JPH07288233A - Film forming apparatus - Google Patents

Film forming apparatus

Info

Publication number
JPH07288233A
JPH07288233A JP7901294A JP7901294A JPH07288233A JP H07288233 A JPH07288233 A JP H07288233A JP 7901294 A JP7901294 A JP 7901294A JP 7901294 A JP7901294 A JP 7901294A JP H07288233 A JPH07288233 A JP H07288233A
Authority
JP
Japan
Prior art keywords
frequency power
deposited film
forming apparatus
film forming
high frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7901294A
Other languages
Japanese (ja)
Inventor
Tatsuyuki Aoike
達行 青池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP7901294A priority Critical patent/JPH07288233A/en
Publication of JPH07288233A publication Critical patent/JPH07288233A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To perform the plasma processing of a substrate having the large area uniformly with good reproducibility by detecting the value of the current flowing through a process gas feeder, and adjusting the high-frequency power quantity introduced with a high-frequency power supply. CONSTITUTION:A degreased and cleaned substrate 101 is provided in a reaction container 100. The gas in the reaction container is discharged, and the substrate 101 is controlled at the intended temperature. The raw material gas at the intended temperature is supplied into an inner chamber 111 through a process gas pipe 103. At this time, the pressure is set at the intended inner pressure, the value of the current flowing into the pipe 103 is measured with a current measuring device 112 and a high-frequency power supply 107 and matching box 106 are adjusted so that the current value becomes the intended value. The high-frequency power is applied on a high- -frequency electrode 102, and glow discharge is formed. The raw material gas is decomposed by the discharging energy, and the intended deposit film is formed on the substrate 101. Therefore, the plasma processing of the substrate 101 can be uniformly performed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は堆積膜形成装置に係り、
より詳細には、円筒状導電性基体上に堆積膜、とりわけ
機能性堆積膜、特に半導体デバイス、電子写真用光受容
部材、画像入力用ライセンサー、撮像デバイス、光起電
力デバイス等に用いるアモルファス半導体等を形成する
プラズマCVDによる堆積膜形成装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a deposited film forming apparatus,
More specifically, a deposited film, especially a functional deposited film, on a cylindrical conductive substrate, particularly an amorphous semiconductor used for a semiconductor device, a photoreceptive member for electrophotography, an image input licensor, an imaging device, a photovoltaic device, or the like. The present invention relates to a deposited film forming apparatus by plasma CVD for forming the like.

【0002】[0002]

【従来の技術】半導体デバイス、電子写真用光受容部
材、画像入力用ライセンサー、映像デバイス、光起電力
デバイス、またその他の各種エレクトロニクス素子等に
用いる素子部材として、アモルファスシリコン、例えば
水素または/及びハロゲンで補償されたアモルファスシ
リコン等のアモルファス材料で構成された半導体等用の
堆積膜が提案され、その中のいくつかは実用に付されて
いる。
2. Description of the Related Art Amorphous silicon such as hydrogen and / or hydrogen is used as an element member for semiconductor devices, photoreceptive members for electrophotography, licensors for image input, video devices, photovoltaic devices, and various other electronic elements. Deposited films for semiconductors and the like, which are composed of an amorphous material such as halogen-compensated amorphous silicon, have been proposed, and some of them have been put to practical use.

【0003】しかし、これらのデバイスのいくつかは、
その生産において特性やコストなどの面で問題を持って
いるものもある。例えば電子写真用光受容部材を製造す
る場合では、比較的大面積に堆積膜を形成することもあ
り、堆積膜の膜厚や電気特性を均一に形成することが難
しく、充分な生産性や歩留りを確保出来る堆積膜形成装
置が求められている。
However, some of these devices are
Some of them have problems in characteristics and cost in their production. For example, when manufacturing a photoreceptive member for electrophotography, a deposited film may be formed on a relatively large area, making it difficult to form a uniform film thickness and electrical characteristics of the deposited film, resulting in sufficient productivity and yield. There is a demand for a deposited film forming apparatus that can secure the above.

【0004】従来の堆積膜形成装置の一例を図7に示
す。図7(a)は従来の堆積膜形成装置の1例の横断面
を模式的に示した図であり、図7(b)は前記堆積膜形
成装置の縦断面を模式的に示した図である。
FIG. 7 shows an example of a conventional deposited film forming apparatus. FIG. 7A is a diagram schematically showing a cross section of an example of a conventional deposited film forming apparatus, and FIG. 7B is a diagram schematically showing a vertical section of the deposited film forming apparatus. is there.

【0005】図7(a)、(b)において700は反応
容器であり、排気管705を介して排気装置(不図示)
に接続されている。成膜用の原料ガス、例えばシランガ
ス、メタンガス、ジボランガス、ホスフィンガスなどは
ボンベ、圧力調整器、マスフローコントローラー、バル
ブ等より構成される原料ガス供給系(不図示)に接続さ
れた原料ガス供給管703より、チャンバ内部に同心円
状に配置された基体701によって形成された内部チャ
ンバ711内部に供給される。
In FIGS. 7A and 7B, reference numeral 700 is a reaction vessel, and an exhaust device (not shown) is provided through an exhaust pipe 705.
It is connected to the. The raw material gas for film formation, for example, silane gas, methane gas, diborane gas, phosphine gas, etc., is connected to a raw material gas supply system (not shown) 703 connected to a raw material gas supply system including a cylinder, a pressure regulator, a mass flow controller, a valve and the like. Is supplied to the inside of the internal chamber 711 formed by the base body 701 arranged concentrically inside the chamber.

【0006】内部チャンバ711内のガス圧は、通常の
場合1×10-5〜10Torrの所望の圧力となるよう
に、排気速度が調整される。
The exhaust speed is adjusted so that the gas pressure in the internal chamber 711 is usually a desired pressure of 1 × 10 -5 to 10 Torr.

【0007】マイクロ波電源(不図示)からアイソレー
ター(不図示)、導波管714、マイクロ波導入窓71
3を経て、例えば2.45GHzのマイクロ波電力を内
部チャンバ711内部に導入することにより、内部チャ
ンバ711内にグロー放電を発生させ、基体701上に
堆積膜を形成する。基体701はホルダー(不図示)を
介して回転軸708により支持されている。さらに回転
軸はギヤ710を介してモーター709と接続され、モ
ーターにより基体を回転させることによって、基体70
1上に均一な堆積膜が形成される。
From a microwave power source (not shown) to an isolator (not shown), a waveguide 714, a microwave introduction window 71.
By introducing microwave power of, for example, 2.45 GHz into the internal chamber 711 through 3, the glow discharge is generated in the internal chamber 711 and a deposited film is formed on the substrate 701. The base 701 is supported by a rotary shaft 708 via a holder (not shown). Further, the rotation shaft is connected to a motor 709 via a gear 710, and the base is rotated by the motor to generate the base 70.
A uniform deposited film is formed on the surface 1.

【0008】また基体701はヒーター704によっ
て、堆積膜の形成に必要な温度、例えば100〜400
℃まで加熱される。
The substrate 701 is heated by a heater 704 at a temperature required for forming a deposited film, for example, 100 to 400.
Heated to ℃.

【0009】このような従来の堆積膜形成装置を用い
て、前述した問題点を改善する堆積膜形成装置として、
特開平3−219081号公報に、マイクロ波を用いた
プラズマCVD法による堆積膜の形成方法が開示されて
いる。該公報によれば、反応容器内に基体、マイクロ波
導入手段、原料ガス導入手段を配置し、原料ガス導入手
段と基体間との間に電界を形成して両者間に放電を生じ
させることにより膜厚や電気特性の均一性を高める堆積
膜の形成方法が開示されている。
Using such a conventional deposited film forming apparatus, as a deposited film forming apparatus for improving the above-mentioned problems,
Japanese Unexamined Patent Publication No. 3-219081 discloses a method of forming a deposited film by a plasma CVD method using microwaves. According to the publication, by disposing a substrate, a microwave introducing means, and a raw material gas introducing means in a reaction vessel, an electric field is formed between the raw material gas introducing means and the substrate to generate a discharge between them. A method of forming a deposited film that improves the uniformity of film thickness and electrical characteristics is disclosed.

【0010】本発明者は、上記のような堆積膜形成装置
において、原料ガス導入手段と基体間に高周波電力を印
加することにより堆積膜の性能をより向上させ得る可能
性を見いだし検討を進めた所、性能の向上が認められる
反面、高周波電力やマイクロ波電力を再現性良く導入す
ることが難しく、堆積膜の特性にばらつきが多かった
り、場合によっては放電が不安定になるなどして、再現
性良く堆積膜を形成するのが難しくて、結果として製造
されるデバイスのコストを押し上げる要因となる問題が
あることを解明した。
The inventor of the present invention found out the possibility of further improving the performance of the deposited film by applying high-frequency power between the source gas introducing means and the substrate in the above-described deposited film forming apparatus and proceeded with the study. However, while improvement in performance is recognized, it is difficult to introduce high-frequency power and microwave power with good reproducibility, there are many variations in the characteristics of the deposited film, and in some cases discharge becomes unstable, so reproduction is possible. It has been clarified that it is difficult to form a deposited film with good properties, which results in a problem that increases the cost of the manufactured device.

【0011】以上のように、従来の堆積膜形成装置で
は、性能の向上を目指しながら、生産性、特性の均一性
をすべて満足させることは難しかった。
As described above, in the conventional deposited film forming apparatus, it has been difficult to satisfy all the productivity and the uniformity of characteristics while aiming to improve the performance.

【0012】[0012]

【発明が解決しようとする課題】本発明の目的は、上述
のような従来の問題点を克服し、従来のプラズマプロセ
スでは達成出来なかった比較的大面積の基体を均一に再
現性良くプラズマ処理することが可能な堆積膜形成装置
を提供することにある。
SUMMARY OF THE INVENTION The object of the present invention is to overcome the above-mentioned problems of the prior art and to uniformly and reproducibly perform plasma processing on a substrate having a relatively large area, which cannot be achieved by the conventional plasma process. It is an object of the present invention to provide a deposited film forming apparatus capable of performing the above.

【0013】更には、製造時間が短く低コストであり、
例えば、画像特性に優れた電子写真用感光体を製造する
のに最適な堆積膜形成装置を提供することを目的とす
る。
Further, the manufacturing time is short and the cost is low,
For example, it is an object of the present invention to provide an optimum deposited film forming apparatus for producing an electrophotographic photoreceptor having excellent image characteristics.

【0014】[0014]

【課題を解決するための手段】上記目的を達成する本発
明の堆積膜形成装置は、減圧可能な反応容器内において
同一円周上に配置される複数の円筒状導電性基体を回転
させるための手段と、原料ガスを前記円筒状導電性基体
の配置円内に導入するための原料ガス導入手段と、高周
波電力を前記円筒状導電性基体の配置円内に導入するた
めの高周波電力導入手段とを有する、前記円筒状導電性
基体上に堆積膜を形成する堆積膜形成装置において、前
記原料ガス導入手段を導電性部材により構成し、該原料
ガス導入手段に流れる電流値を検知するための電流検知
手段と、該電流値が所望の値となるように、前記高周波
電力導入手段により導入される高周波電力量を調整する
ため手段とを設けたことを特徴とする。
The deposited film forming apparatus of the present invention which achieves the above object is for rotating a plurality of cylindrical conductive substrates arranged on the same circumference in a depressurizable reaction vessel. Means, a source gas introducing means for introducing a source gas into the arrangement circle of the cylindrical conductive substrate, and a high frequency power introducing means for introducing high frequency power into the arrangement circle of the cylindrical conductive substrate In the deposited film forming apparatus for forming a deposited film on the cylindrical conductive substrate, the raw material gas introducing means is composed of a conductive member, and a current for detecting a current value flowing through the raw material gas introducing means. It is characterized in that a detecting means and a means for adjusting the amount of high frequency power introduced by the high frequency power introducing means are provided so that the current value becomes a desired value.

【0015】なお、前記高周波電力の周波数は、20M
Hz〜450MHzであることが望ましい。
The frequency of the high frequency power is 20M.
It is desirable that the frequency is in the range of Hz to 450 MHz.

【0016】[0016]

【作用】本発明の構成によれば、大面積の基体上に、均
一に再現性良く堆積膜を形成することが出来る効果を生
むものである。
According to the constitution of the present invention, the effect that the deposited film can be uniformly and reproducibly formed on the large-area substrate is produced.

【0017】以下本発明の完成に至った経緯と、本発明
の作用について詳細に説明する。
The background of the completion of the present invention and the operation of the present invention will be described in detail below.

【0018】従来の堆積膜形成装置では、前記特開平3
−219081号公報に記載されてるように、主に前記
円筒状導電性基体の配置円内に形成される放電空間内に
マイクロ波電力を導入し、該放電空間内の原料ガス導入
手段と基体との間に直流電界を印加する構成が採られて
いた。本発明者は、前述したように、前記放電空間内に
高周波電力を導入することにより、生産性が高く、特性
も優れた堆積膜を得ることが可能であるとの知見を得て
検討を進めたところ、堆積膜の特性を再現性良く得るこ
が難しいという問題が発生した。
In the conventional deposited film forming apparatus, the above-mentioned Japanese Patent Laid-Open No.
No. 219081, microwave power is mainly introduced into the discharge space formed in the arrangement circle of the cylindrical conductive substrate, and the raw material gas introduction means and the substrate in the discharge space are provided. A configuration in which a DC electric field is applied between the two has been adopted. As described above, the present inventor has advanced the study by obtaining the knowledge that it is possible to obtain a deposited film having high productivity and excellent characteristics by introducing high frequency power into the discharge space. However, there was a problem that it was difficult to obtain the characteristics of the deposited film with good reproducibility.

【0019】つまりは、高周波電力を放電空間内に導入
するには、高周波電源から発生する高周波電力をマッチ
ングボックスに導入し、該マッチングボックスにより、
放電空間内へ高周波電力が効率よく導入されるように整
合をとってから、放電空間内に高周波電力を導入し、そ
の際に高周波電源とマッチングボックス間に設けた高周
波電力計により、導入する高周波電力の出力を制御して
いた。しかしながら、高周波電力はその搬送経路周囲の
インダクタンス成分に非常に影響されやすいために、高
周波電力の搬送経路の構成部品、特には放電空間近辺に
配置される装置の構成部品の配置位置精度や部品自体の
バラツキ等により、高周波電力計が示す電力値と、実際
に放電空間に導入される電力値が、必ずしも再現性良く
一致しないため、堆積膜の特性再現性が損なわれること
を知見した。
That is, in order to introduce the high frequency power into the discharge space, the high frequency power generated from the high frequency power source is introduced into the matching box, and by the matching box,
After matching so that the high frequency power is efficiently introduced into the discharge space, the high frequency power is introduced into the discharge space, and at that time, the high frequency power meter installed between the high frequency power supply and the matching box introduces the high frequency power. It controlled the power output. However, since the high frequency power is very easily affected by the inductance component around the carrier path, the component position of the carrier path of the high frequency power, particularly the arrangement position accuracy of the component parts of the device arranged in the vicinity of the discharge space and the component itself. It has been found that the electric power value indicated by the high-frequency power meter and the electric power value actually introduced into the discharge space do not always match with good reproducibility due to variations in the above, and thus the reproducibility of the characteristics of the deposited film is impaired.

【0020】本発明者は、以上の知見に基づき、放電空
間内に導入される高周波電力をより直接的に検知して制
御することにより、特性再現性の優れた堆積膜を得る装
置構成を検討した結果、本発明の完成に至ったものであ
る。
On the basis of the above findings, the present inventor examined a device configuration for obtaining a deposited film having excellent characteristic reproducibility by more directly detecting and controlling the high frequency power introduced into the discharge space. As a result, the present invention has been completed.

【0021】すなわち、放電空間内に高周波電力導入手
段と原料ガス導入手段を別個に設け、該原料ガス導入手
段を導電性部材として放電空間外で接地し、放電空間内
に生じる電界により、該原料ガス導入手段に流れ込む電
流値を検知し、その電流値が所望の値となるように高周
波電力の導入量を制御することにより、放電空間内に導
入される高周波電力をより正確に制御することが可能と
なった。
That is, the high-frequency power introduction means and the raw material gas introduction means are separately provided in the discharge space, the raw material gas introduction means is grounded outside the discharge space as a conductive member, and the raw material is generated by the electric field generated in the discharge space. It is possible to more accurately control the high frequency power introduced into the discharge space by detecting the current value flowing into the gas introducing means and controlling the amount of the high frequency power introduced so that the current value becomes a desired value. It has become possible.

【0022】放電空間内に導入する高周波電力の周波数
はいずれのものであっても差し支えないが、本発明者の
実験によれば、周波数が20MHz未満の場合は、条件
によっては放電が不安定となり、堆積膜の形成条件に制
限が生じる場合があった。また450MHzより大きい
と、高周波電力の伝送特性が悪化し、場合によってグロ
ー放電を発生させること自体が困難になることもっあっ
た。したがって、20MHz〜450MHzの周波数範
囲が本発明には最適である。
The frequency of the high-frequency power introduced into the discharge space may be any frequency, but according to the experiments conducted by the present inventor, when the frequency is less than 20 MHz, the discharge becomes unstable depending on the conditions. In some cases, the conditions for forming the deposited film are limited. On the other hand, if the frequency is higher than 450 MHz, the transmission characteristics of high frequency power may be deteriorated, and in some cases, it may be difficult to generate glow discharge itself. Therefore, the frequency range of 20 MHz to 450 MHz is optimal for the present invention.

【0023】高周波の波形は、いずれのものでも差し支
えないか、サイン波、矩形波等が適する。また高周波電
力の大きさは、目的とする堆積膜の特性等により、適宜
決定されるが、基体1個あたり10〜5000Wが望ま
しく、さらに20〜2000Wがより望ましい。
Any high-frequency waveform may be used, and a sine wave, a rectangular wave, or the like is suitable. The magnitude of the high-frequency power is appropriately determined according to the characteristics of the target deposited film and the like, but is preferably 10 to 5000 W, and more preferably 20 to 2000 W per substrate.

【0024】本発明に用いられる高周波電力導入手段の
材質としては、基本的には導電性の材質のものならばい
ずれでも良く、その材質はたとえばAl,Cr,Mo,
Au,In,Nb,Ni,Te,V,Ti,Pt,P
b,Fe等の金属、およびこれらの合金、たとえばステ
ンレス等が挙げられる。また表面を導電処理したガラ
ス、セラミック等も用いることができる。
The high-frequency power introducing means used in the present invention may be basically made of any conductive material, such as Al, Cr, Mo, or the like.
Au, In, Nb, Ni, Te, V, Ti, Pt, P
Examples thereof include metals such as b and Fe, and alloys thereof such as stainless steel. Further, glass, ceramic, or the like whose surface is treated to be conductive can also be used.

【0025】高周波電力導入手段の形状は、特に制限は
ないが、本発明では円筒状のものが最適である。また、
高周波電力導入手段の大きさは、小さすぎても本発明の
効果が現れにくく、大き過ぎても高周波電力導入手段に
付着する堆積膜が多くなり基体上の堆積速度を低下させ
てしまう。また、条件によっては、放電を乱してしま
う。本発明の高周波電力導入手段の断面積は、放電空間
のそれの100分の1から、10分の1程度が好まし
い。高周波電力導入手段の長さは、基体の長さよりも1
%から10%程度長いことが好ましいが、逆に基体より
も短い場合でも本発明は有効である。
The shape of the high frequency power introducing means is not particularly limited, but in the present invention, the cylindrical shape is optimal. Also,
If the size of the high-frequency power introducing means is too small, the effect of the present invention is hard to appear, and if it is too large, a large amount of deposited film adheres to the high-frequency power introducing means, and the deposition rate on the substrate decreases. Further, depending on the conditions, the discharge is disturbed. The cross-sectional area of the high-frequency power introducing means of the present invention is preferably about 1/100 to 1/10 of that of the discharge space. The length of the high-frequency power introduction means is 1 than the length of the base body.
% To 10% is preferable, but the present invention is effective even when it is shorter than the substrate.

【0026】更には、高周波電力導入手段を放電空間内
に複数設けることにより、放電空間内の放電分布を更に
最適化することも出来る。
Furthermore, by providing a plurality of high frequency power introducing means in the discharge space, the discharge distribution in the discharge space can be further optimized.

【0027】本発明に用いられる原料ガス導入手段の材
質としては、導電性のものであればいずれのものでもよ
く、その材質はたとえばAl,Cr,Mo,Au,I
n,Nb,Ni,Te,V,Ti,Pt,Pb,Fe等
の金属、およびこれらの合金、たとえばステンレス等が
挙げられる。また表面を導電処理したガラス、セラミッ
クス等も用いることができる。
The material of the raw material gas introducing means used in the present invention may be any material as long as it is conductive, and the material is, for example, Al, Cr, Mo, Au, I.
Examples thereof include metals such as n, Nb, Ni, Te, V, Ti, Pt, Pb and Fe, and alloys thereof such as stainless steel. Further, glass, ceramics or the like whose surface is subjected to a conductive treatment can also be used.

【0028】また、原料ガス導入手段の形状としては、
特に制限は無いが、本発明では、円筒状のものが最適で
あり、断面の直径は3mm以上が本発明では特に有効で
あり、特に5mm以上、20mm以下が最適である。
Further, the shape of the source gas introducing means is as follows.
Although not particularly limited, a cylindrical shape is optimal in the present invention, and a cross-sectional diameter of 3 mm or more is particularly effective in the present invention, and particularly 5 mm or more and 20 mm or less.

【0029】更に、原料ガス導入手段に設けられるガス
放出孔の放出の方向としては、複数の方向を持っている
ものが良く、好ましくは放電空間全体に広がる方向が適
している。又あるいは、材質自体ポーラスなもので全方
向に均一にガスを導入するのもよい。
Furthermore, it is preferable that the gas discharge holes provided in the source gas introducing means have a plurality of directions, and preferably a direction that spreads over the entire discharge space. Alternatively, the material itself may be porous and the gas may be introduced uniformly in all directions.

【0030】又、原料ガス導入手段を放電空間内に複数
設けることにより、放電空間内の原料ガスの分布を更に
均一にすることも出来る。
Further, by providing a plurality of source gas introducing means in the discharge space, the distribution of the source gas in the discharge space can be made more uniform.

【0031】また本発明では、放電空間内に、マイクロ
波電力を導入する手段を設けることもできる。マイクロ
波電力を導入することにより、堆積膜の特性を損なわず
に堆積速度を向上させて、より生産性の高い堆積膜形成
装置を得ることが出来る。マイクロ波電力を導入する手
段は、基体の両端方向からマイクロ波を導入するのが一
般的である。
Further, in the present invention, means for introducing microwave power may be provided in the discharge space. By introducing microwave power, the deposition rate can be improved without impairing the characteristics of the deposited film, and a deposited film forming apparatus with higher productivity can be obtained. As a means for introducing microwave power, it is common to introduce microwaves from both ends of the substrate.

【0032】本発明に用いられるマイクロ波導入窓の材
質としては、マイクロ波エネルギーの損失の少ないもの
が好ましく、且つ放電空間内を真空に保つ必要があるこ
とから、アルミナセラミックス、窒化アルミニウム、窒
化ホウ素、酸化珪素、炭化珪素、窒化珪素、テフロン
(登録商標)、ポリスチレン等を用いることが出来る。
The material of the microwave introduction window used in the present invention is preferably one that causes little loss of microwave energy, and since it is necessary to maintain a vacuum in the discharge space, alumina ceramics, aluminum nitride, boron nitride. , Silicon oxide, silicon carbide, silicon nitride, Teflon (registered trademark), polystyrene and the like can be used.

【0033】放電空間内に導入するマイクロ波電力の周
波数は、500MHz以上が好ましく、2.45GHz
が最適である。
The frequency of the microwave power introduced into the discharge space is preferably 500 MHz or higher, and 2.45 GHz.
Is the best.

【0034】またマイクロ波電力の大きさは、目的とす
る堆積膜の特性等により、適宜決定されるが、基体1個
あたり10〜5000Wが好ましく、さらに20〜20
00Wがより望ましい。
The magnitude of the microwave power is appropriately determined according to the characteristics of the target deposited film and the like, but is preferably 10 to 5000 W per substrate, and further 20 to 20 W.
00W is more desirable.

【0035】本発明に用いられる基体は、円筒形で導電
性のものであればいずれのものでもよく、その材質はた
とえばAl,Cr,Mo,Au,In,Nb,Te,
V,Ti,Pt,Pb,Fe等の金属、およびこれらの
合金、たとえばステンレス等が挙げられる。またポリエ
ステル、ポリスチレン、ポリカーボネイト、セルロース
アセテート、ポリプロピレン、ポリ塩化ビニル、ポリエ
チレン、ポリアミド等の合成樹脂のシート、ガラス、セ
ラミック等の電気絶縁性基体の少なくとも堆積膜を形成
する側の表面を導電処理した基体も用いることができ
る。さらに堆積膜を形成する側と反対側も導電処理する
ことが望ましい。
The substrate used in the present invention may be any one as long as it is cylindrical and conductive, and its material is, for example, Al, Cr, Mo, Au, In, Nb, Te,
Examples thereof include metals such as V, Ti, Pt, Pb, and Fe, and alloys thereof such as stainless steel. In addition, a sheet of synthetic resin such as polyester, polystyrene, polycarbonate, cellulose acetate, polypropylene, polyvinyl chloride, polyethylene, polyamide, etc., or an electrically insulating substrate such as glass, ceramic, etc., at least the surface on the side where the deposited film is formed is subjected to a conductive treatment. Can also be used. Further, it is desirable that the side opposite to the side on which the deposited film is formed be subjected to conductive treatment.

【0036】基体の表面形状は、平滑平面、または凹凸
表面とすることができる。例えば電子写真用光受容部材
などで、レーザー光などの可干渉性光を用いて像記録を
行う場合には、可視画像において現われる干渉縞模様に
よる画像不良を解消するために、特開昭60−1681
56号公報、同60−178457号公報、同60−2
25854号公報等に記載された公知の方法により作製
された凹凸表面であることができる。
The surface shape of the substrate can be a smooth flat surface or an uneven surface. For example, when an image is recorded using a coherent light such as a laser beam on a light receiving member for electrophotography, in order to eliminate an image defect due to an interference fringe pattern appearing in a visible image, JP-A-60- 1681
56, 60-178457 and 60-2.
It can be an uneven surface produced by a known method described in Japanese Patent No. 25854.

【0037】[0037]

【実施態様例】以下図面を用いて本発明の堆積膜形成装
置をより詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The deposited film forming apparatus of the present invention will be described in more detail with reference to the drawings.

【0038】図1(a)は本発明の堆積膜形成装置の1
例の横断面を模式的に示した図である。図1(b)は前
記堆積膜形成装置の縦断面を模式的に示した図である。
FIG. 1A shows a deposition film forming apparatus 1 according to the present invention.
It is the figure which showed the cross section of an example typically. FIG. 1B is a diagram schematically showing a vertical cross section of the deposited film forming apparatus.

【0039】図1(a)、(b)において100は反応
容器であり、排気管105を介して排気装置(不図示)
に接続されている。反応容器100は、真空気密構造で
あればよく、その形状はいずれでも差し支えないが、円
筒、直方体等の形状が一般に用いられる。またその材質
もいずれでもよいが、機械的強度、高周波電力の漏洩防
止などの観点からAl、ステンレス等の金属あるいは合
金が望ましい。
In FIGS. 1A and 1B, 100 is a reaction vessel, and an exhaust device (not shown) is provided via an exhaust pipe 105.
It is connected to the. The reaction container 100 may have any structure as long as it has a vacuum airtight structure, and any shape may be used. Any material may be used, but metals or alloys such as Al and stainless steel are preferable from the viewpoint of mechanical strength and prevention of leakage of high frequency power.

【0040】原料ガスはボンベ、圧力調整器、マスフロ
ーコントローラー、バルブ等より構成される原料ガス供
給系(不図示)に接続された原料ガス供給管103より
基体101によって形成された内部チャンバ111内部
に供給される。
The raw material gas is introduced into the internal chamber 111 formed by the substrate 101 from a raw material gas supply pipe 103 connected to a raw material gas supply system (not shown) composed of a cylinder, a pressure regulator, a mass flow controller, a valve and the like. Supplied.

【0041】本発明において使用される原料ガスは、例
えばアモルファスシリコンを形成する場合にはSi
4,Si26等のガス状態の、またはガス化し得る水
素化珪素(シラン類)が、Si供給用ガスとして有効に
使用される。また、水素化珪素のほかにも、弗素原子を
含む珪素化合物、いわゆる弗素原子で置換されたシラン
誘導体、具体的には、たとえばSiF4,Si26等の
フッ化珪素や、SiH3F,SiH22,SiHF3等の
弗素置換水素化珪素等、ガス状の、またはガス化し得る
物質も本発明のSi供給用ガスとしては有効である。ま
た、これらのSi供給用の原料ガスを必要に応じて
2,He,Ar,Ne等のガスにより希釈して使用し
ても本発明には何等差し支えない。
The source gas used in the present invention is, for example, Si when forming amorphous silicon.
Silicon hydrides (silanes) in a gas state such as H 4 and Si 2 H 6 or capable of being gasified are effectively used as the Si supply gas. Further, in addition to silicon hydride, a silicon compound containing a fluorine atom, a so-called silane derivative substituted with a fluorine atom, specifically, silicon fluoride such as SiF 4 , Si 2 F 6 or SiH 3 F is used. , SiH 2 F 2 , SiHF 3 and other fluorine-substituted silicon hydrides are also effective as the Si supply gas of the present invention. Further, any way no problem to be present invention used as diluted by these H 2 as needed starting material gas for Si supply, the He, Ar, gas Ne or the like.

【0042】さらには前記のガスに加えて、必要に応じ
て周期律表3族に属する原子、または周期律表5族に属
する原子を、いわゆるドーパントとして用いることもで
きる。例えばホウ素原子(B)を用いる場合には、B2
6,B410等の水素化硼素、BF3,BCl3等のハロ
ゲン化硼素等が挙げられる。またリン原子を用いる場合
には、PH3,P24等の水素化燐、PH4I,PF3
PCl3,PBr3,PI3等のハロゲン化燐が使用でき
る。
Further, in addition to the above-mentioned gas, an atom belonging to Group 3 of the Periodic Table or an atom belonging to Group 5 of the Periodic Table can be used as a so-called dopant, if necessary. For example, when using a boron atom (B), B 2
Examples thereof include boron hydrides such as H 6 and B 4 H 10 and boron halides such as BF 3 and BCl 3 . When a phosphorus atom is used, PH 3 , P 2 H 4 and other hydrogenated phosphorus, PH 4 I, PF 3 ,
Phosphorus halides such as PCl 3 , PBr 3 and PI 3 can be used.

【0043】また、例えばアモルファスシリコンカーバ
イト(a−SiC)を形成する場合には、前記の原料ガ
スのほかに、炭素原子導入用のガスとして、CとHとを
構成原子とする、例えば炭素数1〜5の飽和炭化水素、
炭素数2〜4のエチレン系炭化水素、炭素数2〜3のア
セチン系炭化水素等を使用できる。具体的には、飽和炭
化水素としては、メタン(CH4)、エタン(C26
等、エチレン系炭化水素としては、エチレン(C
24)、プロピレン(C36)等、アセチレン系炭化水
素としては、アセチレン(C22)、メチルアセチレン
(C34)等が挙げられる。
In addition, for example, when forming amorphous silicon carbide (a-SiC), in addition to the above-mentioned raw material gas, as a gas for introducing carbon atoms, C and H whose constituent atoms are, for example, carbon. A saturated hydrocarbon of the numbers 1 to 5,
Ethylene hydrocarbons having 2 to 4 carbon atoms, acetin hydrocarbons having 2 to 3 carbon atoms, and the like can be used. Specifically, saturated hydrocarbons include methane (CH 4 ), ethane (C 2 H 6 ).
Etc., ethylene (C
2 H 4 ), propylene (C 3 H 6 ) and the like, acetylene hydrocarbons include acetylene (C 2 H 2 ) and methylacetylene (C 3 H 4 ).

【0044】また、例えばアモルファス酸化シリコン
(a−SiO)を形成する場合には、前記の原料ガスの
ほかに、酸素原子導入用のガスとして使用出来るものと
して、酸素(O2)、オゾン(O3)、一酸化窒素(N
O)、二酸化窒素(NO2)、一二酸化窒素、(N
2O)、三二酸化窒素(N23)、四二酸化窒素(N2
4)、五二酸化窒素(N25)、三酸化窒素(NO3)、
シリコン原子(Si)と酸素原子(O)と水素原子
(H)とを構成原子とする例えば、ジシロキサン(H3
SiOSiH3)、トリシロキサン(H3SiOSiH2
OSiH3)等の低級シロキサン等を挙げることができ
る。
In the case of forming amorphous silicon oxide (a-SiO), for example, oxygen (O 2 ) and ozone (O 2 ) can be used as the gas for introducing oxygen atoms in addition to the above-mentioned raw material gas. 3 ), nitric oxide (N
O), nitrogen dioxide (NO 2 ), nitrogen monoxide, (N
2 O), nitrogen trioxide (N 2 O 3 ), tetranitrogen dioxide (N 2 O
4 ), nitrogen pentoxide (N 2 O 5 ), nitric oxide (NO 3 ),
A silicon atom (Si), an oxygen atom (O), and a hydrogen atom (H) are constituent atoms. For example, disiloxane (H 3
SiOSiH 3 ), trisiloxane (H 3 SiOSiH 2
Examples thereof include lower siloxanes such as OSiH 3 ).

【0045】本発明において、例えば、アモルファス窒
化シリコン(a−SiN)を形成する場合には、前記の
原料ガスのほかに、窒素原子導入用のガスとして使用出
来るものとして、窒素(N2)、アンモニア(NH3)、
ヒドラジン(H2NNH2)、アジ化水素(HN3)、ア
ンモニウム(NH43)等のガス状のまたはガス化し得
る窒素、窒素物及びアジ化物等の窒素化合物を挙げるこ
とができる。この他に、窒素原子の供給に加えて、ハロ
ゲン原子の供給も行えるという点から、三弗化窒素(F
3N)、四弗化窒素(F42)等のハロゲン化窒素化合
物を挙げることができる。
In the present invention, for example, in the case of forming amorphous silicon nitride (a-SiN), nitrogen (N 2 ), which can be used as a gas for introducing nitrogen atoms, in addition to the above-mentioned raw material gas, Ammonia (NH 3 ),
Mention may be made of gaseous or gasifiable nitrogen compounds such as hydrazine (H 2 NNH 2 ), hydrogen azide (HN 3 ), ammonium (NH 4 N 3 ), nitrogen compounds such as nitrogen compounds and azides. In addition to this, nitrogen trifluoride (F) can be supplied in addition to the supply of nitrogen atoms.
Nitrogen halide compounds such as 3 N) and nitrogen tetrafluoride (F 4 N 2 ) can be mentioned.

【0046】原料ガス供給管103は、電流測定器11
2を通して接地されている。高周波電力導入手段(高周
波電極)102は、マッチングボックス106を介して
高周波電源107と接続され、この高周波電極102に
高周波電力を付与することによって、高周波電極102
と基体101との間で放電を生じさせ、内部チャンバ1
11内にプラズマを発生させる。基体101はホルダー
(不図示)を介して回転軸108により支持されてい
る。さらに回転軸はギヤ110を介してモーター109
と接続され、モーターにより基体を回転させることによ
って、基体101上に均一な堆積膜が形成される。
The source gas supply pipe 103 is connected to the current measuring device 11
It is grounded through 2. The high-frequency power introducing means (high-frequency electrode) 102 is connected to a high-frequency power source 107 via a matching box 106, and by applying high-frequency power to the high-frequency electrode 102, the high-frequency electrode 102.
A discharge is generated between the inner chamber 1 and the substrate 101.
Plasma is generated in 11. The base body 101 is supported by the rotating shaft 108 via a holder (not shown). Further, the rotating shaft is connected to the motor 109 via the gear 110.
A uniform deposited film is formed on the substrate 101 by being connected to the substrate and rotating the substrate by a motor.

【0047】また基体101はヒーター104によっ
て、堆積膜の形成に必要な温度まで加熱される。この基
体の温度は目的とする堆積膜の特性により適宜最適範囲
が選択されるが、通常の場合、好ましくは20〜500
℃、より好ましくは50〜480℃、最適には100〜
450℃とするのが望ましい。
The substrate 101 is heated by the heater 104 to a temperature necessary for forming a deposited film. The temperature of the substrate is appropriately selected depending on the characteristics of the target deposited film, but in the normal case, it is preferably 20 to 500.
° C, more preferably 50-480 ° C, optimally 100-
The temperature is preferably 450 ° C.

【0048】反応容器内のガス圧も同様に目的とする堆
積膜の特性により適宜最適範囲が選択されるが、通常の
場合、好ましくは1×10-5〜10Torr、更に好ま
しくは5×10-5〜3Torr、最適には1×10-4
1Torrである。
Similarly, the gas pressure in the reaction vessel is appropriately selected depending on the desired characteristics of the deposited film, but in the usual case, it is preferably 1 × 10 −5 to 10 Torr, more preferably 5 × 10 −. 5 to 3 Torr, optimally 1 x 10 -4 ~
It is 1 Torr.

【0049】次に図1の装置を用いた堆積膜形成の手順
について説明する。この装置を用いた堆積膜の形成は、
例えば以下のように行うことができる。
Next, a procedure for forming a deposited film using the apparatus shown in FIG. 1 will be described. Formation of deposited film using this device
For example, it can be performed as follows.

【0050】まず、反応容器100内に、あらかじめ脱
脂洗浄した基体101を設置し、不図示の排気装置(例
えば真空ポンプ)により反応容器100内を排気する。
続いて、基体101を回転させながら、ヒーター104
により基体101の温度を20℃〜500℃の所望の温
度に制御する。
First, the substrate 101 that has been degreased and washed in advance is installed in the reaction container 100, and the reaction container 100 is evacuated by an exhaust device (not shown) (for example, a vacuum pump).
Then, while rotating the substrate 101, the heater 104
The temperature of the substrate 101 is controlled to a desired temperature of 20 ° C to 500 ° C.

【0051】基体101が所望の温度になったところ
で、原料ガス供給系(不図示)より原料ガスを原料ガス
供給管103を通して内部チャンバ111内に供給す
る。このときガスの突出等、極端な圧力変動が起きない
よう注意する。次に原料ガスの流量が所定の流量になっ
たところで、真空計(不図示)を見ながら排気バルブ
(不図示)を調整し、所望の内圧を得る。
When the substrate 101 reaches a desired temperature, a raw material gas supply system (not shown) supplies the raw material gas into the internal chamber 111 through the raw material gas supply pipe 103. At this time, be careful not to cause extreme pressure fluctuations such as gas ejection. Next, when the flow rate of the raw material gas reaches a predetermined flow rate, an exhaust valve (not shown) is adjusted while observing a vacuum gauge (not shown) to obtain a desired internal pressure.

【0052】内圧が安定したところで、高周波電源10
7を所望の電力に設定して、マッチングボックス106
を通じて高周波電極102に高周波電力を印加し、グロ
ー放電を生起させる。この際、電流測定器112により
原料ガス供給管103に流れ込む電流値を測定し、該電
流値が所望の値となるように、高周波電源107とマッ
チングボックス106を調整する。この放電エネルギー
によって反応容器100内に導入された原料ガスが分解
され、基体101上に所定の堆積膜が形成されるところ
となる。所望の膜厚の形成が行われた後、高周波電力の
供給を止め、反応容器へのガスの流入を止め、堆積膜の
形成を終える。
When the internal pressure is stable, the high frequency power source 10
7 to the desired power and the matching box 106
High-frequency power is applied to the high-frequency electrode 102 through to generate glow discharge. At this time, the current value flowing into the raw material gas supply pipe 103 is measured by the current measuring device 112, and the high frequency power supply 107 and the matching box 106 are adjusted so that the current value becomes a desired value. This discharge energy decomposes the raw material gas introduced into the reaction vessel 100 to form a predetermined deposited film on the base 101. After the desired film thickness is formed, the high-frequency power supply is stopped, the gas flow into the reaction container is stopped, and the formation of the deposited film is completed.

【0053】目的とする堆積膜の特性のため、基体上に
複数の層からなる堆積膜を形成する場合には、前記の操
作を繰り返すことによって、所望の層構成の堆積膜を得
ることができる。
Due to the desired characteristics of the deposited film, when the deposited film consisting of a plurality of layers is formed on the substrate, the deposited film having a desired layer constitution can be obtained by repeating the above-mentioned operation. .

【0054】また図2に、内部チャンバ211内に高周
波電力と合わせて、マイクロ波電力を導入する場合の本
発明の堆積膜形成装置の1例を、模式的に示した。図2
ではマイクロ波導入窓213、導波管214、及びマイ
クロ波電源(不図示)、アイソレーター(不図示)等を
接続し、内部チャンバ211内の上下方向よりマイクロ
波を投入可能にしたものである。
FIG. 2 schematically shows an example of the deposited film forming apparatus of the present invention in which microwave power is introduced into the internal chamber 211 together with high frequency power. Figure 2
Then, a microwave introduction window 213, a waveguide 214, a microwave power source (not shown), an isolator (not shown), and the like are connected to enable microwaves to be input from above and below in the internal chamber 211.

【0055】高周波電力と合わせてマイクロ波電力を導
入する装置を用いた堆積膜の形成は、例えば以下のよう
に行うことができる。
The formation of a deposited film using a device for introducing microwave power together with high frequency power can be performed, for example, as follows.

【0056】まず、反応容器200内に、あらかじめ脱
脂洗浄した基体201を設置し、不図示の排気装置(例
えば真空ポンプ)により反応容器200内を排気する。
続いて、基体201を回転させながら、ヒーター204
により基体201の温度を20℃〜500℃の所望の温
度に制御する。
First, the substrate 201 that has been degreased and washed in advance is placed in the reaction vessel 200, and the inside of the reaction vessel 200 is evacuated by an exhaust device (not shown) (for example, a vacuum pump).
Then, while rotating the substrate 201, the heater 204
The temperature of the substrate 201 is controlled to a desired temperature of 20 ° C to 500 ° C.

【0057】基体201が所望の温度になったところ
で、原料ガス供給系(不図示)より原料ガスを原料ガス
供給管203を通して内部チャンバ211内に供給す
る。このときガスの突出等、極端な圧力変動が起きない
よう注意する。次に原料ガスの流量が所定の流量になっ
たところで、真空計(不図示)を見ながら排気バルブ
(不図示)を調整し、所望の内圧を得る。
When the substrate 201 reaches a desired temperature, a raw material gas supply system (not shown) supplies the raw material gas into the internal chamber 211 through the raw material gas supply pipe 203. At this time, be careful not to cause extreme pressure fluctuations such as gas ejection. Next, when the flow rate of the raw material gas reaches a predetermined flow rate, an exhaust valve (not shown) is adjusted while observing a vacuum gauge (not shown) to obtain a desired internal pressure.

【0058】内圧が安定したところで、高周波電源20
7を所望の電力に設定して、マッチングボックス206
を通じて高周波電極202に高周波電力を印加し、更に
は、マイクロ波電源(不図示)を所望の電力に設定し
て、アイソレーター(不図示)、導波管214を通じ
て、マイクロ波導入窓213を介して放電空間211内
にマイクロ波電力を投入して、グロー放電を生起させ
る。この際、電流測定器212により原料ガス供給管2
03に流れ込む電流値を測定し、該電流値が所望の値と
なるように、高周波電源207とマッチングボックス2
06もしくはマイクロ波電源(不図示)とアイソレータ
ー(不図示)を調整する。この放電エネルギーによって
反応容器200内に導入された原料ガスが分解され、基
体201に所定の堆積膜が形成されるところとなる。所
望の膜厚の形成が行なわれた後、高周波電力及びマイク
ロ波電力の供給を止め、反応容器へのガスの流入を止
め、堆積膜の形成を終える。
When the internal pressure is stable, the high frequency power source 20
7 is set to the desired power and the matching box 206
High frequency power is applied to the high frequency electrode 202 through the microwave power source, and a microwave power source (not shown) is set to a desired power, and the microwave is introduced through the isolator (not shown) and the waveguide 214 through the microwave introduction window 213. Microwave power is applied to the discharge space 211 to cause glow discharge. At this time, the raw material gas supply pipe 2 is adjusted by the current measuring device 212.
03, the high-frequency power supply 207 and the matching box 2 are measured so that the current value reaches a desired value.
06 or a microwave power source (not shown) and an isolator (not shown) are adjusted. This discharge energy decomposes the raw material gas introduced into the reaction vessel 200 to form a predetermined deposited film on the base 201. After the desired film thickness is formed, the supply of high frequency power and microwave power is stopped, the flow of gas into the reaction vessel is stopped, and the formation of the deposited film is completed.

【0059】目的とする堆積膜の特性のため、基体上に
複数の層からなる堆積膜を形成する場合には、前記の操
作を繰り返すことによって、所望の層構成の堆積膜を得
ることができる。
Due to the desired characteristics of the deposited film, when the deposited film consisting of a plurality of layers is formed on the substrate, the deposited film having a desired layer constitution can be obtained by repeating the above operation. .

【0060】[0060]

【実施例】以下本発明の効果を実証するための具体例を
説明するが、本発明は具体例によって何等限定されるも
のではない。
EXAMPLES Specific examples for demonstrating the effects of the present invention will be described below, but the present invention is not limited to the specific examples.

【0061】(実施例1)図1に示した堆積膜形成装置
において、発振周波数105MHzの高周波電源107
を用い、ステンレス製の高周波導入手段102と原料ガ
ス導入手段103を用い、アルミニウム製の円筒状基体
101上にa−Si膜を成膜し、電子写真用感光体を作
成した。
Example 1 In the deposited film forming apparatus shown in FIG. 1, a high frequency power source 107 with an oscillation frequency of 105 MHz was used.
Using a stainless steel high-frequency introducing means 102 and a raw material gas introducing means 103, an a-Si film was formed on an aluminum cylindrical substrate 101 to prepare an electrophotographic photoreceptor.

【0062】成膜するにあたっては、電流測定器112
での電流値を所望の値になるように、マッチングボッス
ク106と高周波電源107を調整し、表1に示す成膜
条件に従って10回成膜を行った。
When forming a film, the current measuring device 112 is used.
The matching boss 106 and the high frequency power source 107 were adjusted so that the current value in 1 was a desired value, and film formation was performed 10 times according to the film formation conditions shown in Table 1.

【0063】[0063]

【表1】 [Table 1]

【0064】(比較例1)実施例1において、電流測定
器112での電流値を参照せずに、マッチングボックス
106と高周波電源107の間に設けた電力計(不図
示)を参照し、高周波電源107の出力値が表2に示す
値になるように、マッチングボックス106と高周波電
源107を調整した以外は、実施例1と同様にして10
回成膜を行った。
(Comparative Example 1) In Example 1, a high frequency was measured by referring to a power meter (not shown) provided between the matching box 106 and the high frequency power source 107 without referring to the current value of the current measuring device 112. 10 is performed in the same manner as in Example 1 except that the matching box 106 and the high frequency power source 107 are adjusted so that the output value of the power source 107 becomes the value shown in Table 2.
The film was formed twice.

【0065】[0065]

【表2】 実施例1、比較例1で作成した電子写真用光受容部材は
次の方法で評価した。
[Table 2] The electrophotographic light-receiving members produced in Example 1 and Comparative Example 1 were evaluated by the following methods.

【0066】(1)膜厚分布評価 各々の感光体について軸方向5ケ所×周方向3ケ所の計
15ケ所の膜厚を渦電流式膜厚計(Kett科学研究所
製)により測定し、1回の成膜毎の全感光体の平均膜厚
を求めた。
(1) Evaluation of Film Thickness Distribution The film thickness at each of the photoreceptors was measured by using an eddy current type film thickness meter (manufactured by Kett Scientific Research Institute) at a total of 15 locations of 5 locations in the axial direction and 3 locations in the circumferential direction. The average film thickness of all photoconductors was calculated for each film formation.

【0067】(2)電子写真特性 各々の感光体について電子写真装置(キヤノン社製NP
6060を実験用に改造したもの)にセットして、初期
の帯電能、残留電位等の電子写真特性を次のように評価
した。
(2) Electrophotographic characteristics For each photoconductor, an electrophotographic apparatus (NP manufactured by Canon Inc.)
6060 was modified for experiment) and the electrophotographic characteristics such as initial charging ability and residual potential were evaluated as follows.

【0068】・帯電能 …… 電子写真用光受容部材を
実験装置に設置し、帯電器に+6kVの高電圧を印加し
コロナ帯電を行ない、表面電位計により電子写真用光受
容部材の暗部表面電位を測定し、1回の成膜毎の全感光
体の平均帯電能を求めた。
Charging ability: A photoreceptive member for electrophotography is installed in an experimental apparatus, a high voltage of +6 kV is applied to a charger to carry out corona charging, and the surface potential of the photoreceptive member for electrophotography in the dark area is measured. Was measured, and the average chargeability of all the photoconductors was calculated for each film formation.

【0069】・残留電位 …… 電子写真用光受容部材
を、一定の暗部表面電位に帯電させる。そして直ちに一
定光量の比較的強い光を照射する。光像はハロゲンラン
プ光源を用い、フィルターを用いて550nm以下の波
長域の光を除いた光を照射した。この時表面電位計によ
り電子写真用光受容部材の明部表面電位を測定し、1回
の成膜毎の全感光体の平均残留電位を求めた。
Residual potential: The photoreceptor for electrophotography is charged to a constant dark surface potential. Immediately, a relatively strong light of a constant light quantity is applied. The light image was emitted by using a halogen lamp light source and excluding light in a wavelength range of 550 nm or less using a filter. At this time, the surface potential of the bright portion of the electrophotographic light-receiving member was measured by a surface potential meter, and the average residual potential of all photoconductors was calculated for each film formation.

【0070】以上の評価を行い、実施例1と比較例1で
作成した電子写真用光受容部材の各特性の標準偏差値と
平均値を求めた。その結果を、比較例1を基準とした相
対値で表3に示す。表3から解るように、本発明の実施
例1は特性バラツキが少なく、本発明に従えば、再現性
良く、かつ、良好な膜質の堆積膜を形成することが出来
ることが判明した。
The above evaluation was carried out, and the standard deviation value and the average value of the respective characteristics of the electrophotographic light-receiving members prepared in Example 1 and Comparative Example 1 were determined. The results are shown in Table 3 as relative values based on Comparative Example 1. As can be seen from Table 3, in Example 1 of the present invention, there was little variation in characteristics, and according to the present invention, it was found that a deposited film with good reproducibility and good film quality could be formed.

【0071】[0071]

【表3】 (注)比較例1を基準とした相対値[Table 3] (Note) Relative value based on Comparative Example 1

【0072】(実施例2)図2に示した堆積膜形成装置
において、発振周波数105MHzの高周波電源207
を用い、アルミニウム製の円筒状基体201上にa−S
i膜を成膜し、電子写真用感光体を作成した。
Example 2 In the deposited film forming apparatus shown in FIG. 2, a high frequency power source 207 having an oscillation frequency of 105 MHz is used.
On the cylindrical base body 201 made of aluminum,
An i film was formed to prepare a photoconductor for electrophotography.

【0073】成膜するにあたっては、電流測定器212
での電流値を所望の値になるように、マッチングボック
ス206と高周波電源207を調整し、表4に示す成膜
条件に従って10回成膜を行った。
For film formation, the current measuring device 212
The matching box 206 and the high-frequency power source 207 were adjusted so that the current value at 1 was a desired value, and film formation was performed 10 times according to the film formation conditions shown in Table 4.

【0074】[0074]

【表4】 [Table 4]

【0075】(比較例2)実施例2において、電流測定
器212での電流値を参照せずに、マッチングボックス
206と高周波電源207の間に設けた電力計(不図
示)を参照し、高周波電源207の出力値が表5に示す
値になるように、マッチングボックス206と高周波電
源207を調整した以外は、実施例2と同様にして10
回成膜を行った。
(Comparative Example 2) In Example 2, the current value in the current measuring device 212 was not referred to but a power meter (not shown) provided between the matching box 206 and the high frequency power source 207 was referred to, and a high frequency 10 is performed in the same manner as in the second embodiment except that the matching box 206 and the high frequency power source 207 are adjusted so that the output value of the power source 207 becomes the value shown in Table 5.
The film was formed twice.

【0076】[0076]

【表5】 実施例2、比較例2で作成した電子写真用光受容部材を
実施例1と同様の手順で膜厚分布、帯電能、残留電位を
評価した。その結果を表6に示す。表6から解るよう
に、本発明の実施例2は特性バラツキが少なく、本発明
に従えば再現性良く、かつ、良好な膜質の堆積膜を形成
することが出来ることが判明した。
[Table 5] The electrophotographic light-receiving members prepared in Example 2 and Comparative Example 2 were evaluated for film thickness distribution, charging ability, and residual potential in the same procedure as in Example 1. The results are shown in Table 6. As can be seen from Table 6, in Example 2 of the present invention, there was little variation in characteristics, and according to the present invention, it was found that a deposited film with good reproducibility and good film quality could be formed.

【0077】[0077]

【表6】 (注)比較例2を基準とした相対値[Table 6] (Note) Relative value based on Comparative Example 2

【0078】(実施例3)図2に示した堆積膜形成装置
において、発振周波数105MHzの高周波電源207
を用い、アルミニウム製の円筒状基体201上にa−S
i膜を成膜し、電子写真用感光体を作成した。
(Embodiment 3) In the deposited film forming apparatus shown in FIG. 2, a high frequency power source 207 with an oscillation frequency of 105 MHz is used.
On the cylindrical base body 201 made of aluminum,
An i film was formed to prepare a photoconductor for electrophotography.

【0079】成膜するにあたっては、高周波電源の出力
値及び電流測定器212での電流値を表7に示す値にな
るように、高周波電源及びマイクロ波電源(不図示)を
調整した以外は、実施例2と同様にして10回成膜を行
った。
In forming the film, except that the high frequency power source and the microwave power source (not shown) were adjusted so that the output value of the high frequency power source and the current value in the current measuring device 212 were the values shown in Table 7. Film formation was performed 10 times in the same manner as in Example 2.

【0080】[0080]

【表7】 実施例3で作成した電子写真用光受容部材を実施例1と
同様の手順で膜厚分布、帯電能、残留電位を評価した。
比較例2と比較した結果を表8に示す。表8から解るよ
うに、本発明の実施例3は特性バラツキが少なく、本発
明に従えば再現性良く、かつ、良好な膜質の堆積膜を形
成することが出来ることが判明した。
[Table 7] The electrophotographic light-receiving member prepared in Example 3 was evaluated for film thickness distribution, charging ability, and residual potential in the same procedure as in Example 1.
The results of comparison with Comparative Example 2 are shown in Table 8. As can be seen from Table 8, in Example 3 of the present invention, there was little variation in characteristics, and according to the present invention, it was found that a deposited film with good reproducibility and good film quality could be formed.

【0081】[0081]

【表8】 (注)比較例2を基準とした相対値[Table 8] (Note) Relative value based on Comparative Example 2

【0082】(実施例4)図1に示した堆積膜形成装置
において、高周波電源107の発振周波数を20MH
z、50MHz、300MHz、450MHzとした以
外は、実施例1と同様の条件で各々10回成膜し、電子
写真用感光体を作成した。
Example 4 In the deposited film forming apparatus shown in FIG. 1, the oscillation frequency of the high frequency power source 107 was set to 20 MHz.
Films were formed 10 times under the same conditions as in Example 1 except that z, 50 MHz, 300 MHz and 450 MHz were used to prepare an electrophotographic photoreceptor.

【0083】(比較例3)図1に示した堆積膜形成装置
において高周波電源107の発振周波数を20MHz、
50MHz、300MHz、450MHzとした以外
は、比較例1と同様の条件で各々10回成膜し、電子写
真用感光体を作成した。
(Comparative Example 3) In the deposited film forming apparatus shown in FIG. 1, the oscillation frequency of the high frequency power source 107 was 20 MHz,
Films were formed 10 times under the same conditions as in Comparative Example 1 except that 50 MHz, 300 MHz, and 450 MHz were used, to prepare an electrophotographic photoreceptor.

【0084】実施例4、比較例3で作成した電子写真用
光受容部材を実施例1と同様の手順で膜厚分布、帯電
能、残留電位を評価した。その結果、比較例3よりも実
施例4の電子写真用感光体のほうが、いずれの高周波電
源周波数においても、特性のバラツキが少なく、本発明
に従えば、再現性良く、かつ、良好な膜質の堆積膜を形
成することが出来ることが判明した。
The electrophotographic light-receiving members prepared in Example 4 and Comparative Example 3 were evaluated for film thickness distribution, chargeability and residual potential in the same procedure as in Example 1. As a result, the electrophotographic photosensitive member of Example 4 has less variation in characteristics at any high frequency power source frequency than Comparative Example 3, and according to the present invention, the reproducibility is good and the film quality is good. It was found that a deposited film can be formed.

【0085】(実施例5)表9に示す成膜条件とした以
外には、実施例1と同様の条件で各々10回成膜し、電
子写真用感光体を作成した。
Example 5 An electrophotographic photosensitive member was prepared by forming a film 10 times under the same conditions as in Example 1 except that the film forming conditions shown in Table 9 were used.

【0086】[0086]

【表9】 [Table 9]

【0087】(比較例4)比較例1と同様に、高周波電
源107の出力値が表10に示す値になるようにした以
外は、実施例5と同様にして10回成膜を行った。
Comparative Example 4 As in Comparative Example 1, film formation was performed 10 times in the same manner as in Example 5 except that the output value of the high frequency power source 107 was set to the value shown in Table 10.

【0088】[0088]

【表10】 実施例5、比較例4で作成した電子写真用光受容部材を
実施例1と同様の手順で膜厚分布、帯電能、残留電位を
評価した。その結果、比較例4よりも実施例5の電子写
真用感光体のほうが、特性のバラツキが少なく、本発明
に従えば再現性良く、かつ、良好な膜質の堆積膜を形成
することが出来ることが判明した。
[Table 10] The electrophotographic light-receiving members prepared in Example 5 and Comparative Example 4 were evaluated for film thickness distribution, chargeability and residual potential in the same procedure as in Example 1. As a result, the electrophotographic photoreceptor of Example 5 has less variation in characteristics than Comparative Example 4, and according to the present invention, it is possible to form a deposited film with good reproducibility and good film quality. There was found.

【0089】(実施例6)表11に示す成膜条件とした
以外には、実施例2と同様の条件で各々10回成膜し、
電子写真用感光体を作成した。
Example 6 Films were formed 10 times under the same conditions as in Example 2 except that the film forming conditions shown in Table 11 were used.
An electrophotographic photoreceptor was prepared.

【0090】[0090]

【表11】 [Table 11]

【0091】(比較例5)比較例2と同様に、高周波電
源107の出力値が表12に示す値になるようにした以
外は、実施例6と同様にして10回成膜を行った。
(Comparative Example 5) Similar to Comparative Example 2, film formation was performed 10 times in the same manner as in Example 6 except that the output value of the high frequency power source 107 was set to the value shown in Table 12.

【0092】[0092]

【表12】 実施例6、比較例5で作成した電子写真用光受容部材を
実施例1と同様の手順で膜厚分布、帯電能、残留電位を
評価した。その結果、比較例5よりも実施例6の電子写
真用感光体のほうが、特性のバラツキが少なく、本発明
に従えば再現性良く、かつ、良好な膜質の堆積膜を形成
することが出来ることが判明した。
[Table 12] The electrophotographic light-receiving members prepared in Example 6 and Comparative Example 5 were evaluated for film thickness distribution, charging ability, and residual potential in the same procedure as in Example 1. As a result, the electrophotographic photoreceptor of Example 6 has less variation in characteristics than Comparative Example 5, and according to the present invention, it is possible to form a deposited film with good reproducibility and good film quality. There was found.

【0093】(実施例7)表13に示す成膜条件とした
以外には、実施例2と同様の条件で各々10回成膜し、
電子写真用感光体を作成した。
Example 7 Film formation was performed 10 times under the same conditions as in Example 2 except that the film formation conditions shown in Table 13 were used.
An electrophotographic photoreceptor was prepared.

【0094】[0094]

【表13】 [Table 13]

【0095】(比較例6)比較例2と同様に、高周波電
源107の出力値が表14に示す値になるようにした以
外は、実施例7と同様にして10回成膜を行った。
Comparative Example 6 As in Comparative Example 2, film formation was performed 10 times in the same manner as in Example 7 except that the output value of the high frequency power source 107 was set to the value shown in Table 14.

【0096】[0096]

【表14】 実施例7、比較例6で作成した電子写真用光受容部材を
実施例1と同様の手順で膜厚分布、帯電能、残留電位を
評価した。その結果、比較例6よりも実施例7の電子写
真用感光体のほうが、特性のバラツキが少なく、本発明
に従えば再現性良く、かつ、良好な膜質の堆積膜を形成
することが出来ることが判明した。
[Table 14] The electrophotographic light-receiving members prepared in Example 7 and Comparative Example 6 were evaluated for film thickness distribution, chargeability, and residual potential in the same procedure as in Example 1. As a result, the electrophotographic photoreceptor of Example 7 has less variation in characteristics than Comparative Example 6, and according to the present invention, it is possible to form a deposited film with good reproducibility and good film quality. There was found.

【0097】(実施例8)チタニウム合金製の高周波電
力導入手段102を用いた以外には、実施例1と同様の
条件で、電子写真用感光体を作成した。
Example 8 An electrophotographic photoconductor was prepared under the same conditions as in Example 1 except that the high frequency power introducing means 102 made of titanium alloy was used.

【0098】実施例8で作成した電子写真用光受容部材
を実施例1と同様の手順で膜厚分布、帯電能、残留電位
を評価した。その結果、実施例1と同様な特性の電子写
真用感光体が得られ、本発明に従えば再現性良く、か
つ、良好な膜質の堆積膜を形成することが出来ることが
判明した。
The electrophotographic light-receiving member prepared in Example 8 was evaluated for film thickness distribution, chargeability and residual potential in the same procedure as in Example 1. As a result, it was found that an electrophotographic photosensitive member having the same characteristics as in Example 1 was obtained, and according to the present invention, a deposited film having good reproducibility and good film quality could be formed.

【0099】(実施例9)チタニウム合金製のガス導入
手段103を用いた以外には、実施例1と同様の条件
で、電子写真用感光体を作成した。
Example 9 An electrophotographic photoreceptor was prepared under the same conditions as in Example 1 except that the gas introducing means 103 made of titanium alloy was used.

【0100】実施例9で作成した電子写真用光受容部材
を実施例1と同様の手順で膜厚分布、帯電能、残留電位
を評価した。その結果、実施例1と同様な特性の電子写
真用感光体が得られ、本発明に従えば再現性良く、か
つ、良好な膜質の堆積膜を形成することが出来ることが
判明した。
The electrophotographic light-receiving member prepared in Example 9 was evaluated for film thickness distribution, chargeability, and residual potential in the same procedure as in Example 1. As a result, it was found that an electrophotographic photosensitive member having the same characteristics as in Example 1 was obtained, and according to the present invention, a deposited film having good reproducibility and good film quality could be formed.

【0101】(実施例10)チタニウム合金製の高周波
電力導入手段202及びガス導入手段203を用いた以
外には、実施例2と同様の条件で、電子写真用感光体を
作成した。
Example 10 An electrophotographic photoconductor was prepared under the same conditions as in Example 2 except that the high frequency power introducing means 202 and the gas introducing means 203 made of titanium alloy were used.

【0102】実施例10で作成した電子写真用光受容部
材を実施例2と同様の手順で膜厚分布、帯電能、残留電
位を評価した。その結果、実施例2と同様な特性の電子
写真用感光体が得られ、本発明に従えば再現性良く、か
つ、良好な膜質の堆積膜を形成することが出来ることが
判明した。
The electrophotographic light-receiving member prepared in Example 10 was evaluated for film thickness distribution, chargeability and residual potential in the same procedure as in Example 2. As a result, it was found that an electrophotographic photosensitive member having the same characteristics as in Example 2 was obtained, and according to the present invention, a deposited film with good reproducibility and good film quality could be formed.

【0103】(実施例11)図3に示した堆積膜形成装
置において、4本のステンレス製の高周波電力導入手段
302を用いた以外には、実施例1と同様の条件で、電
子写真用感光体を作成した。
(Embodiment 11) In the deposited film forming apparatus shown in FIG. 3, except that four stainless steel high-frequency power introducing means 302 are used, under the same conditions as in Embodiment 1, electrophotographic photosensitization is performed. Created the body.

【0104】実施例11で作成した電子写真用光受容部
材を実施例1と同様の手順で膜厚分布、帯電能、残留電
位を評価した。その結果、実施例1と同様な特性の電子
写真用感光体が得られ、本発明に従えば再現性良く、か
つ、良好な膜質の堆積膜を形成することが出来ることが
判明した。
The electrophotographic light-receiving member prepared in Example 11 was evaluated for film thickness distribution, chargeability and residual potential in the same manner as in Example 1. As a result, it was found that an electrophotographic photosensitive member having the same characteristics as in Example 1 was obtained, and according to the present invention, a deposited film having good reproducibility and good film quality could be formed.

【0105】(実施例12)図4に示した堆積膜形成装
置において、4本のステンレス製の原料ガス導入手段4
03を用いた以外には、実施例1と同様の条件で、電子
写真用感光体を作成した。
(Embodiment 12) In the deposited film forming apparatus shown in FIG. 4, four source gas introducing means 4 made of stainless steel are used.
An electrophotographic photoconductor was prepared under the same conditions as in Example 1 except that No. 03 was used.

【0106】実施例12で作成した電子写真用光受容部
材を実施例1と同様の手順で膜厚分布、帯電能、残留電
位を評価した。その結果、実施例1と同様な特性の電子
写真用感光体が得られ、本発明に従えば再現性良く、か
つ、良好な膜質の堆積膜を形成することが出来ることが
判明した。
The electrophotographic light-receiving member prepared in Example 12 was evaluated for film thickness distribution, chargeability and residual potential in the same procedure as in Example 1. As a result, it was found that an electrophotographic photosensitive member having the same characteristics as in Example 1 was obtained, and according to the present invention, a deposited film having good reproducibility and good film quality could be formed.

【0107】(実施例13)図5に示した堆積膜形成装
置において、2本のチタニウム合金製の高周波電力導入
手段502及び2本のステンレス製の原料ガス導入手段
503を用いた以外には、実施例1と同様の条件で、電
子写真用感光体を作成した。
(Embodiment 13) In the deposited film forming apparatus shown in FIG. 5, except that two high frequency power introducing means 502 made of titanium alloy and two raw material gas introducing means 503 made of stainless steel are used. An electrophotographic photoreceptor was prepared under the same conditions as in Example 1.

【0108】実施例13で作成した電子写真用光受容部
材を実施例1と同様の手順で膜厚分布、帯電能、残留電
位を評価した。その結果、実施例1と同様な特性の電子
写真用感光体が得られ、本発明に従えば再現性良く、か
つ、良好な膜質の堆積膜を形成することが出来ることが
判明した。
The electrophotographic light-receiving member prepared in Example 13 was evaluated for film thickness distribution, chargeability and residual potential in the same procedure as in Example 1. As a result, it was found that an electrophotographic photosensitive member having the same characteristics as in Example 1 was obtained, and according to the present invention, a deposited film having good reproducibility and good film quality could be formed.

【0109】(実施例14)図6に示した堆積膜形成装
置において、2本のチタニウム合金製の高周波電力導入
手段602及び2本のチタニウム合金製の原料ガス導入
手段603を用いた以外には、実施例2と同様の条件
で、電子写真用感光体を作成した。
(Embodiment 14) In the deposited film forming apparatus shown in FIG. 6, except that two high frequency power introducing means 602 made of titanium alloy and two raw material gas introducing means 603 made of titanium alloy are used. An electrophotographic photoreceptor was prepared under the same conditions as in Example 2.

【0110】実施例14で作成した電子写真用光受容部
材を実施例2と同様の手順で膜厚分布、帯電能、残留電
位を評価した。その結果、実施例2と同様な特性の電子
写真用感光体が得られ、本発明に従えば再現性良く、か
つ、良好な膜質の堆積膜を形成することが出来ることが
判明した。
The electrophotographic light-receiving member prepared in Example 14 was evaluated for film thickness distribution, charging ability and residual potential in the same procedure as in Example 2. As a result, it was found that an electrophotographic photosensitive member having the same characteristics as in Example 2 was obtained, and according to the present invention, a deposited film with good reproducibility and good film quality could be formed.

【0111】[0111]

【発明の効果】本発明によれば、従来の問題点をことご
とく克服し、従来のプラズマプロセスでは達成出来なか
った比較的大面積の基体を均一に再現性良くプラズマ処
理することが可能となる。
According to the present invention, it is possible to overcome all the problems of the prior art and to uniformly and reproducibly perform plasma processing on a substrate having a relatively large area, which cannot be achieved by the conventional plasma process.

【0112】更には、製造時間が短く低コストであり、
例えば、画像特性に優れた電子写真用感光体を製造する
のに最適な堆積膜形成装置を提供することが可能とな
る。
Further, the manufacturing time is short and the cost is low,
For example, it is possible to provide an optimum deposited film forming apparatus for manufacturing an electrophotographic photoreceptor having excellent image characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の堆積膜形成装置の一例を示す模式図で
あり、図1(a)は横断面図、図1(b)縦断面図をそ
れぞれ示している。
1A and 1B are schematic views showing an example of a deposited film forming apparatus of the present invention, in which FIG. 1A shows a horizontal sectional view and FIG. 1B shows a vertical sectional view.

【図2】マイクロ波電力も合わせて導入する方式の、本
発明の堆積膜形成装置の一例を示す模式図であり、図2
(a)は横断面図、図2(b)は縦断面図をそれぞれ示
している。
FIG. 2 is a schematic view showing an example of a deposited film forming apparatus of the present invention in which microwave power is also introduced.
2A is a horizontal sectional view, and FIG. 2B is a vertical sectional view.

【図3】複数の高周波電力導入手段を有する方式の、本
発明の堆積膜形成装置の一例を示す模式図である。
FIG. 3 is a schematic view showing an example of a deposited film forming apparatus of the present invention of a system having a plurality of high-frequency power introduction means.

【図4】複数の原料ガス導入手段を有する方式の、本発
明の堆積膜形成装置の一例を示す模式図である。
FIG. 4 is a schematic view showing an example of a deposited film forming apparatus of the present invention of a system having a plurality of source gas introducing means.

【図5】複数の高周波電力導入手段及び複数の原料ガス
導入手段を有する方式の、本発明の堆積膜形成装置の一
例を示す模式図である。
FIG. 5 is a schematic view showing an example of a deposited film forming apparatus of the present invention of a system having a plurality of high-frequency power introducing means and a plurality of source gas introducing means.

【図6】複数の高周波電力導入手段及び複数の原料ガス
導入手段を有し、マイクロ波電力も合わせて導入する方
式の、本発明の堆積膜形成装置の一例を示す模式図であ
る。
FIG. 6 is a schematic diagram showing an example of a deposited film forming apparatus of the present invention, which has a plurality of high-frequency power introduction means and a plurality of source gas introduction means, and also introduces microwave power together.

【図7】従来の堆積膜形成装置の一例を示す模式図であ
り、図7(a)は横断面図、図7(b)は縦断面図をそ
れぞれ示している。
FIG. 7 is a schematic view showing an example of a conventional deposited film forming apparatus, FIG. 7 (a) is a horizontal sectional view, and FIG. 7 (b) is a vertical sectional view.

【符号の説明】[Explanation of symbols]

100,200,300,400,500,600,7
00 反応容器、 101,201,301,401,501,601,7
01 円筒状導電性基体、 102,202,302,402,502,602 高
周波電極(高周波電力導入手段)、 103,203,303,403,503,603,7
03 原料ガス供給管、 104,204,704 ヒーター、 105,205,305,405,505,605,7
05 排気管、 106,206,306,406,506,606 マ
ッチングボックス、 107,207,407,507,607,707 高
周波電源、 108,208,708 回転軸、 109,209,709 モーター、 110,210,710 ギヤ、 111,211,311,411,511,611,7
11 内部チャンバ、 112,212,312,412,512,612 電
流測定器、 213,613,713 マイクロ波導入窓、 214,714 マイクロ波導入窓。
100, 200, 300, 400, 500, 600, 7
00 reaction vessel, 101,201,301,401,501,601,7
01 cylindrical conductive substrate, 102, 202, 302, 402, 502, 602 high-frequency electrode (high-frequency power introducing means), 103, 203, 303, 403, 503, 603, 7
03 raw material gas supply pipe, 104, 204, 704 heater, 105, 205, 305, 405, 505, 605, 7
05 Exhaust pipe, 106, 206, 306, 406, 506, 606 Matching box, 107, 207, 407, 507, 607, 707 High frequency power supply, 108, 208, 708 Rotating shaft, 109, 209, 709 Motor, 110, 210 , 710 gears, 111, 211, 311, 411, 511, 611, 7
11 internal chamber, 112, 212, 312, 412, 512, 612 amperometer, 213, 613, 713 microwave introduction window, 214, 714 microwave introduction window.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 減圧可能な反応容器内において同一円周
上に配置される複数の円筒状導電性基体を回転させるた
めの手段と、原料ガスを前記円筒状導電性基体の配置円
内に導入するための原料ガス導入手段と、高周波電力を
前記円筒状導電性基体の配置円内に導入するための高周
波電力導入手段とを有する、前記円筒状導電性基体上に
堆積膜を形成する堆積膜形成装置において、前記原料ガ
ス導入手段を導電性部材により構成し、該原料ガス導入
手段に流れる電流値を検知するための電流検知手段と、
該電流値が所望の値となるように、前記高周波電力導入
手段により導入される高周波電力量を調整するため手段
とを設けたことを特徴とする堆積膜形成装置。
1. A means for rotating a plurality of cylindrical conductive substrates arranged on the same circumference in a depressurizable reaction vessel, and a source gas is introduced into the arrangement circle of the cylindrical conductive substrates. A deposition film for forming a deposition film on the cylindrical conductive substrate, which has a source gas introducing unit for introducing the high frequency power and a high frequency power introducing unit for introducing a high frequency power into the arrangement circle of the cylindrical conductive substrate. In the forming apparatus, the raw material gas introducing means is composed of a conductive member, and a current detecting means for detecting a value of a current flowing through the raw material gas introducing means,
A deposited film forming apparatus comprising: means for adjusting the amount of high frequency power introduced by the high frequency power introduction means so that the current value becomes a desired value.
【請求項2】 前記高周波電力の周波数が20MHz〜
450MHzであることを特徴とする請求項1に記載の
堆積膜形成装置。
2. The high frequency power has a frequency of 20 MHz to
The deposition film forming apparatus according to claim 1, wherein the deposition film forming frequency is 450 MHz.
【請求項3】 前記円筒状導電性基体の配置円内にマイ
クロ波電力を導入する手段を有することを特徴とする請
求項1または2に記載の堆積膜形成装置。
3. The deposited film forming apparatus according to claim 1 or 2, further comprising means for introducing microwave power into an arrangement circle of the cylindrical conductive substrate.
【請求項4】 前記原料ガス導入手段に流れる電流値が
所望の値となるように、前記マイクロ波電力導入手段を
調整することを特徴とする請求項3に記載の堆積膜形成
装置。
4. The deposited film forming apparatus according to claim 3, wherein the microwave power introducing means is adjusted so that the value of the current flowing through the source gas introducing means becomes a desired value.
【請求項5】 前記原料ガス導入手段がステンレスから
なることを特徴とする請求項1乃至4のいずれか1項に
記載の堆積膜形成装置。
5. The deposited film forming apparatus according to claim 1, wherein the source gas introducing means is made of stainless steel.
【請求項6】 前記高周波電力導入手段がステンレスか
らなることを特徴とする請求項1乃至5のいずれか1項
に記載の堆積膜形成装置。
6. The deposited film forming apparatus according to claim 1, wherein the high-frequency power introduction means is made of stainless steel.
【請求項7】 前記原料ガス導入手段が主にチタニウム
からなることを特徴とする請求項1乃至4及び6のいず
れか1項に記載の堆積膜形成装置。
7. The deposited film forming apparatus according to claim 1, wherein the source gas introducing means is mainly made of titanium.
【請求項8】 前記高周波電力導入手段が主にチタニウ
ムからなることを特徴とする請求項1乃至5及び7のい
ずれか1項に記載の堆積膜形成装置。
8. The deposited film forming apparatus according to claim 1, wherein the high-frequency power introducing means is mainly made of titanium.
【請求項9】 前記原料ガス導入手段を複数有すること
を特徴とする請求項1乃至8のいずれか1項に記載の堆
積膜形成装置。
9. The deposited film forming apparatus according to claim 1, further comprising a plurality of the raw material gas introducing means.
【請求項10】 前記高周波電力導入手段を複数有する
ことを特徴とする請求項1乃至9のいずれか1項に記載
の堆積膜形成装置。
10. The deposited film forming apparatus according to claim 1, further comprising a plurality of the high frequency power introducing means.
JP7901294A 1994-04-18 1994-04-18 Film forming apparatus Pending JPH07288233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7901294A JPH07288233A (en) 1994-04-18 1994-04-18 Film forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7901294A JPH07288233A (en) 1994-04-18 1994-04-18 Film forming apparatus

Publications (1)

Publication Number Publication Date
JPH07288233A true JPH07288233A (en) 1995-10-31

Family

ID=13678041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7901294A Pending JPH07288233A (en) 1994-04-18 1994-04-18 Film forming apparatus

Country Status (1)

Country Link
JP (1) JPH07288233A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012507150A (en) * 2008-10-23 2012-03-22 サンディスク スリーディー,エルエルシー Carbon-based memory device exhibiting reduced delamination characteristics and method for forming the same
JP2013254915A (en) * 2012-06-08 2013-12-19 Canon Inc Method for forming deposit film, and method for manufacturing electrophotographic photosensitive material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012507150A (en) * 2008-10-23 2012-03-22 サンディスク スリーディー,エルエルシー Carbon-based memory device exhibiting reduced delamination characteristics and method for forming the same
JP2013254915A (en) * 2012-06-08 2013-12-19 Canon Inc Method for forming deposit film, and method for manufacturing electrophotographic photosensitive material

Similar Documents

Publication Publication Date Title
US5534070A (en) Plasma CVD process using a very-high-frequency and plasma CVD apparatus
JP3624113B2 (en) Plasma processing method
US6435130B1 (en) Plasma CVD apparatus and plasma processing method
JP2787148B2 (en) Method and apparatus for forming deposited film by microwave plasma CVD
KR100222807B1 (en) Deposited film forming apparatus and electrode for use in it
JP3406936B2 (en) Plasma CVD method using ultrashort wave and plasma CVD apparatus
JPH07288233A (en) Film forming apparatus
US6148763A (en) Deposited film forming apparatus
JP5058511B2 (en) Deposited film forming equipment
JP3428865B2 (en) Apparatus and method for forming deposited film
JPH10168574A (en) Cleaning method for film deposition system and method for film deposition
JP2867150B2 (en) Microwave plasma CVD equipment
JP5058510B2 (en) Deposited film forming apparatus and deposited film forming method
JPH07288194A (en) Plasma treatment apparatus
JP2925310B2 (en) Deposition film formation method
JPH09256160A (en) Plasma cvd device and deposited film forming method by plasma cvd
JPH03100178A (en) Thin film forming device
JP3368137B2 (en) Apparatus and method for forming deposited film
JP2994658B2 (en) Apparatus and method for forming deposited film by microwave CVD
JPH08236457A (en) Formation of deposited film and electrophotographic photoreceptor
JPH0897161A (en) Method and system for forming deposition film by rf plasma cvd
JPH1060653A (en) Formation of deposited film by high frequency plasma cvd process
JPH11135444A (en) Method and device for forming deposit film
JPH0943884A (en) Formation of electrophotographic photoreceptor
JPH10168575A (en) Device for forming amorphous silicon photoreceptor and its formation