JPH03100178A - Thin film forming device - Google Patents

Thin film forming device

Info

Publication number
JPH03100178A
JPH03100178A JP23733389A JP23733389A JPH03100178A JP H03100178 A JPH03100178 A JP H03100178A JP 23733389 A JP23733389 A JP 23733389A JP 23733389 A JP23733389 A JP 23733389A JP H03100178 A JPH03100178 A JP H03100178A
Authority
JP
Japan
Prior art keywords
plasma
generated
microwaves
film
radicals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23733389A
Other languages
Japanese (ja)
Inventor
Atsushi Kodama
淳 児玉
Makoto Araki
荒木 信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP23733389A priority Critical patent/JPH03100178A/en
Publication of JPH03100178A publication Critical patent/JPH03100178A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To stably form a dense hydrogenated amorphous silicon film by distributing the microwaves from a single microwave oscillator to plural plasma generating furnaces and supplying the generated hydrogen radicals from different directions. CONSTITUTION:The microwaves generated by the single microwave oscillator 31 are distributed via a microwave distributor 71 to 2 plasma generating furnaces 33. Gaseous H2 is made into plasma and the generated H radicals 37 are fed into the deposition space 55 in a vacuum vessel 38 from the respectively different directions. A cylindrical base body 51 is disposed in this deposition space 55 and is heated to a prescribed temp. by a heater 52. Further, Si2H6 and C3H8 are supplied from a gaseous raw material introducing section 41 into this space and are cracked by the plasma generated between electrodes 53 and 54 connected to an RF electric power source 42. The plasma is stabilized in this way and the H radicals are fed from the respective directions, by which the carbon-contg. hydrogenated amorphous silicon film having high denseness and high quality is formed on the base body 51 in this way.

Description

【発明の詳細な説明】 〔概 要〕 電子写真感光体の表面保護層等に使用される高緻密性の
炭素含有水素化アモルファスシリコン膜を形成する薄膜
形成装置に関し、 より緻密な炭素含有水素化アモルファスシリコン膜を安
定して形成できるようにすることを目的とし、 2つ以上のプラズマ発生炉に供給されるマイクロ波によ
り、該各プラズマ発生炉に導入される水素ガスを分解し
プラズマ化することによって発生する水素ラジカルをそ
れぞれ異なる方向から基体又は堆積空間へ送り込んで該
基体に高緻密性の炭素含有水素化アモルファスシリコン
膜を形成する薄膜形成装置において、前記各プラズマ発
生炉へマイクロ波を供給するための1つのマイクロ波発
振器を設けるとともに、前記マイクロ波発振器で発生す
るマイクロ波を前記各プラズマ発生炉に分配する1つの
マイクロ波分配器を設けた構成とする。
[Detailed Description of the Invention] [Summary] Regarding a thin film forming apparatus for forming a highly dense carbon-containing hydrogenated amorphous silicon film used as a surface protective layer of an electrophotographic photoreceptor, etc. The purpose is to stably form an amorphous silicon film, and the hydrogen gas introduced into each plasma generation furnace is decomposed and turned into plasma by microwaves supplied to two or more plasma generation furnaces. In a thin film forming apparatus for forming a highly dense carbon-containing hydrogenated amorphous silicon film on a substrate by feeding hydrogen radicals generated by the above from different directions into a substrate or a deposition space, microwaves are supplied to each of the plasma generating furnaces. In addition, one microwave oscillator is provided for the plasma generation, and one microwave distributor is provided for distributing the microwaves generated by the microwave oscillator to each of the plasma generation furnaces.

〔産業上の利用分野〕[Industrial application field]

本発明は電子写真感光体の表面保護層等に使用される高
緻密性の炭素含有水素化アモルファスシリコン膜を形成
する薄膜形成装置に関するものである。
The present invention relates to a thin film forming apparatus for forming a highly dense carbon-containing hydrogenated amorphous silicon film used as a surface protective layer of an electrophotographic photoreceptor.

電子写真感光体の材料として、水素化アモルファスシリ
コン(以下、a−St:H)は、耐久性、無公害、光感
度の点で従来のSei光体に代わるものとして有望視さ
れている。
As a material for electrophotographic photoreceptors, hydrogenated amorphous silicon (hereinafter referred to as a-St:H) is seen as a promising alternative to conventional Sei photoreceptors in terms of durability, non-pollution, and photosensitivity.

第3図はアモルファスシリコン感光体(以下、a−3i
悪感光)構成図で、a−St感光体101は、基体10
2上に、ブロッキング層(ボロン高ドープのa−5i 
: H) 103.感光層(ボロン低ドープのa−St
 : H) 104.表面保護層(炭素含有のa−5i
:H9以下a−5fC:H) 105を順次形成して成
る。
Figure 3 shows an amorphous silicon photoreceptor (hereinafter referred to as a-3i).
In the block diagram, the a-St photoreceptor 101 is connected to the base 10.
2, a blocking layer (highly boron doped a-5i
:H) 103. Photosensitive layer (low boron doped a-St
:H) 104. Surface protective layer (carbon-containing a-5i
:H9 or less a-5fC:H) 105 are sequentially formed.

表面保護層105は、表面から光導電性を持つ感光層1
04へのキャリア注入を防ぐために、絶縁性、透光性に
優れていることが必要である。従来用いられてきたa 
 5ll−X C1l  : H(主にχく0.4)は
、表面保護層として十分な硬度と透光性と絶縁性とを持
っているが、この膜を使用したa−3i悪感光は、高温
高温(例えば35°C,80%RH)中で長期使用時に
画像がぼやける現像(以下「像流れ」)が起きるという
欠点を有している。この原因に関しては、本出願人によ
り既に提案された特願昭63−58214号(昭和63
年3月14日出11i11)に詳しく記されている。こ
こから分かるように、高炭素含有にして表面のSiを少
なくすることにより、Si関連の吸着(Si−OHの増
加)。
The surface protective layer 105 is a photosensitive layer 1 having photoconductivity from the surface.
In order to prevent carrier injection into 04, it is necessary to have excellent insulation and light transmission properties. Traditionally used a
5ll-X C1l: H (mainly χ 0.4) has sufficient hardness, translucency, and insulation properties as a surface protective layer, but a-3i photosensitive film using this film is It has the disadvantage that during long-term use at high temperatures (for example, 35° C., 80% RH), development in which the image becomes blurred (hereinafter referred to as "image washing") occurs. Regarding this cause, Japanese Patent Application No. 63-58214 (Showa 63-58214) has already been proposed by the present applicant.
It is described in detail in March 14, 2011, 11i11). As can be seen, by increasing the carbon content and reducing the Si on the surface, Si-related adsorption (increase in Si-OH).

酸化(St −0−Stの増加)が起きにくくなり、「
像流れ」が防止できる。しかし、あまりに高炭素含有率
にしたa  5il−z Cx  ? )l (例えば
X〉0.8)を用いた表面保護層は、耐湿性に冨んでい
るが、炭素リンチの構造であるため、絶縁性が低下し帯
電能が下がるという欠点を持つ。
Oxidation (increase in St -0-St) becomes less likely to occur, and
"Image drift" can be prevented. However, a5il-z Cx with too high carbon content? )l (for example, X>0.8) is highly moisture resistant, but because of its carbon lynch structure, it has the drawbacks of poor insulation and low charging ability.

このため、炭素含有率が0.4≦X≦0.8で、Si関
連の表面吸着、酸化が起こりにくいa −5iC:H膜
が必要となる。
For this reason, an a-5iC:H film is required in which the carbon content is 0.4≦X≦0.8 and Si-related surface adsorption and oxidation are difficult to occur.

〔従来の技術〕[Conventional technology]

第4図は従来の高周波(以下RF)−CVD法によるa
−3iC:H膜形成装置の概要図で、図中、1〜4は原
料ガス供給用ボンベであり、例えばボンベ1にはSi、
)1.が、ボンベ2にはC,H,が、ボンベ3にはH2
が、ボンベ4にはArがそれぞれ入っている。成膜時に
は、これらのガスを流量調節器5で制御して真空容器6
内へ導(。そして、2枚の対向する電極1.、’7.の
カソード側電極7□にRF電源8により13.56MH
2のRFli力を印加して原料ガスを分解しプラズマを
発生させ、板′状の基体9上に膜を堆積させる。排気は
メカニカルブーストポンプ10とロータリーポンプ11
により行われる。このようにして作製されたa−Si、
XC,。
Figure 4 shows a by the conventional radio frequency (hereinafter referred to as RF)-CVD method.
This is a schematic diagram of a -3iC:H film forming apparatus. In the figure, 1 to 4 are cylinders for supplying raw material gases. For example, cylinder 1 includes Si,
)1. However, cylinder 2 has C, H, and cylinder 3 has H2.
However, cylinder 4 contains Ar. During film formation, these gases are controlled by a flow rate controller 5 and transferred to a vacuum chamber 6.
(Then, the cathode side electrode 7□ of the two opposing electrodes 1., '7.
RFli force of 2 is applied to decompose the source gas and generate plasma, thereby depositing a film on the plate-shaped substrate 9. Exhaust is mechanical boost pump 10 and rotary pump 11
This is done by a-Si produced in this way,
XC,.

H(χ= 0.5 )に35℃、80%RH雰囲気中で
コロナ照射を行ったところ、コロナ照射時間とともニN
O3−、CO3”−+ 5i−o■、 H−OR+5i
−0−Siの吸着、酸化が起きていることが高感度反射
FT−IR(IR−RAS)で観測された。このことは
、本出願人により既に提案された特願平1−43269
号(平成元年2月27日出願)で述べられている。
When corona irradiation was performed on H (χ = 0.5) in an atmosphere of 35°C and 80% RH, the difference in N with the corona irradiation time
O3-, CO3”-+ 5i-o■, H-OR+5i
It was observed with high-sensitivity reflection FT-IR (IR-RAS) that adsorption and oxidation of -0-Si occurred. This is reflected in the patent application No. 1-43269 already proposed by the present applicant.
No. (filed on February 27, 1989).

従来のa −5t悪感光の表面保護層に使用されるa−
3iC:H膜は、このように高湿度中でSi関連の吸着
、酸化を起こし、表面に分極しやすくなる。
A- used in the surface protective layer of conventional a-5t photosensitive
The 3iC:H film thus undergoes Si-related adsorption and oxidation in high humidity, making the surface more likely to be polarized.

従って、この膜を表面保ff1Fiにしたa −St感
光体を高湿度中で長時間作動させると、水溶性吸着物質
が付き、これを伝って帯電電荷が流れて「像流れ」を起
こすという問題を生じていた。
Therefore, when an a-St photoreceptor with a surface retention of ff1Fi is operated for a long time in high humidity, a water-soluble adsorbent adheres to it, and electrostatic charges flow through this, causing "image blurring." was occurring.

第5図はこの点を改良するために使用した水素ラジカル
アシストRF−CVD装置の概要図で、該装置の構成2
作用は次の通り(詳しくは特願昭63〜58214号参
照)である。
Figure 5 is a schematic diagram of a hydrogen radical assisted RF-CVD device used to improve this point.
The action is as follows (see Japanese Patent Application Nos. 63-58214 for details).

第5図において、31はマイクロ波(以下μ波)発振器
で、ここで発生したμ波(2,45G)12)は導波管
32を通りプラズマ発生炉33へ導かれる。
In FIG. 5, reference numeral 31 denotes a microwave (hereinafter referred to as μ wave) oscillator, and the μ waves (2,45G) 12) generated here are guided to a plasma generation furnace 33 through a waveguide 32.

ここで、ガス導入部34から入れた水素(H2)ガス3
5を石英管36内で分解し、プラズマ化する。そこで発
生した励起水素原子である水素ラジカル37は、真空容
器3日内の基体39上に導かれる。一方、原料ガス(5
izHb 、C3HI )’ 40は、原料ガス導入部
41より入れられ、RF電源42に直結した電極43よ
り真空容器38内へ導かれ、もう一方の電極44との間
で生じるRFプラズマにより分解されて基体39上にa
 −5iC:H膜となって堆積する。この堆積中に上述
の水素ラジカル37が表面を覆い、膜の緻密性を高める
。45は基体を加熱するヒータ、46はガス排気用のポ
ンプである。
Here, hydrogen (H2) gas 3 introduced from the gas introduction part 34
5 is decomposed in the quartz tube 36 and turned into plasma. Hydrogen radicals 37, which are excited hydrogen atoms generated there, are guided onto a substrate 39 within three days in a vacuum container. On the other hand, the raw material gas (5
izHb, C3HI)' 40 is introduced from the raw material gas introduction part 41, guided into the vacuum chamber 38 through an electrode 43 directly connected to an RF power source 42, and decomposed by the RF plasma generated between it and the other electrode 44. a on the base 39
-5iC:H film is deposited. During this deposition, the above-mentioned hydrogen radicals 37 cover the surface and increase the density of the film. 45 is a heater for heating the substrate, and 46 is a pump for exhausting gas.

この水素ラジカルアシストRF −CV D法テ作製し
たa−3iC:H(1)膜と、従来のRF−CVD法で
作製したa −5iC: H(2)膜を高湿度中でコロ
ナ照射したときの表面吸着、酸化の違いをIR−RAS
で測定した結果、a −5iC: H(1)膜はa −
5iC: H(2)膜に比べ5i−0−5t、 St 
−OH,H−H等のSi関連の吸着、酸化量が約173
となった。これは、膜の構造緻密性が向上したためであ
る。この構造緻密性を測定するためにレーザーラマン分
光測定を行った。この測定で得られるラマンスペクトル
結果において、a −5iC: H膜ではTo(約48
8cm″I)とTA(約150cm−’)の2つのピー
クが観測される。TO/TAピーク比はSt結合の対称
性の乱れや構造の乱れを表し、この値が大きい程構造緻
密であることを示している。測定の結果、a−5iC:
H(2)のTo/TAが1.8であるのに対し、a −
3iC: H(1)のTo/TAは2.4となっており
、構造緻密であることが判明した。そして、a−SiC
:H(1)膜を使用したa−Si感光体は、a −5i
C:H(2)膜に比べ高温高温中での「像流れ」現像が
少なかった。
When the a-3iC:H(1) film prepared using this hydrogen radical-assisted RF-CVD method and the a-5iC:H(2) film prepared using the conventional RF-CVD method were exposed to corona irradiation in high humidity. IR-RAS shows the difference between surface adsorption and oxidation of
As a result of measurement, the a-5iC:H(1) film was a-
5iC: 5i-0-5t, St compared to H(2) film
Si-related adsorption and oxidation amount of -OH, H-H, etc. is approximately 173
It became. This is due to the improved structural density of the film. Laser Raman spectroscopy was performed to measure this structural density. In the Raman spectrum results obtained in this measurement, the a-5iC:H film has To(approximately 48
Two peaks are observed: 8 cm''I) and TA (about 150 cm-').The TO/TA peak ratio represents the disorder of the symmetry of the St bond and the disorder of the structure, and the larger this value is, the denser the structure is. The measurement results show that a-5iC:
To/TA of H(2) is 1.8, whereas a −
The To/TA of 3iC:H(1) was 2.4, which revealed that it had a dense structure. And a-SiC
:A-Si photoreceptor using H(1) film is a-5i
Compared to the C:H(2) film, there was less "image deletion" development at high temperatures.

以上の結果より、水素ラジカルを基体上や堆積空間に供
給することが、a −3iC:H膜の緻密性を向上させ
「像流れ」を起こしに((シていることは明らかである
From the above results, it is clear that supplying hydrogen radicals onto the substrate or into the deposition space improves the density of the a-3iC:H film and causes "image blur."

しかし、「像流れ」に強いa −5iC:H膜を作製す
るのに効果のある従来の水素ラジカルアシストRF−C
VD法においては、水素ラジカルが一方向のみから供給
されるため、基体が円筒状の場合、効率良く水素ラジカ
ルが供給されない部分が生じたが、これは、本出願人の
提案した特願平1−209699号(平成元年8月15
日提出)の方法により解決した。次にその概要を説明す
る 第6図は特願平1−209699号の第2図に示された
水素ラジカルアシストRF−CVD装置の概要図で、図
中、51はヒータ52により加熱される円筒型基体(電
子写真感光体に使用)、53゜54は電極である。なお
、第5図と共通の部材には同符号を用いている。本方式
では、図示のように、マイクロ波(μ波)発振器31と
プラズマ発生炉33を2つ設け、2方向から水素ラジカ
ル37を堆積空間55へ供給する。このため、1方向か
ら水素ラジカル37を導入する方式に比べ、基体51上
または堆積空間55内に水素ラジカルが効率良く供給さ
れる。61は、円筒型基体51の縦方向(第6図の紙面
と垂直方向)へ水素ラジカル37を均一に供給するため
の水素ラジカル導入部である。
However, conventional hydrogen radical-assisted RF-C, which is effective in producing a-5iC:H films that are resistant to "image blur",
In the VD method, hydrogen radicals are supplied from only one direction, so when the substrate is cylindrical, there are parts where hydrogen radicals are not efficiently supplied. -209699 (August 15, 1989)
The problem was solved by the method of Next, FIG. 6, which explains the outline thereof, is a schematic diagram of the hydrogen radical assisted RF-CVD apparatus shown in FIG. 2 of Japanese Patent Application No. 1-209699. A mold substrate (used for an electrophotographic photoreceptor), 53° and 54 are electrodes. Note that the same reference numerals are used for the same members as in FIG. In this method, as shown in the figure, two microwave (μ wave) oscillators 31 and two plasma generating furnaces 33 are provided, and hydrogen radicals 37 are supplied to the deposition space 55 from two directions. Therefore, compared to a method in which hydrogen radicals 37 are introduced from one direction, hydrogen radicals are efficiently supplied onto the substrate 51 or into the deposition space 55. Reference numeral 61 denotes a hydrogen radical introducing portion for uniformly supplying the hydrogen radicals 37 in the longitudinal direction of the cylindrical substrate 51 (in the direction perpendicular to the paper surface of FIG. 6).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、この方式による成膜時に2つのμ波発振器31
の周期がうまく合わないと、反射波が時間変化する現像
が現れ、プラズマに乱れが生じる場合がある。すなわち
、2つのμ波発振器を使い2方向から水素ラジカルを導
入する水素ラジカルアシストRF−CVD法では、2つ
の発振器の周期のずれが大きくなると、それぞれの反射
波が大きくなり、プラズマが不安定となるため、長時間
の安定な成膜が行えないといった問題点が生じていた。
However, when forming a film using this method, two μ-wave oscillators 31
If the periods of the two do not match well, a phenomenon in which the reflected waves change over time will appear, which may cause disturbances in the plasma. In other words, in the hydrogen radical-assisted RF-CVD method, which uses two μ-wave oscillators and introduces hydrogen radicals from two directions, as the difference between the periods of the two oscillators becomes large, the reflected waves of each become large and the plasma becomes unstable. Therefore, a problem has arisen in that stable film formation cannot be performed for a long time.

また、2つの発振器を持つことから、制御が複雑になっ
たり、装置が高価なものになるといった問題点も生じて
いた。
Furthermore, since there are two oscillators, the control becomes complicated and the device becomes expensive.

本発明は、より緻密な炭素含有水素化アモルファスシリ
コン膜を安定して形成することのできる薄膜形成装置を
提供することを目的としている。
An object of the present invention is to provide a thin film forming apparatus that can stably form a denser carbon-containing hydrogenated amorphous silicon film.

〔課題を解決するための手段〕[Means to solve the problem]

第1図は本発明の原理説明図で、図中、71はマイクロ
波分配器である。なお、第6図と共通の部材には同符号
を用いている。
FIG. 1 is a diagram explaining the principle of the present invention, and in the figure, 71 is a microwave distributor. Note that the same reference numerals are used for the same members as in FIG. 6.

本図に明らかなように、マイクロ波発振器31は1つで
、該マイクロ波発振器31で発生するマイクロ波は、マ
イクロ波分配器71により、各プラズマ発生炉33.3
3に分配供給されるようになっている。
As is clear from this figure, there is one microwave oscillator 31, and the microwaves generated by the microwave oscillator 31 are distributed to each plasma generating furnace 33.3 by a microwave distributor 71.
It is designed to be distributed and supplied to 3.

〔作 用〕[For production]

本発明では、上記のように、1つのマイクロ波発振器3
1とマイクロ波分配器71を使うようになっているため
、2つの発振器がある場合に生じたマイクロ波周期のず
れがなくなり、しかも2つ以上の方向から水素ラジカル
37を導入することができるため、円筒型基体51の各
部に均一でより緻密なa−5iC:膜を形成することが
できる。また、この方式で作製した表面保護層は、表面
のSiの反応性が弱まり、高湿度中でのコロナ照射によ
り起こるSi関連の吸着、酸化が減少する。従って、こ
の膜を表面保護層に用いたa −Si感光体は高温高温
中で表面劣化が少な(なり、「像流れ」等の画像劣化が
なくなる。
In the present invention, as described above, one microwave oscillator 3
1 and the microwave distributor 71 are used, the shift in the microwave period that occurs when there are two oscillators is eliminated, and hydrogen radicals 37 can be introduced from two or more directions. , a uniform and denser a-5iC: film can be formed on each part of the cylindrical substrate 51. In addition, in the surface protective layer produced by this method, the reactivity of Si on the surface is weakened, and Si-related adsorption and oxidation caused by corona irradiation in high humidity are reduced. Therefore, an a-Si photoreceptor using this film as a surface protective layer has less surface deterioration at high temperatures (thereby eliminating image deterioration such as "image blur").

〔実施例] 以下、第2図に関連して本発明の詳細な説明する。〔Example] The invention will now be described in detail with reference to FIG.

第2図は本例の薄膜形成装置の概要図で、第1図と共通
の部材には同符号を用いている。図中、72はアイソレ
ータ、73はパワーモニタ、74は整合器である。
FIG. 2 is a schematic diagram of the thin film forming apparatus of this example, and the same reference numerals are used for the same members as in FIG. 1. In the figure, 72 is an isolator, 73 is a power monitor, and 74 is a matching box.

基体51は、外径80mmの^i製の円筒状をしており
、加熱用ヒータ52を含んだ基板ホルダに取り付けられ
て回転しながらa  SiC:Hの成膜が行われる。成
膜条件の一例をあげると、圧力0.2torr、基体温
度250°C,RFパワー100W。
The base body 51 has a cylindrical shape made of ^i and has an outer diameter of 80 mm, and is attached to a substrate holder including a heating heater 52 to form a SiC:H film while rotating. An example of film forming conditions is a pressure of 0.2 torr, a substrate temperature of 250°C, and an RF power of 100W.

5izF!b 2SCC1m、 Cd1810SCCI
I、 1(z200secm、マイクロ波パワー800
Wである。1つのμ波発振器31で発生したμ波は、ア
イソレーク72を通り、μ渡分配器71で2方向に分れ
、それぞれパワーモニタ73、整合器74を通り、各プ
ラズマ発生炉33へ送られる。H2の200secmは
2方向からそれぞれ100SCCIIIずつ供給され、
おのおのプラズマ発生炉33で分解されて水素ラジカル
37となり、基体51に対し両方向から水素ラジカル導
入部61を通り供給される。
5izF! b 2SCC1m, Cd1810SCCI
I, 1 (z200sec, microwave power 800
It is W. The μ-waves generated by one μ-wave oscillator 31 pass through an isolake 72 , are split into two directions by a μ-crossover distributor 71 , pass through a power monitor 73 and a matching box 74 , and are sent to each plasma generation furnace 33 . 200sec of H2 is supplied from 2 directions with 100SCCIII each,
Each of the hydrogen radicals is decomposed in the plasma generating furnace 33 to become hydrogen radicals 37, which are supplied to the base 51 from both directions through the hydrogen radical introduction section 61.

この場合、反射波は、従来の2つのμ波発振器を使う場
合に比べ1/2〜1/3に減少し、周期的に生じていた
プラズマの不安定さは無くなった。このため、長時間の
連続成膜が可能となった。さらに、感光体としての評価
のために、円筒のへ2基体上に、B高ドープのa −3
t : H膜のブロッキング層を0.56μm、B低ド
ープのa −St : Hlliの感光層を10μm2
本発明の方式によるa −3iC:Hの表面保護層を0
.15μm順次堆積し、この感光体の試験を行ったとこ
ろ、35°C80%RH雰囲気中で2時間の連続コロナ
照射後でも、またその後の一晩放置後でも「像流れ」を
起こさないことが分かった。
In this case, the reflected waves were reduced to 1/2 to 1/3 compared to the conventional case of using two μ-wave oscillators, and the periodic instability of the plasma was eliminated. Therefore, continuous film formation over a long period of time became possible. Furthermore, for evaluation as a photoreceptor, a highly B-doped a-3
The blocking layer of t:H film is 0.56 μm, and the photosensitive layer of B lightly doped a-St:Hlli is 10 μm2.
The surface protective layer of a-3iC:H according to the method of the present invention is
.. When 15 μm of photoreceptor was deposited sequentially and this photoreceptor was tested, it was found that "image deletion" did not occur even after continuous corona irradiation for 2 hours at 35°C and 80% RH, and even after leaving it overnight. Ta.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、1つのマイクロ波
発振器で発生するマイクロ波をマイクロ波分配器により
各プラズマ発生炉へ分配供給するようになっているため
、従来の複数のマイクロ波発振器を使う場合に比べてマ
イクロ波プラズマの周期が一致して反射波が減少し、長
時間安定したプラズマが得られる。また、各方向から水
素ラジカルを基体または堆積空間へ効率良(送り込まれ
るため、円筒基体上により緻密なa −5iC:H膜を
形成することが可能となる。このa −5iC:H膜を
表面保護層に使用すると、高性能(耐湿性が優れ、高帯
電能)のa−3t悪感光を得ることができる。
As described above, according to the present invention, the microwaves generated by one microwave oscillator are distributed and supplied to each plasma generation furnace by the microwave distributor, so that the microwaves generated by one microwave oscillator are distributed and supplied to each plasma generation furnace. Compared to when using microwave plasma, the period of microwave plasma matches, the reflected waves are reduced, and stable plasma can be obtained for a long time. In addition, since hydrogen radicals are efficiently fed into the substrate or deposition space from each direction, it is possible to form a denser a-5iC:H film on the cylindrical substrate. When used in the protective layer, high performance (excellent moisture resistance and high charging ability) a-3t bad sensitivity can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理説明図、 第2図は本発明の実施例の薄膜形成装置の概要図、 第3図はa −3t悪感光構成図、 第4図は従来のRF−CVD法によるa −5iC:H
膜形成装置の概要図、 第5図は従来の水素ラジカルアシストRF−CVD装置
の概要図、 第6図は従来の他の水素ラジカルアシストRF−CVD
装置の概要図で、 図中、 31はマイクロ波発振器、 33はプラズマ発生炉、 37は水素ラジカル、 51は基体、 55は堆積空間、 71はマイクロ波分配器である。 本発明の実施例の薄膜形成装置の概要図第2図 01 a−5t感光体構成図 第3図 第4図
Fig. 1 is a diagram explaining the principle of the present invention, Fig. 2 is a schematic diagram of a thin film forming apparatus according to an embodiment of the present invention, Fig. 3 is a block diagram of a-3t ill-sensitivity, and Fig. 4 is a conventional RF-CVD method. a-5iC:H
A schematic diagram of a film forming apparatus, Figure 5 is a schematic diagram of a conventional hydrogen radical assisted RF-CVD apparatus, and Figure 6 is a diagram of another conventional hydrogen radical assisted RF-CVD apparatus.
This is a schematic diagram of the apparatus. In the figure, 31 is a microwave oscillator, 33 is a plasma generation furnace, 37 is a hydrogen radical, 51 is a substrate, 55 is a deposition space, and 71 is a microwave distributor. Schematic diagram of a thin film forming apparatus according to an embodiment of the present invention Fig. 2 01 A-5T photoreceptor configuration diagram Fig. 3 Fig. 4

Claims (1)

【特許請求の範囲】  2つ以上のプラズマ発生炉(33)に供給されるマイ
クロ波により、該各プラズマ発生炉(33)に導入され
る水素ガスを分解しプラズマ化することによって発生す
る水素ラジカル(37)を、それぞれ異なる方向から基
体(51)又は堆積空間(55)へ送り込んで該基体(
51)に高緻密性の炭素含有水素化アモルファスシリコ
ン膜を形成する薄膜形成装置において、 前記各プラズマ発生炉(33)へマイクロ波を供給する
ための1つのマイクロ波発振器(31)を設けるととも
に、 前記マイクロ波発振器(31)で発生するマイクロ波を
前記各プラズマ発生炉(33)に分配する1つのマイク
ロ波分配器(71)を設けたことを特徴とする薄膜形成
装置。
[Claims] Hydrogen radicals generated by decomposing hydrogen gas introduced into each plasma generation furnace (33) and turning it into plasma by microwaves supplied to two or more plasma generation furnaces (33). (37) into the substrate (51) or the deposition space (55) from different directions.
51) in a thin film forming apparatus for forming a highly dense carbon-containing hydrogenated amorphous silicon film, one microwave oscillator (31) is provided for supplying microwaves to each of the plasma generating furnaces (33); A thin film forming apparatus characterized in that one microwave distributor (71) is provided for distributing microwaves generated by the microwave oscillator (31) to each of the plasma generating furnaces (33).
JP23733389A 1989-09-14 1989-09-14 Thin film forming device Pending JPH03100178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23733389A JPH03100178A (en) 1989-09-14 1989-09-14 Thin film forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23733389A JPH03100178A (en) 1989-09-14 1989-09-14 Thin film forming device

Publications (1)

Publication Number Publication Date
JPH03100178A true JPH03100178A (en) 1991-04-25

Family

ID=17013826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23733389A Pending JPH03100178A (en) 1989-09-14 1989-09-14 Thin film forming device

Country Status (1)

Country Link
JP (1) JPH03100178A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4810120A (en) * 1987-01-16 1989-03-07 Nippon I.C.S. Kabushiki Kaisha Perfecting printer with turnover unit
JPH0621027A (en) * 1991-10-04 1994-01-28 Matsushita Electric Ind Co Ltd Method for removing damage of material
US6383896B1 (en) 1999-09-16 2002-05-07 Nissan Electric Co., Ltd. Thin film forming method and thin film forming apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4810120A (en) * 1987-01-16 1989-03-07 Nippon I.C.S. Kabushiki Kaisha Perfecting printer with turnover unit
JPH0621027A (en) * 1991-10-04 1994-01-28 Matsushita Electric Ind Co Ltd Method for removing damage of material
US6383896B1 (en) 1999-09-16 2002-05-07 Nissan Electric Co., Ltd. Thin film forming method and thin film forming apparatus

Similar Documents

Publication Publication Date Title
US5534070A (en) Plasma CVD process using a very-high-frequency and plasma CVD apparatus
EP0230788B1 (en) Method for preparation of multi-layer structure film
US5129359A (en) Microwave plasma CVD apparatus for the formation of functional deposited film with discharge space provided with gas feed device capable of applying bias voltage between the gas feed device and substrate
JPH0459390B2 (en)
US6435130B1 (en) Plasma CVD apparatus and plasma processing method
JP2787148B2 (en) Method and apparatus for forming deposited film by microwave plasma CVD
US4943503A (en) Amorphous silicon photoreceptor
US5338580A (en) Method of preparation of functional deposited film by microwave plasma chemical vapor deposition
JPH03100178A (en) Thin film forming device
JPH08333684A (en) Formation of deposited film
JP3406936B2 (en) Plasma CVD method using ultrashort wave and plasma CVD apparatus
JPH08232070A (en) Deposited film-forming device and electrode used therefor
JP2797202B2 (en) Method for producing carbon-containing hydrogenated amorphous silicon film
JP2867150B2 (en) Microwave plasma CVD equipment
JPH07288233A (en) Film forming apparatus
JP2925310B2 (en) Deposition film formation method
JPS62180074A (en) Formation of deposited film by plasma cvd method
US5098812A (en) Photosensitive device and manufacturing method for the same
JPH1126388A (en) Forming equipment for deposition film and forming method for deposition film
JP2561129B2 (en) Thin film forming equipment
JPH01234314A (en) Formation of amorphous silicon film having high carbon content
JPH0689453B2 (en) Thin film forming equipment
JP3402952B2 (en) Method and apparatus for forming deposited film
JP2625774B2 (en) Manufacturing method of electrophotographic photoreceptor
JPS6357779A (en) Functional deposited film forming device by microwave plasma cvd method