve and to reduce the pulling force when the electrical contacts are welded together by Joule heat, thereby reducing the size of the operating mechanism that performs the opening and closing operation of the electrical contacts. is there.

電気接点の多くは焼結製法によって得られるCr−Cu系の合金が用いられ、これを低強度化させる手段として、Teなどの低融点金属を添加する方法が用いられる。特許文献1〜4参照。   Most of the electrical contacts are made of a Cr—Cu alloy obtained by a sintering method, and a method of adding a low melting point metal such as Te is used as means for reducing the strength. See Patent Literatures 1 to 4.

特開2005−135778号公報JP 2005-135778 A 特開2003−147456号公報JP 2003-147456 A 特開2002−279865号公報JP 2002-279865 A 特開2002−279864号公報JP 2002-279864 A

従来のCr−Cu系電気接点において、低融点金属は耐溶着成分として、あるいは電流遮断後の接点表面の荒れを抑制するために添加され、数重量%の添加量が必要であった。   In conventional Cr—Cu based electrical contacts, the low melting point metal is added as an anti-welding component or to suppress roughening of the contact surface after current interruption, and an addition amount of several weight% is necessary.

この程度の量の低融点金属を添加すると、通電成分であるCuマトリクスに欠陥が生じたり、焼結が不十分となりやすく、良好な通電性能や遮断性能が得られない場合がある。   If this amount of low melting point metal is added, defects may occur in the Cu matrix that is a current-carrying component, or sintering may be insufficient, and good current-carrying performance and interruption performance may not be obtained.

また、真空バルブを真空封止ろう付けして製作する場合、電気接点から低融点金属が揮散してろう付け部の健全性を損ない、真空バルブ内の真空度低下を招く恐れがあった。   Also, when the vacuum valve is manufactured by vacuum sealing brazing, the low melting point metal is volatilized from the electrical contacts, which impairs the soundness of the brazed part and may cause a decrease in the degree of vacuum in the vacuum valve.

さらに、低融点金属添加量が適正量に対して少ない場合には、電気接点の低強度化が十分でなく、引離し力の低減効果が不足する場合があった。   Furthermore, when the amount of the low melting point metal added is small relative to the appropriate amount, the strength of the electrical contact is not sufficiently reduced, and the effect of reducing the separating force may be insufficient.

本発明の目的は、Cr含有量やCr粉末粒径と低融点金属添加量との関係を適正化し、最適な組織および組成からなることで、溶着引離し力の低減効果を十分に発揮し、優れた遮断性能と通電性能を有するとともに、真空遮断器等の大幅な小型化を可能とする電気接点を提供することにある。   The purpose of the present invention is to optimize the relationship between the Cr content and Cr powder particle size and the amount of low melting point metal added, and to have an optimum structure and composition, thereby sufficiently exerting the effect of reducing the welding separation force, An object of the present invention is to provide an electrical contact that has excellent interrupting performance and energization performance, and that can be greatly reduced in size such as a vacuum circuit breaker.

本発明の電気接点は、CuとTeと耐火性金属とからなる焼結体であり、耐火性金属の原料粉末の平均粒径をdhp(μm)、耐火性金属の含有量をChp(重量%)としたとき、Teの含有量CTe(重量%)が次の式(1)の範囲にあるものである。 The electrical contact of the present invention is a sintered body composed of Cu, Te, and a refractory metal. The average particle size of the refractory metal raw material powder is d hp (μm), and the content of the refractory metal is C hp ( Wt%), the Te content C Te (wt%) is in the range of the following formula (1).

Te=Chp{(1.4/dhp 2)+8.75×10-4}±0.005 ・・・(1)
また、本発明の電気接点は、CuとTeと耐火性金属とからなる焼結体であり、Cuと耐火性金属の界面において、その70〜90%に空隙を有する組織をなすものである。
C Te = C hp {(1.4 / d hp 2 ) + 8.75 × 10 −4 } ± 0.005 (1)
The electrical contact of the present invention is a sintered body made of Cu, Te, and a refractory metal, and forms a structure having voids at 70 to 90% at the interface between Cu and refractory metal.

さらに、本発明の電気接点は、耐火性金属がMoあるいはCrのいずれか1種で、それを15〜40重量%含むものである。   Furthermore, in the electrical contact of the present invention, the refractory metal is either Mo or Cr and contains 15 to 40% by weight.

本発明の電気接点の製造方法は、CuとTeと耐火性金属それぞれの粉末を混合し、この混合粉末を加圧成形した後、Cuの融点以下の温度で加熱焼結するものである。   In the method for producing an electrical contact according to the present invention, Cu, Te and refractory metal powders are mixed, the mixed powder is pressure-molded, and then heated and sintered at a temperature equal to or lower than the melting point of Cu.

また、本発明の電気接点の製造方法は、Cuの粉末と、表面にTeを被覆した耐火性金属の粉末とを混合して得られる混合粉末を加圧成形し、Cuの融点以下の温度で加熱焼結するものである。   In addition, the method of manufacturing an electrical contact according to the present invention is a method in which a mixed powder obtained by mixing Cu powder and a refractory metal powder coated with Te on the surface is pressure-molded at a temperature not higher than the melting point of Cu. It is to be heated and sintered.

さらに、本発明の電気接点の製造方法は、耐火性金属の原料粉末の平均粒径dhpが22〜88μmの範囲にあり、粒度分布の標準偏差をσとするとき、粒径がdhp±σの範囲の耐火性金属粉末を用い、圧力30Pa〜0.2MPaの不活性あるいは還元性雰囲気中で加熱焼結するものである。 Furthermore, in the method for producing an electrical contact according to the present invention, when the average particle diameter d hp of the refractory metal raw material powder is in the range of 22 to 88 μm, and the standard deviation of the particle size distribution is σ, the particle diameter is d hp ± A refractory metal powder in the range of σ is used and heated and sintered in an inert or reducing atmosphere at a pressure of 30 Pa to 0.2 MPa.

本発明の電気接点を用いた電極は、円盤状部材と、この円盤状部材のアーク発生面の反対面に一体に接合された電極棒とを有するものである。   The electrode using the electrical contact of the present invention has a disk-shaped member and an electrode bar integrally joined to the surface opposite to the arc generating surface of the disk-shaped member.

本発明に関わる真空バルブは、真空容器内に一対の固定側電極及び可動側電極とを備え、それらの少なくとも一方が、本発明の電気接点を用いた電極からなるものである。   The vacuum valve according to the present invention includes a pair of fixed side electrode and movable side electrode in a vacuum vessel, and at least one of them includes an electrode using the electrical contact of the present invention.

本発明に関わる真空遮断器は、少なくとも一方に本発明の電気接点を用いた固定側電極及び可動側電極を真空容器内に備えた真空バルブと、この真空バルブ内の固定側電極及び可動側電極の各々に真空バルブ外に接続された導体端子と、可動側電極を駆動する開閉手段とを備えたものである。   A vacuum circuit breaker according to the present invention includes a vacuum valve provided with at least one of a fixed side electrode and a movable side electrode using the electric contact of the present invention in a vacuum vessel, and a fixed side electrode and a movable side electrode in the vacuum valve. Each of these is provided with a conductor terminal connected to the outside of the vacuum valve and an opening / closing means for driving the movable side electrode.

本発明によって、Cr含有量やCr粉末粒径と低融点金属添加量との関係を適正化し、最適な組織および組成を見つけることによって、溶着引離し力の低減効果を十分に発揮し、優れた遮断性能と通電性能を有するとともに、真空遮断器等の大幅な小型化を可能とする電気接点を提供することができる。   According to the present invention, by optimizing the relationship between the Cr content and Cr powder particle size and the low melting point metal addition amount, and finding the optimum structure and composition, the effect of reducing the welding separation force is sufficiently exerted, and excellent It is possible to provide an electrical contact that has a breaking performance and a current-carrying performance, and that enables a significant downsizing of a vacuum circuit breaker or the like.

以下、発明を実施するための最良の形態を実施例によって詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   Hereinafter, the best mode for carrying out the invention will be described in detail by way of examples, but the present invention is not limited to these examples.

本発明者らは、焼結電気接点におけるTe添加による強度低減機構が、耐火性金属粒子とCuマトリクスの間の物理的乖離によることを見出した。すなわち、Teは優先的に耐火性金属とCuの界面に空隙を形成させ、界面強度の低下を招き、接点材料としての強度を低下させる。このため、強度低減に有効なTe添加量は、耐火性金属とCuの界面の面積に依存し、耐火性金属の粒径と含有量によって最適値が決定されるとの知見を得た。   The present inventors have found that the strength reduction mechanism by addition of Te in the sintered electrical contact is due to physical separation between the refractory metal particles and the Cu matrix. That is, Te preferentially forms voids at the interface between the refractory metal and Cu, leading to a decrease in interface strength and a decrease in strength as a contact material. For this reason, the amount of Te addition effective for strength reduction depends on the area of the interface between the refractory metal and Cu, and it has been found that the optimum value is determined by the particle size and content of the refractory metal.

この知見を基に、本発明の電気接点はCuとTeと耐火性金属からなる焼結体で、耐火性金属の原料粉末の平均粒径をdhp(μm)、耐火性金属の含有量をChp(重量%)としたとき、Teの含有量CTe(重量%)は次の式(1)の範囲にある。 Based on this knowledge, the electrical contact of the present invention is a sintered body made of Cu, Te and a refractory metal, the average particle diameter of the raw material powder of the refractory metal is d hp (μm), and the content of the refractory metal is determined. When C hp (wt%) is used, the Te content C Te (wt%) is in the range of the following formula (1).

これにより、高い通電性能や遮断性能を有しながら、適量のTeによって耐火性金属とCuマトリクスの金属的な結合を乖離し、効果的に強度を低減することによって、溶着した電気接点同士を引離す力を小さくすることができる。Teの含有量がこの範囲より少ないと強度低減効果が不足し、この範囲より多いと耐火性金属とCuマトリクスとの界面においてTeが余剰となり、Cuマトリクスの組織に気孔などの欠陥を形成し、接点材料としての組織の健全性を損なうとともに、通電性能などが低下する。   As a result, while having high current-carrying performance and interrupting performance, the welded electrical contacts are pulled together by separating the metallic bond between the refractory metal and the Cu matrix by an appropriate amount of Te and effectively reducing the strength. The releasing force can be reduced. If the Te content is less than this range, the effect of reducing the strength is insufficient, and if it is more than this range, Te becomes excessive at the interface between the refractory metal and the Cu matrix, and defects such as pores are formed in the structure of the Cu matrix. While impairing the soundness of the organization as a contact material, the current-carrying performance is reduced.

Te=Chp{(1.4/dhp 2)+8.75×10-4}±0.005 ・・・(1)
したがって、本発明の電気接点はCuとTeと耐火性金属からなる焼結体で、Cuと耐火性金属の界面において、その70〜90%に空隙を有する組織をなすものである。Cuと耐火性金属の界面の空隙による物理的乖離によって、界面強度が低下し、前述のように溶着引離し力を効果的に低減できる。
C Te = C hp {(1.4 / d hp 2 ) + 8.75 × 10 −4 } ± 0.005 (1)
Therefore, the electrical contact of the present invention is a sintered body made of Cu, Te, and a refractory metal, and forms a structure having voids at 70 to 90% at the interface between Cu and the refractory metal. Due to the physical divergence due to the gap at the interface between Cu and the refractory metal, the interface strength is lowered, and the welding separation force can be effectively reduced as described above.

また、本発明の電気接点において、耐火性金属としてMoあるいはCrのいずれか1種を含むことにより、良好な耐電圧性能と遮断性能を有する電気接点を得ることができる。この耐火性金属の含有量は15〜40重量%であることが望ましく、これより少ないと耐電圧性能が不足し、これより多いと通電性能が低下するとともに、焼結性が低下して緻密な電気接点の製造が困難になる。   Moreover, the electrical contact of this invention can obtain the electrical contact which has favorable withstand voltage performance and interruption | blocking performance by including any 1 type of Mo or Cr as a refractory metal. The content of the refractory metal is desirably 15 to 40% by weight. If the content is less than this, the withstand voltage performance is insufficient. Manufacturing electrical contacts becomes difficult.

本発明の電気接点の製造方法は、CuとTeと耐火性金属それぞれの粉末を混合し、この混合粉末を加圧成形した後、Cuの融点以下の温度で加熱焼結するもので、比較的容易に低コストで製造することが可能になる。   The method for producing an electrical contact according to the present invention comprises mixing Cu, Te and refractory metal powders, press-molding the mixed powder, and then heating and sintering at a temperature below the melting point of Cu. It can be easily manufactured at low cost.

Teの粉末を混合する代わりに、あらかじめ耐火性金属の表面をTeで被覆してもよく、これにより前述の界面強度の低減効果を、さらに効率よく発揮させることができる。Te被覆は、蒸着などの物理気相析出法や、他の表面処理技術を応用することによって可能である。   Instead of mixing the Te powder, the surface of the refractory metal may be coated with Te in advance, whereby the above-described effect of reducing the interface strength can be exhibited more efficiently. Te coating is possible by applying physical vapor deposition methods such as vapor deposition and other surface treatment techniques.

また、混合粉末の加圧成形過程において最終形状に成形することにより、加熱焼結後に機械加工を用いることなく、電気接点を製造することができる。この加熱焼結は、真空中で行っても本発明の目的とする接点材料が得られるが、圧力30Pa〜0.2MPaの不活性あるいは還元性雰囲気中で行うことにより、加熱過程でのTeの揮散を抑制し、前述の界面強度の低減効果をより高めることができる。   In addition, by forming the mixed powder into a final shape in the pressure forming process, an electrical contact can be manufactured without using machining after heat sintering. Even if this heat sintering is carried out in vacuum, the target contact material of the present invention can be obtained. However, if it is carried out in an inert or reducing atmosphere at a pressure of 30 Pa to 0.2 MPa, Te in the heating process can be obtained. Volatilization can be suppressed, and the above-described interface strength reduction effect can be further enhanced.

本発明の電気接点の製造方法において、用いる耐火性金属の原料粉末の粒径は、そのばらつき範囲が小さいものを用いることが好ましい。具体的には、平均粒径dhpが22〜88μmの範囲にあり、粒度分布の標準偏差をσとするとき、粒径がdhp±σの範囲の粉末を用いることが望ましい。平均粒径がこれより小さいと、Teの分散が不均一になり、界面強度の低減効果が不十分になりやすい。 In the method for producing an electrical contact according to the present invention, it is preferable to use a refractory metal raw material powder having a small variation range. Specifically, it is desirable to use a powder having an average particle size d hp in the range of 22 to 88 μm and a particle size distribution in the range of d hp ± σ, where σ is the standard deviation of the particle size distribution. When the average particle size is smaller than this, the Te dispersion becomes non-uniform, and the effect of reducing the interface strength tends to be insufficient.

また、耐火性金属粒子の微細分散により、Cuマトリクスの結晶粗大化が抑制され、いわゆる組織の微細化強化機構が働き、電気接点の強度が高まる傾向にある。さらに、混合粉末の流動性が低下し、耐火性金属が凝集しやすくなるとともに生産性が低下する。耐火性金属の平均粒径が上記範囲より大きいと、組織の均一性が低下し、電流遮断時における接点面においてCuが溶出し、溶着が発生しやすくなる。用いる粒径の範囲は、dhp±σの範囲にあることで、前記(1)式による強度低減効果が効率よく得られる。 Further, due to the fine dispersion of the refractory metal particles, the coarsening of the Cu matrix is suppressed, and a so-called microstructure refinement strengthening mechanism works to increase the strength of the electrical contact. Furthermore, the fluidity of the mixed powder is reduced, and the refractory metal is easily aggregated and the productivity is reduced. When the average particle diameter of the refractory metal is larger than the above range, the uniformity of the structure is lowered, Cu is eluted at the contact surface when the current is interrupted, and welding is likely to occur. The range of the particle size to be used is in the range of d hp ± σ, so that the strength reduction effect by the above equation (1) can be obtained efficiently.

本発明の電気接点を用いた電極は、円盤状部材と、この円盤状部材のアーク発生面の反対面に一体に接合された電極棒とを有し、円盤状部材が本発明の電気接点からなることにより、通電抵抗が小さく、所望の性能を有する電極が得られる。   The electrode using the electrical contact of the present invention has a disk-shaped member and an electrode bar integrally joined to the surface opposite to the arc generating surface of the disk-shaped member, and the disk-shaped member is formed from the electrical contact of the present invention. As a result, an electrode having a small energization resistance and a desired performance can be obtained.

本発明に関わる真空バルブは、真空容器内に一対の固定側電極及び可動側電極を備え、その少なくとも一方が、本発明の電気接点を用いた電極からなるものである。また、本発明に関わる真空遮断器は、少なくとも一方に本発明の電気接点を用いた固定側電極及び可動側電極を真空容器内に備えた真空バルブと、この真空バルブ内の固定側電極及び可動側電極の各々に真空バルブ外に接続された導体端子と、可動側電極を駆動する開閉手段とを備えたものである。これにより、優れた遮断性能や通電性能を有し、電気接点同士が溶着した際の引離し力が小さく、操作機構部を小型化することができ、小型で低価格の真空遮断器、さらには各種真空開閉装置が得られる。   The vacuum valve according to the present invention includes a pair of fixed and movable electrodes in a vacuum vessel, at least one of which is an electrode using the electrical contact of the present invention. Further, the vacuum circuit breaker according to the present invention includes a vacuum valve provided with at least one of a fixed side electrode and a movable side electrode using the electric contact of the present invention in a vacuum vessel, and a fixed side electrode and a movable side in the vacuum valve. Each of the side electrodes is provided with a conductor terminal connected to the outside of the vacuum valve and an opening / closing means for driving the movable side electrode. As a result, it has excellent breaking performance and energization performance, has a small pulling force when the electrical contacts are welded to each other, can reduce the size of the operation mechanism, and is a small and low-priced vacuum circuit breaker. Various vacuum switchgears are obtained.

表1に示す組成の電気接点を作製し、これを用いて電極を作製した。図1は作製した電極の構造を示す断面図である。図1において、1は電気接点、2はアークに駆動力を与えるためのスリット溝、3はステンレス製の補強板、4は電極棒、5はろう材である。   An electrical contact having the composition shown in Table 1 was produced, and an electrode was produced using the electrical contact. FIG. 1 is a cross-sectional view showing the structure of the fabricated electrode. In FIG. 1, 1 is an electrical contact, 2 is a slit groove for giving a driving force to the arc, 3 is a reinforcing plate made of stainless steel, 4 is an electrode rod, and 5 is a brazing material.

電気接点1の作製方法は次の通りである。まず、所定の粒径のMo粉末またはCr粉末と、60μm以下のCu粉末およびTe粉末とを、表1の組成となるような配合比でV型混合器により混合した。次にこの混合粉末を、円盤形状の金型に充填し、油圧プレスにより400MPaの圧力で加圧成形した。成形体の密度は、およそ73%であった。これを圧力40Paの水素雰囲気中で、1060℃×2時間加熱して焼結し、電気接点1の素材となる焼結体を作製した。得られた焼結体の相対密度は、およそ96%であった。   The manufacturing method of the electrical contact 1 is as follows. First, Mo powder or Cr powder having a predetermined particle size and Cu powder and Te powder of 60 μm or less were mixed by a V-type mixer at a blending ratio such that the composition shown in Table 1 was obtained. Next, this mixed powder was filled in a disk-shaped mold and pressure-molded at a pressure of 400 MPa with a hydraulic press. The density of the molded body was approximately 73%. This was heated and sintered at 1060 ° C. for 2 hours in a hydrogen atmosphere at a pressure of 40 Pa to produce a sintered body as a material for the electrical contact 1. The relative density of the obtained sintered body was approximately 96%.

得られた焼結体を機械加工し、図1に示す形状の電気接点1を作製した。なお、スリット溝2を有する最終形状を形作ることのできる金型に混合粉末を充填し、焼結する方法によっても電気接点1を得ることができ、この方法では機械加工などの後加工が不要であるため、容易に製作が可能である。   The obtained sintered body was machined to produce an electrical contact 1 having the shape shown in FIG. The electrical contact 1 can also be obtained by a method in which a mixed powder is filled in a mold capable of forming the final shape having the slit groove 2 and sintered, and this method does not require post-processing such as machining. Therefore, it can be easily manufactured.

さらに、電極の作製方法は次の通りである。電極棒4を無酸素銅で、また、補強板3をSUS304であらかじめ機械加工により作製しておき、前記の焼結および機械加工で得られた電気接点1,補強板3,電極棒4それぞれの間にろう材5を載置し、これを8.2×10-4Pa以下の真空中で970℃×10分間加熱し、図1に示す電極を作製した。この電極は定格電圧7.2kV,定格電流600A,定格遮断電流20kA用の真空バルブに用いられる電極である。なお、電気接点1の強度が十分であれば、補強板3は省いてもよい。 Furthermore, a method for manufacturing the electrode is as follows. The electrode rod 4 is made of oxygen-free copper, and the reinforcing plate 3 is previously machined with SUS304, and the electrical contacts 1, the reinforcing plate 3 and the electrode rod 4 obtained by the above-described sintering and machining are respectively used. The brazing material 5 was placed between them, and this was heated in a vacuum of 8.2 × 10 −4 Pa or less at 970 ° C. × 10 minutes, and the electrode shown in FIG. 1 was produced. This electrode is used for a vacuum valve for a rated voltage of 7.2 kV, a rated current of 600 A, and a rated breaking current of 20 kA. If the strength of the electrical contact 1 is sufficient, the reinforcing plate 3 may be omitted.

実施例1で作製した電極を用いて、真空バルブを作製した。真空バルブの仕様は、定格電圧7.2kV,定格電流600A,定格遮断電流20kAである。   A vacuum valve was produced using the electrode produced in Example 1. The specifications of the vacuum valve are a rated voltage of 7.2 kV, a rated current of 600 A, and a rated breaking current of 20 kA.

図2は、本実施例に関わる真空バルブの構造を示す図である。図2において、1a,1bはそれぞれ固定側電気接点,可動側電気接点、3a,3bは補強板、4a,4bはそれぞれ固定側電極棒,可動側電極棒で、これらをもってそれぞれ固定側電極6a,可動側電極6bを構成する。なお、本実施例では、固定側と可動側の電気接点の溝が接触面において一致するように設置した。可動側電極6bは、遮断時の金属蒸気等の飛散を防ぐ可動側シールド8を介して可動側ホルダー12にろう付け接合される。これらは、固定側端板9a,可動側端板9b、及び絶縁筒13によって高真空にろう付け封止され、固定側電極6a及び可動側ホルダー12のネジ部をもって外部導体と接続される。絶縁筒13の内面には、遮断時の金属蒸気等の飛散を防ぐシールド7が設けられ、また、可動側端板9bと可動側ホルダー12の間には摺動部分を支えるためのガイド11が設けられる。可動側シールド8と可動側端板9bの間にはベローズ10が設けられ、真空バルブ内を真空に保ったまま可動側ホルダー12を上下させ、固定側電極6aと可動側電極6bを開閉させることができる。   FIG. 2 is a diagram showing the structure of the vacuum valve according to the present embodiment. In FIG. 2, 1a and 1b are fixed-side electrical contacts and movable-side electrical contacts, 3a and 3b are reinforcing plates, 4a and 4b are fixed-side electrode rods and movable-side electrode rods, respectively, and fixed-side electrode 6a, The movable electrode 6b is configured. In the present embodiment, the grooves of the electric contacts on the fixed side and the movable side are installed so as to coincide with each other on the contact surface. The movable side electrode 6b is brazed and joined to the movable side holder 12 via a movable side shield 8 that prevents scattering of metal vapor or the like at the time of interruption. These are brazed and sealed to a high vacuum by the fixed side end plate 9a, the movable side end plate 9b, and the insulating cylinder 13, and are connected to the external conductor through the screw portions of the fixed side electrode 6a and the movable side holder 12. A shield 7 is provided on the inner surface of the insulating cylinder 13 to prevent scattering of metal vapor or the like at the time of interruption, and a guide 11 for supporting a sliding portion is provided between the movable side end plate 9b and the movable side holder 12. Provided. A bellows 10 is provided between the movable-side shield 8 and the movable-side end plate 9b, and the movable-side holder 12 is moved up and down while the vacuum valve is kept in vacuum to open and close the fixed-side electrode 6a and the movable-side electrode 6b. Can do.

このように、実施例1で作製した電気接点を図2に示す電気接点1a,1bに用いて、本発明に係わる真空バルブを作製した。   Thus, the vacuum contact concerning this invention was produced using the electrical contact produced in Example 1 for the electrical contacts 1a and 1b shown in FIG.

実施例2で作製した真空バルブを搭載した真空遮断器を作製した。図3は、本発明に関わる真空バルブ14とその操作機構を示す真空遮断器の構成図である。   A vacuum circuit breaker equipped with the vacuum valve produced in Example 2 was produced. FIG. 3 is a block diagram of a vacuum circuit breaker showing the vacuum valve 14 and its operation mechanism according to the present invention.

真空遮断器は、操作機構部を前面に配置し、背面に真空バルブ14を支持する3相一括型の3組のエポキシ筒15を配置した構造である。真空バルブ14は、絶縁操作ロッド16を介して、操作機構によって開閉される。   The vacuum circuit breaker has a structure in which three sets of three-phase epoxy cylinders 15 that support the vacuum valve 14 are disposed on the back surface with the operation mechanism portion disposed on the front surface. The vacuum valve 14 is opened and closed by an operating mechanism via an insulating operating rod 16.

遮断器が閉路状態の場合、電流は上部端子17,電気接点1,集電子18,下部端子19を流れる。電極間の接触力は、絶縁操作ロッド16に装着された接触バネ20によって保たれている。電極間の接触力および短絡電流による電磁力は、支えレバー21およびプロップ22で保持されている。投入コイル30を励磁すると開路状態からプランジャ23がノッキングロッド24を介してローラ25を押し上げ、主レバー26を回して電極間を閉じたあと、支えレバー21で保持している。   When the circuit breaker is closed, current flows through the upper terminal 17, the electrical contact 1, the current collector 18, and the lower terminal 19. The contact force between the electrodes is maintained by a contact spring 20 attached to the insulating operation rod 16. The contact force between the electrodes and the electromagnetic force due to the short-circuit current are held by the support lever 21 and the prop 22. When the closing coil 30 is excited, the plunger 23 pushes up the roller 25 through the knocking rod 24 from the open circuit state, rotates the main lever 26 to close the space between the electrodes, and then holds it by the support lever 21.

遮断器が引き外し自由状態では、引き外しコイル27が励磁され、引き外しレバー28がプロップ22の係合を外し、主レバー26が回って電極間が開かれる。   When the circuit breaker is free to be tripped, the tripping coil 27 is excited, the tripping lever 28 is disengaged from the prop 22, and the main lever 26 is rotated to open the electrodes.

遮断器が開路状態では、電極間が開かれたあと、リセットバネ29によってリンクが復帰し、同時にプロップ22が係合する。この状態で投入コイル30を励磁すると閉路状態になる。なお、31は排気筒である。   When the circuit breaker is in the open state, the link is restored by the reset spring 29 after the electrodes are opened, and the prop 22 is engaged at the same time. When the closing coil 30 is excited in this state, a closed state is obtained. In addition, 31 is an exhaust pipe.

実施例1で作製した電気接点を実施例2で示した定格電圧7.2kV,定格電流600A,定格遮断電流20kAの真空バルブに用い、実施例3で示した真空遮断器に搭載して性能試験を行った。   The electrical contact produced in Example 1 is used for the vacuum valve with the rated voltage of 7.2 kV, the rated current of 600 A, and the rated breaking current of 20 kA shown in Example 2, and is mounted on the vacuum circuit breaker shown in Example 3 for performance test. Went.

Figure 2009076218
Figure 2009076218

表1は、電気接点組成と性能試験結果を示すもので、No.1〜No.9が本発明品、No.10〜No.20が比較品で、各性能はTeを含まないNo.10の結果を基準(1.0)とし、相対値で表わした。   Table 1 shows the electrical contact composition and performance test results. No. 1 to No. 9 are the products of the present invention, No. 10 to No. 20 are the comparative products, and each performance is No. 10 containing no Te. The results were expressed as relative values with reference (1.0).

従来技術であるTeを含む電気接点で、本発明の式(1)の範囲から外れた添加量の場合がNo.11とNo.12である。No.11ではTe添加量が少なく、引離し力の低減効果が見られない。また、No.12ではTe添加量が過剰のため、Cuマトリクスに欠陥が生じて通電性能が低下するとともに、Teの揮散による耐電圧性能の低下が生ずる。同様に、No.15〜No.18もTeの添加量が本発明の式(1)の範囲から外れる場合で、Teが少ない場合(No.15,No.17)には引離し力の低減効果が小さく、Teが多い場合(No.16,No.18)には耐電圧性低下のほか、通電性能や遮断性能の低下が生ずる。なお、No.13とNo.14はCr含有量が本発明の範囲から外れた場合で、比較的高融点の耐アーク成分であるCrが少ないと(No.13)耐電圧性能が低下し、Crが多いと(No.14)通電抵抗が大きくなり、それに伴い遮断性能も低下する。さらに、No.19とNo.20は、用いたCr粉末の粒径が本発明の範囲から外れた場合で、Cr粒径が小さいと(No.19)通電性能が低下するとともに、微細化強化機構との相殺作用によって強度低減効果が低下し、引離し力の低減効果が小さくなる。Cr粒径が大きいと(No.20)Cr粒子の分布が不均一となりやすく、耐電圧性能が低下するとともに、Cuの溶出に伴って溶着面積が増大し、引離し力が大きくなる。   No. 11 and No. 12 are the cases where the amount of addition is out of the range of the formula (1) of the present invention in the electric contact containing Te which is the prior art. In No. 11, the amount of Te added is small, and the effect of reducing the pulling force is not observed. Further, in No. 12, since the amount of Te added is excessive, defects occur in the Cu matrix and the current-carrying performance is lowered, and the withstand voltage performance is lowered due to the volatilization of Te. Similarly, No. 15 to No. 18 are cases where the addition amount of Te is outside the range of the formula (1) of the present invention, and when Te is small (No. 15, No. 17), the pulling force is reduced. When the effect is small and Te is large (No. 16, No. 18), in addition to the withstand voltage resistance, the energization performance and the interruption performance are also degraded. In addition, No. 13 and No. 14 are cases where the Cr content is out of the scope of the present invention, and when there is little Cr, which is a relatively high melting point arc-resistant component (No. 13), the withstand voltage performance decreases, When there is much Cr (No. 14), an energization resistance will become large and the interruption | blocking performance will fall in connection with it. Furthermore, No. 19 and No. 20 are cases in which the particle size of the Cr powder used is out of the scope of the present invention. If the particle size of Cr is small (No. 19), the current-carrying performance is reduced and refinement is strengthened. The effect of reducing the strength is reduced by the canceling action with the mechanism, and the effect of reducing the pulling force is reduced. When the Cr particle size is large (No. 20), the distribution of Cr particles tends to be non-uniform, the withstand voltage performance decreases, the weld area increases with elution of Cu, and the separating force increases.

以上の比較例に対し、本発明のNo.1〜No.6ではTe添加量並びにCr含有量が適正であるため、溶着接点同士の引離し性が大幅に改善され、通電性能や遮断性能および耐電圧性能の著しい低下は見られない。また、耐火性金属にMoを用いた場合でも(No.7〜No.9)、Te添加量が本発明の範囲にあることによって、大幅な引離し力の低減効果が発揮されるとともに、他の性能も実用上支障のない範囲にある。   In contrast to the above comparative examples, in No. 1 to No. 6 of the present invention, the amount of added Te and the Cr content are appropriate, so that the separability between the welded contacts is greatly improved, and the energization performance and interruption performance There is no significant decrease in withstand voltage performance. Even when Mo is used as the refractory metal (No. 7 to No. 9), the addition amount of Te is within the range of the present invention, so that the effect of greatly reducing the pulling force is exhibited, and the like. The performance is in a range where there is no practical problem.

本発明のNo.1〜No.6の電気接点の断面組織を、走査電子顕微鏡により観察した。図4は、その電子顕微鏡像の一例である。このように、本発明に関わる電気接点においては、Cr粒子とCuマトリクスとの界面に、幅1μm程度の空隙が存在し、両者が物理的に乖離していた。また、界面に対する空隙の割合は、電子顕微鏡像から測定した結果、いずれの電気接点においても表1に示すように70〜90%の範囲にあった。以上の傾向は、耐火性金属にMoを用いたNo.7〜No.9の電気接点においても同様であった。   The cross-sectional structure of the electrical contacts No. 1 to No. 6 of the present invention was observed with a scanning electron microscope. FIG. 4 is an example of the electron microscope image. As described above, in the electrical contact according to the present invention, a gap having a width of about 1 μm was present at the interface between the Cr particles and the Cu matrix, and the two were physically separated. Moreover, the ratio of the space | gap with respect to an interface was in the range of 70 to 90% as shown in Table 1 in any electrical contact, as a result of measuring from the electron microscope image. The above tendency was the same in No. 7 to No. 9 electrical contacts using Mo as the refractory metal.

一方、Te添加量が少ない場合(No.15,No.17)の走査電子顕微鏡像は、図5にその一例を示すように、Cr粒子とCuマトリクスとの界面に空隙は存在せず、界面強度が低下する様相がなく、引離し力低減効果が得られない。また、Te添加量が多い場合(No.16,No.18)には、図4のようなCrとCuの界面乖離が見られたが、Cuマトリクスには図6に一例を示すように気孔が多く見られ、マトリクスの健全性が損なわれている様相であった。   On the other hand, the scanning electron microscope images when the amount of Te added is small (No. 15, No. 17), as shown in FIG. 5, there are no voids at the interface between the Cr particles and the Cu matrix. There is no aspect in which the strength is lowered, and the separation force reduction effect cannot be obtained. In addition, when the amount of Te added was large (No. 16, No. 18), the Cr-Cu interface divergence as shown in FIG. 4 was observed, but the Cu matrix has pores as shown in FIG. Was seen, and the soundness of the matrix was impaired.

このように、本発明に関わる電気接点によって、健全な材料組織を維持することによって優れた遮断性能,通電性能および耐電圧性能を有しながら、溶着した接点同士の引離し力を大幅に低減することができ、操作機構部の小型化が実現可能な真空バルブおよび真空遮断器が得られる。   As described above, the electrical contact according to the present invention significantly reduces the pulling force between the welded contacts while having excellent breaking performance, energization performance and withstand voltage performance by maintaining a sound material structure. Thus, a vacuum valve and a vacuum circuit breaker capable of realizing downsizing of the operation mechanism unit can be obtained.

実施例2で作製した真空バルブを、真空遮断器以外の真空開閉装置に搭載した。図7は、実施例2で作製した真空バルブ14を搭載した、路肩設置変圧器用の負荷開閉器である。   The vacuum valve produced in Example 2 was mounted on a vacuum switchgear other than the vacuum circuit breaker. FIG. 7 shows a load switch for a roadside installation transformer equipped with the vacuum valve 14 produced in the second embodiment.

この負荷開閉器は、主回路開閉部に相当する真空バルブ14が、真空封止された外側真空容器32内に複数対収納されたものである。外側真空容器32は、上部板材33と下部板材34及び側部板材35を備え、各板材の周囲(縁)が互いに溶接によって接合されているとともに、設備本体とともに設置されている。   In this load switch, a plurality of pairs of vacuum valves 14 corresponding to main circuit switching units are housed in a vacuum-sealed outer vacuum container 32. The outer vacuum container 32 includes an upper plate member 33, a lower plate member 34, and a side plate member 35, and the periphery (edge) of each plate member is joined to each other by welding and is installed together with the equipment main body.

上部板材33には、上部貫通孔36が形成されており、各上部貫通孔36の縁には環状の絶縁性上部ベース37が各上部貫通孔36を覆うように固定されている。そして、各上部ベース37の中央に形成された円形空間部には、円柱状の可動側電極棒4bが往復動(上下動)自在に挿入されている。すなわち、各上部貫通孔36は上部ベース37と可動側電極棒4bによって閉塞されている。   An upper through hole 36 is formed in the upper plate member 33, and an annular insulating upper base 37 is fixed to an edge of each upper through hole 36 so as to cover each upper through hole 36. A cylindrical movable electrode rod 4b is inserted into a circular space formed at the center of each upper base 37 so as to freely reciprocate (up and down). That is, each upper through hole 36 is closed by the upper base 37 and the movable electrode rod 4b.

可動側電極棒4bの軸方向端部(上部側)は、外側真空容器32の外部に設置される操作器(電磁操作器)に連結されるようになっている。また、上部板材33の下部側には、各上部貫通孔36の縁に沿って外側ベローズ38が往復動(上下動)自在に配置されており、各外側ベローズ38は、軸方向の一端側が上部板材33の下部側に固定され、軸方向の他端側が各可動側電極棒4bの外周面に装着されている。すなわち、外側真空容器32を密閉構造とするために、各上部貫通孔36の縁には各可動側電極棒4bの軸方向に沿って外側ベローズ38が配置されている。また、上部板材33には排気管(図示省略)が連結され、この排気管を介して外側真空容器32内が真空排気されるようになっている。   The axial end (upper side) of the movable electrode rod 4b is connected to an operating device (electromagnetic operating device) installed outside the outer vacuum vessel 32. Further, on the lower side of the upper plate member 33, an outer bellows 38 is disposed so as to freely reciprocate (up and down) along the edge of each upper through hole 36, and each outer bellows 38 has an axial end on the upper side. The other end side in the axial direction is fixed to the lower side of the plate member 33, and is attached to the outer peripheral surface of each movable electrode rod 4b. That is, in order to make the outer vacuum container 32 have a hermetically sealed structure, outer bellows 38 are arranged at the edge of each upper through hole 36 along the axial direction of each movable electrode rod 4b. In addition, an exhaust pipe (not shown) is connected to the upper plate member 33, and the inside of the outer vacuum vessel 32 is evacuated through the exhaust pipe.

一方、下部板材34には下部貫通孔39が形成されており、各下部貫通孔39の縁には絶縁性ブッシング40が各下部貫通孔39を覆うように固定されている。各絶縁性ブッシング40の底部には、環状の絶縁性下部ベース41が固定されている。そして、各下部ベース41の中央の円形空間部には、円柱状の固定側電極棒4aが挿入されている。すなわち、下部板材34に形成された下部貫通孔39は、それぞれ絶縁性ブッシング40,下部ベース41、及び固定側電極棒4aによって閉塞されている。そして、固定側電極棒4aの軸方向の一端側(下部側)は、外側真空容器32の外部に配置されたケーブル(配電線)に連結されるようになっている。   On the other hand, a lower through hole 39 is formed in the lower plate member 34, and an insulating bushing 40 is fixed to an edge of each lower through hole 39 so as to cover each lower through hole 39. An annular insulating lower base 41 is fixed to the bottom of each insulating bushing 40. A cylindrical fixed electrode rod 4a is inserted into the circular space at the center of each lower base 41. That is, the lower through holes 39 formed in the lower plate member 34 are closed by the insulating bushing 40, the lower base 41, and the fixed electrode rod 4a, respectively. One end side (lower side) in the axial direction of the fixed electrode rod 4a is connected to a cable (distribution line) arranged outside the outer vacuum vessel 32.

外側真空容器32の内部には、負荷開閉器の主回路開閉部に相当する真空バルブ14が収納されており、各可動側電極棒4bは、2つの湾曲部を有するフレキシブル導体(可撓性導体)42を介して互いに連結されている。このフレキシブル導体42は、軸方向において2つの湾曲部を有する導電性板材としての銅板とステンレス板を交互に複数枚積層して構成されている。フレキシブル導体42には貫通孔43が形成されており、各貫通孔43に各可動側電極棒4bを挿入して互いに連結される。   Inside the outer vacuum vessel 32, a vacuum valve 14 corresponding to a main circuit opening / closing portion of a load switch is accommodated, and each movable side electrode bar 4b is a flexible conductor (flexible conductor) having two curved portions. ) 42 to each other. The flexible conductor 42 is configured by alternately laminating a plurality of copper plates and stainless steel plates as conductive plate members having two curved portions in the axial direction. A through hole 43 is formed in the flexible conductor 42, and each movable electrode rod 4 b is inserted into each through hole 43 and connected to each other.

以上のように、実施例2で作製した本発明に関わる真空バルブは、路肩設置変圧器用の負荷開閉器にも適用可能であり、これ以外の真空絶縁スイッチギアなどの各種真空開閉装置にも適用できる。   As described above, the vacuum valve according to the present invention manufactured in Example 2 can be applied to a load switch for a roadside installation transformer, and also applied to various vacuum switchgears such as a vacuum insulation switchgear. it can.

本発明の新規な真空バルブ用電気接点は、真空遮断器,真空開閉器等に利用することが可能である。   The novel electrical contact for a vacuum valve of the present invention can be used for a vacuum circuit breaker, a vacuum switch and the like.

本発明の第1実施例に関わる電極の構造を示す断面図。Sectional drawing which shows the structure of the electrode in connection with 1st Example of this invention. 本発明の第2実施例に関わる真空バルブの構造を示す図。The figure which shows the structure of the vacuum valve in connection with 2nd Example of this invention. 本発明の第3実施例に関わる真空遮断器の構造を表す図。The figure showing the structure of the vacuum circuit breaker in connection with 3rd Example of this invention. 本発明の第4実施例に関わる電気接点材料の組織の一例を示す図。The figure which shows an example of the structure | tissue of the electrical contact material in connection with 4th Example of this invention. 本発明の第4実施例に関わる比較例の電気接点材料の組織の一例を示す図。The figure which shows an example of the structure | tissue of the electrical contact material of the comparative example in connection with 4th Example of this invention. 本発明の第4実施例に関わる比較例の電気接点材料の組織の一例を示す図。The figure which shows an example of the structure | tissue of the electrical contact material of the comparative example in connection with 4th Example of this invention. 本発明の第4実施例に関わる路肩設置変圧器用負荷開閉器の構造を表す図。The figure showing the structure of the load switch for roadside installation transformers concerning 4th Example of this invention.

符号の説明Explanation of symbols

1 電気接点
1a 固定側電気接点
1b 可動側電気接点
2 スリット溝
3,3a,3b 補強板
4,4a,4b 電極棒
5 ろう材
6a 固定側電極
6b 可動側電極
7 シールド
8 可動側シールド
9a 固定側端板
9b 可動側端板
10 ベローズ
11 ガイド
12 可動側ホルダー
13 絶縁筒
14 真空バルブ
15 エポキシ筒
16 絶縁操作ロッド
17 上部端子
18 集電子
19 下部端子
20 接触バネ
21 支えレバー
22 プロップ
23 プランジャ
24 ノッキングロッド
25 ローラ
26 主レバー
27 引き外しコイル
28 引き外しレバー
29 リセットバネ
30 投入コイル
31 排気筒
32 外側真空容器
33 上部板材
34 下部板材
35 側部板材
36 上部貫通孔
37 上部ベース
38 外側ベローズ
39 下部貫通孔
40 絶縁性ブッシング
41 下部ベース
42 フレキシブル導体
43 フレキシブル導体貫通孔
1 Electrical contact 1a Fixed side electrical contact
1b Movable side electrical contact 2 Slit grooves 3, 3a, 3b Reinforcing plates 4, 4a, 4b Electrode rod 5 Brazing material 6a Fixed side electrode 6b Movable side electrode 7 Shield 8 Movable side shield 9a Fixed side end plate 9b Movable side end plate 10 Bellows 11 Guide 12 Movable side holder 13 Insulating cylinder 14 Vacuum valve 15 Epoxy cylinder 16 Insulating operation rod 17 Upper terminal 18 Current collector 19 Lower terminal 20 Contact spring 21 Support lever 22 Prop 23 Plunger 24 Knocking rod 25 Roller 26 Main lever 27 Tripping Coil 28 Trip lever 29 Reset spring 30 Input coil 31 Exhaust tube 32 Outer vacuum vessel 33 Upper plate member 34 Lower plate member 35 Side plate member 36 Upper through hole 37 Upper base 38 Outer bellows 39 Lower through hole 40 Insulating bushing 41 Lower base 42 Flexible conductor 43 Flexi Le conductor through holes

Claims (11)

CuとTeと耐火性金属とからなる焼結体で、前記耐火性金属の原料粉末の平均粒径をdhp(μm)、前記耐火性金属の含有量をChp(重量%)とするとき、前記Teの含有量CTe(重量%)が式(1)の範囲にあることを特徴とする電気接点。
Te=Chp{(1.4/dhp 2)+8.75×10-4}±0.005 ・・・(1)
When the average particle size of the refractory metal raw material powder is d hp (μm) and the content of the refractory metal is C hp (% by weight), which is a sintered body made of Cu, Te and refractory metal. An electric contact, wherein the Te content C Te (% by weight) is in the range of the formula (1).
C Te = C hp {(1.4 / d hp 2 ) + 8.75 × 10 −4 } ± 0.005 (1)
CuとTeと耐火性金属とからなる焼結体で、前記Cuと耐火性金属の界面において、その70〜90%に空隙を有する組織をなすことを特徴とする電気接点。   An electrical contact comprising a sintered body made of Cu, Te, and a refractory metal, and having a structure having voids in 70 to 90% of the interface between the Cu and the refractory metal. 前記耐火性金属は、MoあるいはCrのいずれか1種であることを特徴とする請求項1および2に記載の電気接点。   The electrical contact according to claim 1, wherein the refractory metal is one of Mo and Cr. 前記耐火性金属の含有量は、15〜40重量%であることを特徴とする請求項1〜3に記載の電気接点。   The electrical contact according to claim 1, wherein the content of the refractory metal is 15 to 40% by weight. CuとTeと耐火性金属それぞれの粉末を混合して得られる混合粉末を加圧成形し、Cuの融点以下の温度で加熱焼結することを特徴とする電気接点の製造方法。   A method for producing an electrical contact, comprising: pressing and molding a mixed powder obtained by mixing powders of Cu, Te, and a refractory metal, and heating and sintering at a temperature equal to or lower than a melting point of Cu. Cuの粉末と、表面にTeを被覆した耐火性金属の粉末とを混合して得られる混合粉末を加圧成形し、Cuの融点以下の温度で加熱焼結することを特徴とする電気接点の製造方法。   A mixed powder obtained by mixing Cu powder and refractory metal powder coated with Te on the surface is pressed and sintered at a temperature below the melting point of Cu. Production method. 前記加熱焼結は、圧力30Pa〜0.2MPaの不活性あるいは還元性雰囲気中でなすことを特徴とする請求項5および6に記載の電気接点の製造方法。   7. The method for manufacturing an electrical contact according to claim 5, wherein the heat sintering is performed in an inert or reducing atmosphere at a pressure of 30 Pa to 0.2 MPa. 前記耐火性金属の原料粉末は、平均粒径dhpは22〜88μmの範囲にあり、粒度分布の標準偏差をσとするとき、粒径がdhp±σの範囲の粉末を用いることを特徴とする請求項5および6に記載の電気接点の製造方法。 The raw material powder of the refractory metal has an average particle diameter d hp in the range of 22 to 88 μm, and a powder having a particle diameter in the range of d hp ± σ is used, where σ is the standard deviation of the particle size distribution. The method for manufacturing an electrical contact according to claim 5 and 6. 円盤状部材と、前記円盤状部材のアーク発生面の反対面に一体に接合された電極棒とを有し、前記円盤状部材が請求項1〜3に記載の電気接点からなる電極。   The electrode which has a disk-shaped member and the electrode rod integrally joined to the opposite surface of the arc generating surface of the disk-shaped member, and the disk-shaped member is an electrode formed of an electrical contact according to claims 1 to 3. 真空容器内に一対の固定側電極及び可動側電極とを備えた真空バルブにおいて、前記固定側電極及び可動側電極の少なくとも一方が、請求項5に記載の電極からなる真空バルブ。   6. A vacuum valve comprising a pair of fixed side electrode and movable side electrode in a vacuum vessel, wherein at least one of the fixed side electrode and movable side electrode comprises the electrode according to claim 5. 真空容器内に一対の固定側電極及び可動側電極を備えた真空バルブと、前記真空バルブ内の前記固定側電極及び可動側電極の各々に前記真空バルブ外に接続された導体端子と、前記可動側電極を駆動する開閉手段とを備えた真空遮断器において、前記真空バルブが請求項6に記載の真空バルブからなる真空遮断器。   A vacuum valve having a pair of fixed-side electrode and movable-side electrode in a vacuum vessel; a conductor terminal connected to each of the fixed-side electrode and movable-side electrode in the vacuum valve outside the vacuum valve; and the movable A vacuum circuit breaker comprising an opening / closing means for driving a side electrode, wherein the vacuum valve comprises the vacuum valve according to claim 6.
JP2007241725A 2007-09-19 2007-09-19 Electrical contact Expired - Fee Related JP4988489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007241725A JP4988489B2 (en) 2007-09-19 2007-09-19 Electrical contact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007241725A JP4988489B2 (en) 2007-09-19 2007-09-19 Electrical contact

Publications (2)

Publication Number Publication Date
JP2009076218A true JP2009076218A (en) 2009-04-09
JP4988489B2 JP4988489B2 (en) 2012-08-01

Family

ID=40611013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007241725A Expired - Fee Related JP4988489B2 (en) 2007-09-19 2007-09-19 Electrical contact

Country Status (1)

Country Link
JP (1) JP4988489B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9589751B2 (en) 2013-06-06 2017-03-07 Meidensha Corporation Sealed relay
US10910184B2 (en) 2013-06-06 2021-02-02 Meidensha Corporation Sealed relay

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0729446A (en) * 1993-07-14 1995-01-31 Meidensha Corp Manufacture of electrode for vacuum interrupter
JPH11144575A (en) * 1997-11-11 1999-05-28 Meidensha Corp Vacuum interrupter and its manufacture
JP2005135778A (en) * 2003-10-31 2005-05-26 Hitachi Ltd Electric contact and its manufacturing method, electrode for vacuum bulb, vacuum bulb using it, and vacuum interrupter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0729446A (en) * 1993-07-14 1995-01-31 Meidensha Corp Manufacture of electrode for vacuum interrupter
JPH11144575A (en) * 1997-11-11 1999-05-28 Meidensha Corp Vacuum interrupter and its manufacture
JP2005135778A (en) * 2003-10-31 2005-05-26 Hitachi Ltd Electric contact and its manufacturing method, electrode for vacuum bulb, vacuum bulb using it, and vacuum interrupter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9589751B2 (en) 2013-06-06 2017-03-07 Meidensha Corporation Sealed relay
US10910184B2 (en) 2013-06-06 2021-02-02 Meidensha Corporation Sealed relay

Also Published As

Publication number Publication date
JP4988489B2 (en) 2012-08-01

Similar Documents

Publication Publication Date Title
JP4979604B2 (en) Electrical contacts for vacuum valves
CN1776855B (en) Electrode, electrical contact and method of manufacturing the same
JP2007018835A (en) Electric contact for vacuum circuit breaker and its manufacturing method
WO2011162398A1 (en) Method for producing electrode material for vacuum circuit breaker, electrode material for vacuum circuit breaker and electrode for vacuum circuit breaker
JP4455066B2 (en) Electrical contact member, method of manufacturing the same, vacuum valve and vacuum circuit breaker using the same
US7662208B2 (en) Electrical contacts for vacuum circuit breakers and methods of manufacturing the same
JP6051142B2 (en) Electrical contact for vacuum valve and manufacturing method thereof
JP2005135778A (en) Electric contact and its manufacturing method, electrode for vacuum bulb, vacuum bulb using it, and vacuum interrupter
WO2018142709A1 (en) Method for manufacturing electrode material, and electrode material
JP2017050191A (en) Vacuum circuit breaker
US20060081560A1 (en) Vacuum circuit breaker, vacuum interrupter, electric contact and method of manufacturing the same
JP4988489B2 (en) Electrical contact
JP2011108380A (en) Electric contact for vacuum valve, and vacuum interrupter using the same
JP2010061935A (en) Electrical contacts, methods of manufacturing the same, and switchgear for electric power
JP2008021590A (en) Electrical contact for vacuum valve, its manufacturing method, electrode for vacuum valve, vacuum valve, and vacuum breaker
JPS5994320A (en) Electric contact for vacuum breaker
JP2003147407A (en) Electric contact, its manufacturing method, and vacuum valve and vacuum circuit breaker using the same
JP5159947B2 (en) Electrical contact for vacuum valve and vacuum circuit breaker using the same
JP4209183B2 (en) Contact material for vacuum valves
US3590197A (en) Electrical contacts containing gettering material
JPH1150177A (en) Contact material for vacuum circuit breaker, its production and vacuum circuit breaker
JP2007059107A (en) Electrical contact
JP2004342441A (en) Electric contact and its manifacturing method, vacuum valve using it and each use
JP2007213813A (en) Electrical contact and its manufacturing method
JP2003183749A (en) Vacuum circuit-breaker and contact material for this

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees