JPH09256160A - Plasma cvd device and deposited film forming method by plasma cvd - Google Patents

Plasma cvd device and deposited film forming method by plasma cvd

Info

Publication number
JPH09256160A
JPH09256160A JP8068360A JP6836096A JPH09256160A JP H09256160 A JPH09256160 A JP H09256160A JP 8068360 A JP8068360 A JP 8068360A JP 6836096 A JP6836096 A JP 6836096A JP H09256160 A JPH09256160 A JP H09256160A
Authority
JP
Japan
Prior art keywords
substrate
plasma cvd
deposited film
cathode electrode
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8068360A
Other languages
Japanese (ja)
Inventor
Satoshi Takagi
智 高木
Atsushi Yamagami
敦士 山上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP8068360A priority Critical patent/JPH09256160A/en
Priority to KR1019970010297A priority patent/KR100256192B1/en
Publication of JPH09256160A publication Critical patent/JPH09256160A/en
Priority to US09/120,319 priority patent/US6065425A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32541Shape
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4584Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32559Protection means, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32577Electrical connecting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating
    • H01J2237/3321CVD [Chemical Vapor Deposition]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Semiconductor Lasers (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a plasma CVD device which can form a deposited film having very uniform film thickness and film quality and having high quality on a substrate with large area at high speed and can efficiently form a semicon ductor device and a deposited film forming method by a plasma CVD. SOLUTION: In the plasma CVD device, (1) oscillation frequency of a high frequency power source can be controlled within a range of 30 to 600MHz, (2) a matching circuit 109 and a cathode electrode 103 are connected via a transmission line 130 and high frequency power is transmitted via the transmission line, (3) the cathode electrode 103 is a bar-shaped conductive structure and an outer shape of a section of the cathode electrode and an outer shape of a section of an internal conductor are the same at a connecting part between the cathode electrode and the internal conductor of the transmission line, (4) at least a connecting part between the cathode electrode and the internal conductor of the transmission line is covered with a dielectric member having the same outer shape as the outer shape of a transmission medium at the section of the transmission line.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、プラズマCVD装
置およびプラズマCVDによる堆積膜形成方法に関す
る。さらに詳しくは、半導体デバイス、電子写真用感光
体デバイス、画像入力用ラインセンサー、フラットパネ
ルディスプレイ、撮像デバイス、光起電力デバイス等の
製造に用いられるプラズマCVD装置およびプラズマC
VDによる堆積膜形成方法に関する。
TECHNICAL FIELD The present invention relates to a plasma CVD apparatus and a deposited film forming method by plasma CVD. More specifically, a plasma CVD apparatus and plasma C used for manufacturing a semiconductor device, a photoconductor device for electrophotography, a line sensor for image input, a flat panel display, an imaging device, a photovoltaic device, and the like.
The present invention relates to a deposited film forming method by VD.

【0002】[0002]

【従来の技術】近年、半導体デバイス等の製造プロセス
においては、プラズマCVD装置が工業的に実用化され
ている。特に13.56MHzの高周波や2.45GH
zのマイクロ波を用いたプラズマCVD装置は、基板材
料や堆積膜材料等が導電体・絶縁体に関わらず処理でき
るので広く用いられている。
2. Description of the Related Art In recent years, in a process of manufacturing a semiconductor device or the like, a plasma CVD apparatus has been industrially put to practical use. Especially 13.56MHz high frequency and 2.45GH
A plasma CVD apparatus using a microwave of z is widely used because it can process a substrate material, a deposited film material, and the like regardless of a conductor or an insulator.

【0003】従来のプラズマCVD装置の一例として、
高周波エネルギーを用いた平行平板型の装置について図
7を参照しながら説明する。反応容器(701)に絶縁
性のカソード電極支持台(702)を介してカソード電
極(703)が配置されている。カソード電極(70
3)の回りには、カソード電極(703)の側部と反応
容器(701)との間で放電が発生しないようにアース
シールド(704)が配置されている。カソード電極
(703)には整合回路(709)と高周波電力供給線
(710)を介して高周波電源(711)が接続されて
いる。カソード電極(703)と平行に配された対向電
極(705)にはプラズマCVDを行うための平板状の
被成膜基体(706)が配置され、この被成膜基体(7
06)は、基体温度制御手段(図示せず)により所望の
温度に保たれる。
As an example of a conventional plasma CVD apparatus,
A parallel plate type apparatus using high frequency energy will be described with reference to FIG. A cathode electrode (703) is arranged in a reaction vessel (701) via an insulating cathode electrode support (702). Cathode electrode (70
Around the 3), a ground shield (704) is arranged so that no discharge occurs between the side of the cathode electrode (703) and the reaction vessel (701). A high frequency power supply (711) is connected to the cathode electrode (703) through a matching circuit (709) and a high frequency power supply line (710). A flat plate-shaped film-forming substrate (706) for performing plasma CVD is arranged on the counter electrode (705) arranged in parallel with the cathode electrode (703).
06) is kept at a desired temperature by a substrate temperature control means (not shown).

【0004】上記の装置を使用した場合のプラズマCV
Dは次のように行われる。反応容器(701)を真空排
気手段(707)によって高真空まで排気した後、ガス
供給手段(708)によって反応ガスを反応容器(70
1)内に導入し、所定の圧力に維持する。次いで、高周
波電源(711)から高周波電力をカソード電極(70
3)に供給してカソード電極と対向電極との間にプラズ
マを発生させる。こうすることにより、反応ガスがプラ
ズマにより分解・励起され、被成膜基体(706)上に
堆積膜が形成される。
Plasma CV using the above device
D is performed as follows. After the reaction container (701) is evacuated to a high vacuum by the vacuum evacuation means (707), the reaction gas is supplied to the reaction container (70) by the gas supply means (708).
Introduced into 1) and maintained at a predetermined pressure. Next, high frequency power is supplied from the high frequency power supply (711) to the cathode electrode (70
3) to generate plasma between the cathode electrode and the counter electrode. By doing so, the reactive gas is decomposed / excited by the plasma, and a deposited film is formed on the deposition target substrate (706).

【0005】高周波エネルギーとしては、13.56M
HzのRFエネルギーを用いるのが一般的である。放電
周波数が13.56MHzの場合は放電条件の制御が比
較的容易であり、得られる膜の膜質が優れているといっ
た利点を有する。しかし、ガスの利用効率が低く、堆積
膜の形成速度が比較的小さいといった問題がある。
As high frequency energy, 13.56M
It is common to use RF energy of Hz. When the discharge frequency is 13.56 MHz, it is relatively easy to control the discharge conditions and there is an advantage that the quality of the obtained film is excellent. However, there are problems that the gas utilization efficiency is low and the deposition film formation rate is relatively low.

【0006】こうした問題に鑑みて、周波数が25〜1
50MHz程度の高周波を用いたプラズマCVD法につ
いての検討がなされている。例えば、Plasma Chemistry
andPlasma Processing,Vol.7,No.3(1987)p267-273(以
下「文献1」という)には、平行平板型のグロー放電分
解装置を使用して原料ガス(シランガス)を周波数25
〜150MHzの高周波エネルギーで分解してアモルフ
ァスシリコン(「a−Si」ともいう)膜を形成するこ
とが記載されている。具体的には、周波数を25〜15
0MHzの範囲で変化させてアモルファスシリコン膜の
形成を行い、70MHzを使用した場合は膜堆積速度が
2.1nm/secと最も大きくなり、これは上述の1
3.56MHzを用いたプラズマCVD法の場合の5〜
8倍程度の形成速度であること、及び、得られるアモル
ファスシリコン膜の欠陥密度、光バンドギャップ及び導
電率は、励起周波数によってはあまり影響を受けないこ
とが記載されている。しかし、この文献1に記載の成膜
は実験室規模のものであり、大面積の膜の形成において
もこうした効果が期待できるか否かについて全く触れら
れていない。さらに文献1には、複数の基体上に同時に
成膜を行い、実用に供し得る大面積の半導体デバイスを
効率よく形成することに関しては何ら示唆もなされてい
ない。文献1では、高周波(3.56〜200MHz)
の使用は、数μmの厚さを要求される低コストの大面積
a−Si:H薄膜デバイスの高速プロセシングに興味あ
る展望を開くとして、単に可能性を示唆するにとどまっ
ている。
In view of these problems, the frequency is 25 to 1
Studies have been made on a plasma CVD method using a high frequency of about 50 MHz. For example, Plasma Chemistry
andPlasma Processing, Vol.7, No.3 (1987) p267-273 (hereinafter referred to as "Reference 1"), a parallel plate type glow discharge decomposing device is used to feed a source gas (silane gas) at a frequency of 25.
It is described that an amorphous silicon (also referred to as “a-Si”) film is formed by decomposing with high frequency energy of up to 150 MHz. Specifically, the frequency is 25 to 15
When the amorphous silicon film is formed by changing it in the range of 0 MHz and the film deposition rate is 70 MHz, the film deposition rate becomes 2.1 nm / sec, which is the largest.
5 to 5 in the case of the plasma CVD method using 3.56 MHz
It is described that the formation rate is about 8 times, and the defect density, optical bandgap and conductivity of the obtained amorphous silicon film are not so affected by the excitation frequency. However, the film formation described in Document 1 is on a laboratory scale, and there is no mention of whether such an effect can be expected even in the formation of a large-area film. Further, in Document 1, there is no suggestion of simultaneously forming a film on a plurality of substrates to efficiently form a large-area semiconductor device that can be put to practical use. In Reference 1, high frequency (3.56 to 200 MHz)
The use of the above has only suggested the possibility as it opens an interesting prospect for high speed processing of low cost large area a-Si: H thin film devices requiring a thickness of a few μm.

【0007】上記従来例は、平板状の基体を処理するの
に適したプラズマCVD装置の例であるが、複数の円筒
状基体上に堆積膜を形成するのに適したプラズマCVD
装置の一例が、特開昭60−186849号公報(以下
「文献2」という)に記載されている。この文献2に
は、周波数2.45GHzのマイクロ波エネルギー源を
用いたプラズマCVD装置、及び無線周波エネルギー
(RFエネルギー)源を用いたプラズマCVD装置が開
示されている。このマイクロ波エネルギー源を用いたプ
ラズマCVD装置においては、マイクロ波エネルギーを
使用することから成膜時のプラズマ密度が極めて高く、
それ故に原料ガスの分解が急激になされ膜堆積が高速で
行われる。こうしたことから、この装置には緻密な堆積
膜の形成を安定して行うのは極めて難しいという問題が
ある。
The above-mentioned conventional example is an example of a plasma CVD apparatus suitable for treating a flat substrate, but plasma CVD suitable for forming a deposited film on a plurality of cylindrical substrates.
An example of the apparatus is described in JP-A-60-186849 (hereinafter referred to as "Document 2"). This document 2 discloses a plasma CVD apparatus using a microwave energy source having a frequency of 2.45 GHz and a plasma CVD apparatus using a radio frequency energy (RF energy) source. In the plasma CVD apparatus using this microwave energy source, since the microwave energy is used, the plasma density during film formation is extremely high,
Therefore, the raw material gas is rapidly decomposed and the film is deposited at high speed. For this reason, this device has a problem that it is extremely difficult to stably form a dense deposited film.

【0008】以下に文献2のRFエネルギー源を用いた
プラズマCVD装置(RFプラズマCVD装置)を図8
及び図9を参照しながら説明する。図8及び図9には、
文献2に記載されているRFプラズマCVD装置に基づ
いたプラズマCVD装置を示す。なお、図9は図8のY
−Y線断面図である。図8及び図9において、100は
反応容器を示す。反応容器(100)内には、6個の基
体ホルダー(105A)が同心円状に所定の間隔で配さ
れている。106はそれぞれの基体ホルダー(105
A)上に配された成膜用の円筒状基体である。それぞれ
の基体ホルダー(105A)の内部にはヒーター(14
0)が設けられており、円筒状基体(106)を内側か
ら加熱できるようになっている。また、それぞれの基体
ホルダー(105A)は、モーター(132)に連結し
た基体回転用シャフト(131)に接続され、回転でき
るようになっている。105Bは円筒状基体(106)
の補助保持部材である。133はシール部材である。1
03はプラズマ生起領域の中心に位置した高周波電力投
入用のカソード電極である。このカソード電極(10
3)は、整合回路(109)を介して高周波電源(11
1)に接続されている。120はカソード電極支持部材
である。107は排気バルブを備えた排気パイプであ
り、この排気パイプ(107)は、真空ポンプを備えた
排気機構(135)に連通している。108は、ガスボ
ンベ、マスフローコントローラ、バルブ等で構成された
原料ガス供給手段である。この原料ガス供給手段(10
8)は、ガス供給パイプ(117)を介して複数のガス
放出孔を備えたガス放出パイプ(116)に接続されて
いる。
A plasma CVD apparatus (RF plasma CVD apparatus) using the RF energy source of Reference 2 is shown in FIG.
9 and FIG. 9. 8 and 9,
2 shows a plasma CVD apparatus based on the RF plasma CVD apparatus described in Document 2. Note that FIG. 9 shows Y of FIG.
FIG. 4 is a sectional view taken along line -Y. 8 and 9, reference numeral 100 denotes a reaction container. In the reaction container (100), six substrate holders (105A) are concentrically arranged at predetermined intervals. Reference numeral 106 denotes each substrate holder (105
A) A cylindrical substrate for film formation, which is arranged on the substrate. A heater (14) is provided inside each substrate holder (105A).
0) is provided so that the cylindrical substrate (106) can be heated from the inside. Further, each of the base body holders (105A) is connected to a base body rotating shaft (131) connected to a motor (132) so as to be rotatable. 105B is a cylindrical substrate (106)
Is an auxiliary holding member. 133 is a seal member. 1
Reference numeral 03 is a cathode electrode for inputting high-frequency power, which is located in the center of the plasma generation region. This cathode electrode (10
3) is a high frequency power source (11) via a matching circuit (109).
1). 120 is a cathode electrode support member. Reference numeral 107 denotes an exhaust pipe having an exhaust valve, and the exhaust pipe (107) communicates with an exhaust mechanism (135) having a vacuum pump. Reference numeral 108 is a raw material gas supply means composed of a gas cylinder, a mass flow controller, a valve and the like. This source gas supply means (10
8) is connected via a gas supply pipe (117) to a gas discharge pipe (116) having a plurality of gas discharge holes.

【0009】上記の装置を使用した場合のプラズマCV
Dは次のように行われる。反応容器(100)を排気機
構(135)によって高真空まで排気した後、原料ガス
供給手段(108)からガス供給パイプ(117)及び
ガス放出パイプ(116)を介して原料ガスを反応容器
(100)内に導入し、所定の圧力に維持する。こうし
たところで、高周波電源(111)から高周波電力を整
合回路(109)を介してカソード電極(103)に供
給してカソード電極と円筒状基体(106)との間にプ
ラズマを発生させる。こうすることにより、原料ガスが
プラズマにより分解・励起され、円筒状基体(106)
上に堆積膜が形成される。
Plasma CV using the above device
D is performed as follows. After the reaction container (100) is evacuated to a high vacuum by the exhaust mechanism (135), the source gas is supplied from the source gas supply means (108) through the gas supply pipe (117) and the gas release pipe (116). ) And maintained at a predetermined pressure. In such a place, high frequency power is supplied from the high frequency power supply (111) to the cathode electrode (103) through the matching circuit (109) to generate plasma between the cathode electrode and the cylindrical substrate (106). By doing so, the source gas is decomposed and excited by the plasma, and the cylindrical substrate (106)
A deposited film is formed thereon.

【0010】図8及び図9に示す上記従来のプラズマC
VD装置を使用すれば、放電空間が円筒状基体(10
6)で取り囲まれているので高い利用効率で原料ガスを
使用できるという利点がある。
The above-mentioned conventional plasma C shown in FIGS. 8 and 9.
If the VD device is used, the discharge space has a cylindrical substrate (10
Since it is surrounded by 6), there is an advantage that the raw material gas can be used with high utilization efficiency.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、円筒状
基体の表面全面に堆積膜を形成するには、円筒状基体を
回転させる必要があり、回転させることによって、実質
的な堆積速度が上述した平行平板型のプラズマCVD装
置を使用した場合の約1/3〜1/5に低下するという
問題がある。すなわち、放電空間が円筒状基体で取り囲
まれているため、円筒状基体がカソード電極と正対する
位置では平行平板型のプラズマCVD装置と同程度の堆
積速度で堆積膜が形成されるが、放電空間に接していな
い位置ではほとんど堆積膜が形成されないためである。
文献2においては、RFエネルギーの具体的な周波数に
ついては言及されていない。本発明者らが図8及び図9
に示すプラズマCVD装置を使用して、RFエネルギー
として一般的な13.56MHz、原料ガスとしてSi
4を用い、堆積速度は高くなるがポリシラン等の粉体
が発生しやすい数100mTorrの圧力条件において、円
筒状基体を回転させて基体の全周全面にアモルファスシ
リコン膜を堆積したところ、実質的な堆積速度はたかだ
か0.5nm/sであった。図8及び図9に示す従来の
プラズマCVD装置を用いてアモルファスシリコン膜を
感光層とする電子写真感光体を作製する場合、アモルフ
ァスシリコン感光層の膜厚は30μm程度必要であるた
め、上記の0.5nm/s程度の堆積速度では膜堆積に
16時間以上を要し、生産性が非常に悪い。また、図8
及び図9に示す従来のプラズマCVD装置においては、
RFエネルギーの周波数を30MHz以上にすると円筒
状基体の軸方向に関して不均一なプラズマが形成されや
すく、円筒状基体上に均質な堆積膜を形成するのは極め
て難しいといった問題がある。この点は、後述の本発明
者らが行った文献2に記載の方法を実施した結果からし
て容易に理解される。
However, in order to form a deposited film on the entire surface of the cylindrical substrate, it is necessary to rotate the cylindrical substrate. By rotating the cylindrical substrate, the substantial deposition rate becomes equal to the above-mentioned parallel rate. There is a problem that it is reduced to about ⅓ to ⅕ of that when a flat plate type plasma CVD apparatus is used. That is, since the discharge space is surrounded by the cylindrical substrate, a deposited film is formed at a deposition rate almost equal to that of the parallel plate plasma CVD apparatus at the position where the cylindrical substrate faces the cathode electrode. This is because the deposited film is hardly formed at the position not in contact with.
Reference 2 does not mention a specific frequency of RF energy. FIG. 8 and FIG.
Using the plasma CVD apparatus shown in Fig. 1, a typical RF energy of 13.56 MHz and a source gas of Si
When H 4 is used and the deposition rate is high, but a pressure of several 100 mTorr is likely to generate powder such as polysilane, the cylindrical substrate is rotated to deposit an amorphous silicon film on the entire surface of the substrate. The deposition rate was at most 0.5 nm / s. When an electrophotographic photosensitive member having an amorphous silicon film as a photosensitive layer is manufactured by using the conventional plasma CVD apparatus shown in FIGS. 8 and 9, the film thickness of the amorphous silicon photosensitive layer is required to be about 30 μm. At a deposition rate of about 0.5 nm / s, it takes 16 hours or more to deposit the film, resulting in very poor productivity. FIG.
And in the conventional plasma CVD apparatus shown in FIG.
When the frequency of the RF energy is 30 MHz or more, non-uniform plasma is likely to be formed in the axial direction of the cylindrical substrate, and there is a problem that it is extremely difficult to form a uniform deposited film on the cylindrical substrate. This point can be easily understood from the result of carrying out the method described in Reference 2 performed by the inventors, which will be described later.

【0012】そこで本発明の目的は、従来技術における
上述した問題点を解決し、大面積の基体上に膜厚および
膜質が極めて均一で高品質な堆積膜を高速度で形成し、
効率よく半導体デバイスを形成し得るプラズマCVD装
置、及びプラズマCVDによる堆積膜形成方法を提供す
ることである。
Therefore, an object of the present invention is to solve the above-mentioned problems in the prior art, to form a high-quality deposited film having an extremely uniform film thickness and film quality on a large-area substrate at a high speed,
It is to provide a plasma CVD apparatus capable of efficiently forming a semiconductor device and a deposited film forming method by plasma CVD.

【0013】本発明の更なる目的は、複数の円筒状基体
の表面上に、該円筒状基体の軸方向および周方向のいず
れの方向に関しても、膜厚および膜質がいずれも極めて
均一で高品質な堆積膜を高速度で形成し、効率よく半導
体デバイスを形成し得るプラズマCVD装置、及びプラ
ズマCVDによる堆積膜形成方法を提供することであ
る。
A further object of the present invention is that the film thickness and film quality are both extremely uniform and of high quality on the surfaces of a plurality of cylindrical substrates in both the axial and circumferential directions of the cylindrical substrates. The present invention is to provide a plasma CVD apparatus capable of efficiently forming a deposited film at high speed and efficiently forming a semiconductor device, and a deposited film forming method by plasma CVD.

【0014】[0014]

【課題を解決するための手段】本発明者らは、上記の目
的を達成するために種々の検討を重ねた結果、本発明を
完成した。
Means for Solving the Problems The present inventors have conducted various studies to achieve the above object, and as a result, completed the present invention.

【0015】第1の発明は、減圧可能な反応容器、該反
応容器内にプラズマCVDの原料ガスを供給する原料ガ
ス供給手段、前記反応容器内に配された基体保持手段お
よびカソード電極、並びに高周波電源を有し、該高周波
電源で発生させた高周波電力を整合回路を介して前記カ
ソード電極へ供給し、前記基体保持手段により保持され
る基体と前記カソード電極との間にプラズマを発生させ
て基体に堆積膜を形成するプラズマCVD装置におい
て、 1)前記高周波電源の発振周波数が少なくとも30〜6
00MHzの範囲に制御可能であり、 2)前記整合回路と前記カソード電極とが伝送線路を介
して接続され、該伝送線路を介して前記高周波電力が伝
送され、 3)前記カソード電極が棒状の導電性構造体であり、且
つ、該カソード電極と前記伝送線路の内部導体との接続
部において、カソード電極の断面の外部形状と内部導体
の断面の外部形状とが同一であり、 4)前記カソード電極と前記伝送線路の内部導体との少
なくとも接続部分が、該伝送線路の断面における伝送媒
体の外部形状と同じ外部形状を有する誘電体部材によっ
て被覆されていることを特徴とするプラズマCVD装置
に関する。
A first aspect of the present invention is a reaction vessel capable of depressurizing, a source gas supply means for supplying a source gas for plasma CVD into the reaction vessel, a substrate holding means and a cathode electrode arranged in the reaction vessel, and a high frequency wave. A high-frequency power source having a power source is supplied to the cathode electrode via a matching circuit, and plasma is generated between the substrate held by the substrate holding means and the cathode electrode to produce the substrate. In a plasma CVD apparatus for forming a deposited film on a substrate, 1) the oscillation frequency of the high frequency power source is at least 30 to 6
Controllable in the range of 00 MHz, 2) the matching circuit and the cathode electrode are connected via a transmission line, the high-frequency power is transmitted via the transmission line, and 3) the cathode electrode is rod-shaped conductive. And the external shape of the cross section of the cathode electrode is the same as the external shape of the cross section of the internal conductor at the connecting portion between the cathode electrode and the internal conductor of the transmission line. The plasma CVD apparatus is characterized in that at least a connecting portion between the inner conductor of the transmission line and the inner conductor of the transmission line is covered with a dielectric member having the same outer shape as the outer shape of the transmission medium in the cross section of the transmission line.

【0016】第2の発明は、基体が円筒状基体であり、
複数の該円筒状基体が、反応容器内に配されたカソード
電極の周囲に、円筒状基体の中心軸が実質的に同一円周
上に位置するように配列され、複数の該円筒状基体と前
記カソード電極との間にプラズマを発生させて円筒状基
体の表面上に堆積膜を形成できるように構成された第1
の発明のプラズマCVD装置に関する。
In a second aspect of the invention, the base is a cylindrical base,
A plurality of the cylindrical substrates are arranged around the cathode electrode arranged in the reaction vessel such that the central axes of the cylindrical substrates are located on substantially the same circumference. A first structure configured to generate a plasma between itself and the cathode electrode to form a deposited film on the surface of the cylindrical substrate.
The invention relates to a plasma CVD apparatus.

【0017】第3の発明は、基体が円筒状基体であり、
該円筒状基体の周囲に複数のカソード電極が配列され、
これらのカソード電極と円筒状基体との間にプラズマを
発生させて円筒状基体の表面上に堆積膜を形成できるよ
うに構成された第1又は第2の発明のプラズマCVD装
置に関する。
In a third aspect of the invention, the base is a cylindrical base,
A plurality of cathode electrodes are arranged around the cylindrical substrate,
The present invention relates to the plasma CVD apparatus according to the first or second invention, which is configured to generate plasma between the cathode electrode and the cylindrical substrate to form a deposited film on the surface of the cylindrical substrate.

【0018】第4の発明は、円筒状基体を回転させなが
ら該円筒状基体の表面上に堆積膜を形成できるように構
成された第2又は第3の発明のプラズマCVD装置に関
する。
A fourth invention relates to the plasma CVD apparatus according to the second or third invention, which is constructed so that a deposited film can be formed on the surface of the cylindrical substrate while rotating the cylindrical substrate.

【0019】第5の発明は、基体が平板状基体であり、
該平板状基体に対して平行に単数または複数のカソード
電極が配列され、該カソード電極と平板状基体との間に
プラズマを発生させて平板状基体の表面上に堆積膜を形
成できるように構成された第1の発明のプラズマCVD
装置に関する。
A fifth aspect of the invention is that the substrate is a flat substrate.
A single or a plurality of cathode electrodes are arranged in parallel to the flat substrate, and plasma is generated between the cathode electrodes and the flat substrate to form a deposited film on the surface of the flat substrate. Plasma CVD of the first invention
Related to the device.

【0020】第6の発明は、基体が、成膜時に保持ロー
ルから送り出され、巻き取りロールにより巻き取られる
シート状基体であり、該シート状基体に対して平行に単
数または複数のカソード電極が配列され、該カソード電
極とシート状基体との間にプラズマを発生させてシート
状基体の表面上に堆積膜を形成できるように構成された
第1の発明のプラズマCVD装置に関する。
A sixth aspect of the present invention is a sheet-shaped substrate, wherein the substrate is sent out from a holding roll during film formation and wound by a winding roll, and one or a plurality of cathode electrodes are provided in parallel to the sheet-shaped substrate. The present invention relates to the plasma CVD apparatus according to the first invention, which is arranged so that plasma can be generated between the cathode electrodes and the sheet-shaped substrate to form a deposited film on the surface of the sheet-shaped substrate.

【0021】第7の発明は、高周波電源の発振周波数が
少なくとも60〜300MHzの範囲に制御可能である
第1〜第6のいずれかの発明のプラズマCVD装置に関
する。
A seventh invention relates to the plasma CVD apparatus according to any one of the first to sixth inventions, wherein the oscillation frequency of the high frequency power source can be controlled within the range of at least 60 to 300 MHz.

【0022】第8の発明は、第1の発明のプラズマCV
D装置を用い、高周波電源の発振周波数を30〜600
MHzの範囲に制御して、基体とカソード電極との間に
プラズマを発生させて基体の表面上に堆積膜を形成する
ことを特徴とするプラズマCVDによる堆積膜形成方法
に関する。
The eighth invention is the plasma CV of the first invention.
Using the D device, the oscillation frequency of the high frequency power source is 30 to 600
The present invention relates to a method for forming a deposited film by plasma CVD, which is characterized in that plasma is generated between a substrate and a cathode electrode while controlling the range to MHz to form a deposited film on the surface of the substrate.

【0023】第9の発明は、第2の発明のプラズマCV
D装置を用い、高周波電源の発振周波数を30〜600
MHzの範囲に制御して、基体とカソード電極との間に
プラズマを発生させて基体の表面上に堆積膜を形成する
ことを特徴とするプラズマCVDによる堆積膜形成方法
に関する。
The ninth invention is the plasma CV of the second invention.
Using the D device, the oscillation frequency of the high frequency power source is 30 to 600
The present invention relates to a method for forming a deposited film by plasma CVD, which is characterized in that plasma is generated between a substrate and a cathode electrode while controlling the range to MHz to form a deposited film on the surface of the substrate.

【0024】第10の発明は、第3の発明のプラズマC
VD装置を用い、高周波電源の発振周波数を30〜60
0MHzの範囲に制御して、基体とカソード電極との間
にプラズマを発生させて基体の表面上に堆積膜を形成す
ることを特徴とするプラズマCVDによる堆積膜形成方
法に関する。
The tenth invention is the plasma C of the third invention.
Using a VD device, set the oscillation frequency of the high frequency power source to 30 to 60
The present invention relates to a method for forming a deposited film by plasma CVD, which is characterized in that a plasma is generated between a substrate and a cathode electrode while controlling the range to 0 MHz to form a deposited film on the surface of the substrate.

【0025】第11の発明は、円筒状基体を回転させな
がら円筒状基体の表面上に堆積膜を形成する第9又は第
10の発明のプラズマCVDによる堆積膜形成方法に関
する。
The eleventh invention relates to a deposited film forming method by plasma CVD according to the ninth or tenth invention, wherein the deposited film is formed on the surface of the cylindrical substrate while rotating the cylindrical substrate.

【0026】第12の発明は、第5の発明のプラズマC
VD装置を用い、高周波電源の発振周波数を30〜60
0MHzの範囲に制御して、基体とカソード電極との間
にプラズマを発生させて平板状基体の表面上に堆積膜を
形成することを特徴とするプラズマCVDによる堆積膜
形成方法に関する。
The twelfth invention is the plasma C of the fifth invention.
Using a VD device, set the oscillation frequency of the high frequency power source to 30 to 60
The present invention relates to a method for forming a deposited film by plasma CVD, which is characterized in that the deposition film is formed on the surface of a flat substrate by controlling plasma in the range of 0 MHz and generating plasma between the substrate and the cathode electrode.

【0027】第13の発明は、第6の発明のプラズマC
VD装置を用い、高周波電源の発振周波数を30〜60
0MHzの範囲に制御し、シート状基体を保持ロールか
ら送り出し、巻き取りロールにより巻き取りながら、該
シート状基体とカソード電極との間にプラズマを発生さ
せてシート状基体の表面上に堆積膜を形成することを特
徴とするプラズマCVDによる堆積膜形成方法に関す
る。
The thirteenth invention is the plasma C of the sixth invention.
Using a VD device, set the oscillation frequency of the high frequency power source to 30 to 60
While controlling the range to 0 MHz, the sheet-shaped substrate is sent out from the holding roll, and while being wound by the winding roll, plasma is generated between the sheet-shaped substrate and the cathode electrode to form a deposited film on the surface of the sheet-shaped substrate. The present invention relates to a method for forming a deposited film by plasma CVD, which is characterized in that

【0028】第14の発明は、高周波電源の発振周波数
を60〜300MHzの範囲に制御する第8〜第13の
いずれかの発明のプラズマCVDによる堆積膜形成方法
に関する。
A fourteenth invention relates to a deposited film forming method by plasma CVD according to any one of the eighth to thirteenth inventions, in which the oscillation frequency of the high frequency power source is controlled within the range of 60 to 300 MHz.

【0029】第15の発明は、少なくとも1種類のIV族
元素を含むアモルファス物質からなる堆積膜を形成する
第8〜第14のいずれかの発明のプラズマCVDによる
堆積膜形成方法に関する。
A fifteenth invention relates to a deposited film forming method by plasma CVD according to any one of the eighth to fourteenth inventions, which forms a deposited film made of an amorphous substance containing at least one type IV group element.

【0030】第16の発明は、少なくともシリコンを含
むアモルファス物質からなる堆積膜を形成する第8〜第
14のいずれかの発明のプラズマCVDによる堆積膜形
成方法に関する。
A sixteenth invention relates to a deposited film forming method by plasma CVD according to any one of the eighth to fourteenth inventions, which forms a deposited film made of an amorphous substance containing at least silicon.

【0031】第17の発明は、電子写真感光体用であ
り、少なくともシリコンを含むアモルファス物質からな
る堆積膜を形成する第8〜第14のいずれかの発明のプ
ラズマCVDによる堆積膜形成方法に関する。
A seventeenth invention is for an electrophotographic photosensitive member and relates to a deposited film forming method by plasma CVD according to any one of the eighth to fourteenth inventions for forming a deposited film made of an amorphous substance containing at least silicon.

【0032】[0032]

【発明の実施の形態】以下、本発明を詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.

【0033】本発明者らは後述の比較例1を行った結
果、RFエネルギーの周波数を30MHz以上にする
と、気相反応が起こりにくい高真空領域での放電が可能
となり、非常に優れた膜特性を得ることができ、堆積速
度も13.56MHzの場合に比ベて向上するが、膜質
分布および堆積速度分布は悪化する知見を得た。
As a result of carrying out Comparative Example 1 which will be described later, the present inventors have found that when the frequency of the RF energy is 30 MHz or more, the discharge can be performed in a high vacuum region where the gas phase reaction is unlikely to occur and the film characteristics are very excellent. It was found that the deposition rate was improved and the deposition rate was improved as compared with the case of 13.56 MHz, but the film quality distribution and the deposition rate distribution were deteriorated.

【0034】そこで、本発明者らは、RFエネルギーの
周波数を30MHz以上にすると偏在的に膜質が悪化す
る原因を解明すべく鋭意検討を行った。その結果、プラ
ズマ電位分布と偏在的な膜質悪化に強い相関があること
が判明した。すなわち、ラングミュアプローブ法によっ
て円筒状基体の軸方向にわたってプラズマ電位を測定し
たところ、偏在的に膜質が悪化する位置に対応する箇所
においてプラズマ電位の低下が見られた。
Therefore, the inventors of the present invention have conducted extensive studies to clarify the cause of the uneven distribution of the film quality when the RF energy frequency is set to 30 MHz or higher. As a result, it was found that there was a strong correlation between the plasma potential distribution and the uneven distribution of the film quality. That is, when the plasma potential was measured in the axial direction of the cylindrical substrate by the Langmuir probe method, a decrease in the plasma potential was found at the locations corresponding to the locations where the film quality deteriorates ubiquitously.

【0035】上記の検討結果から膜質分布および堆積速
度分布の悪化は、高周波電力をカソード電極に導入する
際にその導人部でのインピーダンスギャップによって、 1)導入部での電界が強く、導入部にプラズマが偏在化
すること、 2)カソード電極ヘの高周波伝送が阻害され、カソード
電極以外の部分に高周波電力が流れて、基体上や放電空
間を取り囲む構成部材の表面上に形成されるイオンシー
スに定在波が発生すること、に起因すると推察した。
From the above-mentioned examination results, the deterioration of the film quality distribution and the deposition rate distribution is caused by the impedance gap at the conductor portion when high frequency power is introduced into the cathode electrode. 1) The electric field at the introduction portion is strong and the introduction portion 2) Ion sheath formed on the substrate and on the surface of the constituent member surrounding the discharge space, because high frequency transmission to the cathode electrode is hindered and high frequency power flows to the portion other than the cathode electrode. It is speculated that this is due to the fact that a standing wave is generated at.

【0036】一般に、カソード電極と対向電極間に高周
波電力を印加することによってプラズマを生成する場
合、高周波電力をカソード電極上まで伝送させるため
に、その伝送線路部分でプラズマが生成しないように、
カソード電極と連結した内部導体と、それを取り囲む誘
電体と、更に該誘電体を取り囲んで高周波電力の外部ヘ
の放射を遮断するアースシールドからなる伝送線路を用
いる。高周波電力が、この伝送線路からカソード電極に
伝送されるときに、内部導体とアースシールドの間を伝
送してきた高周波電磁界は、伝送線路からカソード電極
に入った部分で正面に高周波電力の吸収体であるプラズ
マと正対することになり、ここでの高周波電力のプラズ
マによる吸収は大きいため、カソード電極への導入部に
おいてプラズマが偏在化することになる。
Generally, when plasma is generated by applying high-frequency power between the cathode electrode and the counter electrode, in order to transmit the high-frequency power to the cathode electrode, plasma is not generated in the transmission line portion,
A transmission line is used which is composed of an inner conductor connected to the cathode electrode, a dielectric surrounding the inner conductor, and a ground shield surrounding the dielectric and shielding the radiation of high frequency power to the outside. When high-frequency power is transmitted from this transmission line to the cathode electrode, the high-frequency electromagnetic field transmitted between the inner conductor and the ground shield is absorbed by the absorber of the high-frequency power on the front side at the portion entering the cathode electrode from the transmission line. Therefore, the plasma absorbs the high frequency power here, and the plasma is unevenly distributed in the introduction portion to the cathode electrode.

【0037】また、電極に印加した高周波電力の周波数
とプラズマ発生空間の大きさとの関係からプラズマ発生
空間上に無視できない定在波が発生する場合がある。す
なわち、高周波電力の周波数が高くなる場合や放電空間
の表面積が大きくなる場合に定在波が発生しやすくな
り、この定在波が大きいと、放電空間内での電界分布が
悪くなり、電極間のプラズマ密度、プラズマ電位、電子
温度などのプラズマ分布が乱れ、プラズマCVDの成膜
品質に悪影響を及ぼす。後述の比較例1においては、プ
ラズマはイオンシースに囲まれた空間にある導電体と考
えられ、高周波電磁界は主にイオンシースを伝搬してい
く。そして、放電空間の先端で反射波が発生し、入射波
との干渉により30MHz以上の周波数において膜質や
堆積速度に影響を与える定在波が発生したものと考えら
れる。特に、定在波の節の位置では電界が弱くなり、偏
在的なプラズマ電位の低下を引き起こして偏在的に膜質
が悪化したものと考えられる。また、400〜600M
Hzの周波数においては、複数の位置に定在波の節が発
生したものと考えられる。
In addition, a standing wave that cannot be ignored may be generated in the plasma generation space due to the relationship between the frequency of the high frequency power applied to the electrodes and the size of the plasma generation space. That is, when the frequency of the high-frequency power is high or when the surface area of the discharge space is large, a standing wave is likely to be generated. When this standing wave is large, the electric field distribution in the discharge space is deteriorated and the interelectrode gap is increased. Plasma density, plasma potential, electron temperature, and other plasma distributions are disturbed, which adversely affects the film quality of plasma CVD. In Comparative Example 1 described later, plasma is considered to be a conductor in a space surrounded by the ion sheath, and the high-frequency electromagnetic field mainly propagates in the ion sheath. It is considered that a reflected wave was generated at the tip of the discharge space and a standing wave that affects the film quality and the deposition rate was generated at a frequency of 30 MHz or higher due to interference with the incident wave. In particular, it is considered that the electric field was weakened at the position of the node of the standing wave, which caused the uneven distribution of the plasma potential and the film quality was unevenly deteriorated. Also, 400-600M
At the frequency of Hz, it is considered that the standing wave nodes are generated at a plurality of positions.

【0038】本発明者らは、後述の比較例1の結果およ
び上述の考察に基づいて、RFエネルギーの周波数が高
くなると発生しやすい膜質分布および膜厚分布の悪化を
防止すべく、高周波電力のカソード電極ヘの導入部の形
状及び構成を検討した。その結果、高周波電力のカソー
ド電極ヘの導入部でのプラズマの偏在、及び特に基体上
での高周波電磁界の定在波の発生を抑えるために、高周
波伝送回路のインピーダンスとカソード電極のインピー
ダンスとをなるべく同じにして、高周波電力ができる限
りカソード電極のみに伝搬されるようにすればよいこと
がわかった。先に述ベたようにプラズマはイオンシース
に囲まれた導電体と考えられる。このため、カソード電
極とプラズマとの間のインピーダンスと、カソード電極
までの伝送線路のインピーダンスとを近づけるために
は、次に2つを行えばよいことがわかった。 1)カソード電極と伝送線路の内部導体との接続部にお
いて、カソード電極の断面の外部形状・サイズと内部導
体の断面の外部形状・サイズとを同一にする。 2)カソード電極と伝送線路の内部導体との少なくとも
接続部分を、伝送線路の断面における伝送媒体の外部形
状と同じ外部形状を有する誘電体部材によって被覆す
る。
Based on the results of Comparative Example 1 to be described later and the above-mentioned consideration, the inventors of the present invention use high-frequency power in order to prevent the deterioration of the film quality distribution and the film thickness distribution that are likely to occur when the frequency of RF energy becomes high. The shape and configuration of the introduction portion to the cathode electrode were examined. As a result, the impedance of the high-frequency transmission circuit and the impedance of the cathode electrode are adjusted in order to suppress the uneven distribution of plasma at the introduction portion of the high-frequency power to the cathode electrode, and particularly to prevent the standing wave of the high-frequency electromagnetic field on the substrate. It was found that in the same manner as possible, high frequency power should be propagated only to the cathode electrode as much as possible. As mentioned above, plasma is considered to be a conductor surrounded by an ion sheath. Therefore, in order to bring the impedance between the cathode electrode and the plasma and the impedance of the transmission line up to the cathode electrode close to each other, it has been found that the following two steps should be performed. 1) At the connection between the cathode electrode and the internal conductor of the transmission line, the external shape and size of the cross section of the cathode electrode and the external shape and size of the cross section of the internal conductor are made the same. 2) At least the connecting portion between the cathode electrode and the inner conductor of the transmission line is covered with a dielectric member having the same outer shape as the outer shape of the transmission medium in the cross section of the transmission line.

【0039】例えば、図3において、円柱状のカソード
電極(103)及び誘電体カバー(104)が、それぞ
れ伝送線路(130)の内部導体(130a)及び伝送
媒体(130b)と同じ断面形状および材質であり、こ
の同軸の伝送線路(130)の外部にアースシールド
(102)が施されたものを挙げることができる。
For example, in FIG. 3, the columnar cathode electrode (103) and the dielectric cover (104) have the same cross-sectional shape and material as the inner conductor (130a) and the transmission medium (130b) of the transmission line (130), respectively. An example of the coaxial transmission line (130) provided with an earth shield (102) on the outside can be mentioned.

【0040】このようにすれば、カソード電極部分のイ
ンピーダンスは、伝送線路のインピーダンスと比較し
て、イオンシース厚とプラズマの抵抗によるインピーダ
ンス分を加味するだけとなり、比較的インピーダンスギ
ャップは少なく、伝送線路から入ってきた高周波電磁界
は主にカソード電極に伝送されて、導入部分でのプラズ
マの偏在や基体側ヘの高周波の伝送が抑制される。ここ
で、カソード電極上にも当然定在波が発生することが考
えられるが、その場合はカソード電極上で何らかのイン
ピーダンスギャップを設ける等して定在波を低減すれば
よい。
In this way, the impedance of the cathode electrode portion only takes into consideration the impedance component due to the ion sheath thickness and the plasma resistance, as compared with the impedance of the transmission line, and the impedance gap is relatively small and the transmission line is relatively small. The high-frequency electromagnetic field coming in from is mainly transmitted to the cathode electrode, and the uneven distribution of plasma at the introduction portion and the transmission of high frequency to the substrate side are suppressed. Here, it is considered that a standing wave is naturally generated on the cathode electrode, but in that case, a standing wave may be reduced by providing some kind of impedance gap on the cathode electrode.

【0041】本発明は以上の検討結果を基礎として完成
するに至ったものである。以下、図面を参照しながら本
発明を説明する。
The present invention has been completed on the basis of the above examination results. Hereinafter, the present invention will be described with reference to the drawings.

【0042】図1及び図2に示したプラズマCVD装置
は、本発明のプラズマCVD装置の一例を示すものであ
る。なお、図2は図1のX−X線断面図である。図1及
び図2において、100は反応容器を示す。反応容器
(100)内には、6個の基体ホルダー(105A)が
同心円状に所定の間隔で配されている。106はそれぞ
れの基体ホルダー(105A)上に配された成膜用の円
筒状基体である。それぞれの基体ホルダー(105A)
の内部にはヒーター(140)が設けられており、円筒
状基体(106)を内側から加熱できるように構成され
ている。また、それぞれの基体ホルダー(105A)
は、モーター(132)に連結したシャフト(131)
に接続されており、回転できるように構成されている。
105Bは円筒状基体(106)の補助保持部材であ
る。103はプラズマ生起領域の中心に位置した高周波
電力投入用のカソード電極である。このカソード電極
(103)は、整合回路(109)を介して高周波電源
(111)に接続されている。カソード電極(103)
は誘電体カバー(104)で被覆されている。130は
カソード電極支持部材を兼ねた伝送線路である。107
は排気バルブを備えた排気パイプであり、この排気パイ
プは、真空ポンプを備えた排気機構(135)に連通し
ている。108は、ガスボンベ、マスフローコントロー
ラ、バルブ等で構成された原料ガス供給手段である。こ
の原料ガス供給手段(108)は、ガス供給パイプ(1
17)を介して複数のガス放出孔を備えたガス放出パイ
プ(116)に接続されている。133はシール部材で
ある。
The plasma CVD apparatus shown in FIGS. 1 and 2 is an example of the plasma CVD apparatus of the present invention. 2 is a sectional view taken along line XX of FIG. 1 and 2, 100 indicates a reaction container. In the reaction container (100), six substrate holders (105A) are concentrically arranged at predetermined intervals. Reference numeral 106 denotes a cylindrical substrate for film formation, which is arranged on each substrate holder (105A). Each substrate holder (105A)
A heater (140) is provided inside the chamber so that the cylindrical substrate (106) can be heated from the inside. Also, each base holder (105A)
Is the shaft (131) connected to the motor (132)
It is connected to and is configured to rotate.
105B is an auxiliary holding member for the cylindrical substrate (106). Reference numeral 103 denotes a cathode electrode for inputting high-frequency power located at the center of the plasma generation region. The cathode electrode (103) is connected to a high frequency power supply (111) via a matching circuit (109). Cathode electrode (103)
Are covered with a dielectric cover (104). Reference numeral 130 is a transmission line that also serves as a cathode electrode support member. 107
Is an exhaust pipe equipped with an exhaust valve, and this exhaust pipe communicates with an exhaust mechanism (135) equipped with a vacuum pump. Reference numeral 108 is a raw material gas supply means composed of a gas cylinder, a mass flow controller, a valve and the like. The raw material gas supply means (108) includes a gas supply pipe (1
It is connected via 17) to a gas discharge pipe (116) having a plurality of gas discharge holes. 133 is a seal member.

【0043】以上の装置を使用した場合のプラズマCV
Dは次のように行われる。反応容器(100)を排気機
構(135)によって高真空まで排気した後、ガス供給
手段(108)からガス供給パイプ(117)及びガス
放出パイプ(116)を介して原料ガスを反応容器(1
00)内に導入し、所定の圧力に維持する。こうしたと
ころで、高周波電源(111)から高周波電力を整合回
路(109)を介してカソード電極(103)に供給し
てカソード電極(103)と円筒状基体(106)との
間にプラズマを発生させる。このようにすることによ
り、原料ガスがプラズマによって分解、励起され、円筒
状基体(106)上に堆積膜が形成される。
Plasma CV when the above apparatus is used
D is performed as follows. After the reaction container (100) is evacuated to a high vacuum by the exhaust mechanism (135), the source gas is fed from the gas supply means (108) through the gas supply pipe (117) and the gas release pipe (116).
00) and maintained at a predetermined pressure. At such a place, high frequency power is supplied from the high frequency power supply (111) to the cathode electrode (103) through the matching circuit (109) to generate plasma between the cathode electrode (103) and the cylindrical substrate (106). By doing so, the source gas is decomposed and excited by the plasma, and a deposited film is formed on the cylindrical substrate (106).

【0044】本発明のプラズマCVD装置のカソード電
極および伝送線路の構成の一例を図3に示す。図3に示
したものでは、カソード電極(103)及び誘電体カバ
ー(104)は単純円筒形状のものを用いたが、使用す
る高周波電源の周波数とカソード電極(103)の軸方
向の長さを考慮して、導入部以外の形状は途中で外径を
変えるなど任意に形状を選択してもよい。本発明におい
て、カソード電極の形状は、円柱状、円筒状、多角柱状
などの棒状のものが好ましい。
An example of the structure of the cathode electrode and the transmission line of the plasma CVD apparatus of the present invention is shown in FIG. In the one shown in FIG. 3, the cathode electrode (103) and the dielectric cover (104) are simple cylindrical, but the frequency of the high frequency power source to be used and the axial length of the cathode electrode (103) are used. Considering this, the shape other than the introduction portion may be arbitrarily selected by changing the outer diameter in the middle. In the present invention, the shape of the cathode electrode is preferably a rod shape such as a cylindrical shape, a cylindrical shape, or a polygonal pillar shape.

【0045】本発明において、誘電体カバー(104)
に使用する誘電体材料は任意の公知のものを選択できる
が、誘電損の小さい材料が好ましく、誘電正接が0.0
1以下であるものが好ましく、より好ましくは0.00
1以下がよい。高分子誘電体材料では、ポリ四フッ化エ
チレン、ポリ三フッ化塩化エチレン、ポリフツ化エチレ
ンプロピレン、ポリイミド等が好ましい。ガラス材料で
は、石英ガラス、ホウケイ酸ガラス等が好ましい。磁器
材料では、窒化ホウ素、窒化シリコン、窒化アルミニウ
ム等や、酸化アルミニウム、酸化マグネシウム、酸化ケ
イ素などの元素酸化物の中の単数または複数の元素酸化
物を主成分とする磁器材料が好ましい。
In the present invention, the dielectric cover (104)
Any known material can be selected as the dielectric material used for the above, but a material having a small dielectric loss is preferable, and the dielectric loss tangent is 0.0
It is preferably 1 or less, more preferably 0.00
1 or less is preferable. The polymer dielectric material is preferably polytetrafluoroethylene, polytrifluoroethylene chloride, polyfluoroethylenepropylene, polyimide, or the like. The glass material is preferably quartz glass, borosilicate glass, or the like. The porcelain material is preferably a porcelain material containing, as a main component, one or more element oxides among elemental oxides such as boron nitride, silicon nitride, aluminum nitride, and aluminum oxide, magnesium oxide, silicon oxide.

【0046】本発明において、高周波電源の周波数は3
0〜600MHz好適であり、60〜300MHzがよ
り好ましい。
In the present invention, the frequency of the high frequency power source is 3
0 to 600 MHz is preferable, and 60 to 300 MHz is more preferable.

【0047】本発明のプラズマCVD装置の構成は、図
4に示すように円筒状基体(106)の周囲に複数のカ
ソード電極(103)を配置したものでもよい。こうす
ることにより、成膜時には常時、円筒状基体の全周表面
をプラズマに曝すことができるため、堆積速度を大幅に
向上することが可能となり生産性を大幅に向上できる。
さらに、カソード電極の本数や配置箇所を最適化すれ
ば、円筒状基体を回転させなくても均一な堆積膜を基体
全周表面に形成することが可能となり、回転機構が不要
となるので装置構成を簡略化できる。また、円筒状基体
を回転させることにより更に極めて均一且つ均質な堆積
膜を形成できることはいうまでもない。
The plasma CVD apparatus of the present invention may have a structure in which a plurality of cathode electrodes (103) are arranged around a cylindrical substrate (106) as shown in FIG. By doing so, the entire circumferential surface of the cylindrical substrate can be exposed to plasma at all times during film formation, so that the deposition rate can be greatly improved and the productivity can be greatly improved.
Furthermore, by optimizing the number of cathode electrodes and the location where they are arranged, it is possible to form a uniform deposited film on the entire circumferential surface of the substrate without rotating the cylindrical substrate, and the rotation mechanism is not required. Can be simplified. Needless to say, a very uniform and homogeneous deposited film can be formed by rotating the cylindrical substrate.

【0048】本発明のプラズマCVD装置の装置構成
は、図5に示すように、平板状基体(206)に対して
平行に複数のカソード電極(203)を配置したもので
あってもよい。こうすることにより、大面積の平板状基
体上に膜厚が極めて均一且つ均質な堆積膜を高速度で形
成することができる。
As shown in FIG. 5, the plasma CVD apparatus of the present invention may have a structure in which a plurality of cathode electrodes (203) are arranged in parallel with a flat substrate (206). By doing so, a deposited film having an extremely uniform and uniform film thickness can be formed at a high speed on a flat substrate having a large area.

【0049】本発明のプラズマCVD装置の構成は、図
6に示すように、成膜時に保持ロール(351)から送
り出され、巻き取りロール(352)に巻き取られるシ
ート状基体(306)に対して、平行に単数または複数
のカソード電極(303)を配置したものであってもよ
い。こうすることにより、大面積のシート状基体上に膜
厚が極めて均一且つ均質な堆積膜を高速度で形成するこ
とができる。
As shown in FIG. 6, the structure of the plasma CVD apparatus of the present invention is applied to a sheet-like substrate (306) which is sent out from a holding roll (351) during film formation and wound up by a winding roll (352). In addition, one or a plurality of cathode electrodes (303) may be arranged in parallel. By doing so, a deposited film having an extremely uniform and uniform film thickness can be formed at a high speed on a large-area sheet-shaped substrate.

【0050】本発明のプラズマCVD装置に使用するガ
スについては、形成する堆積膜の種類に応じて公知の成
膜に寄与する原料ガスを適宜選択使用する。例えば、ア
モルファスシリコン系の堆積膜を形成する場合であれ
ば、シラン、ジシラン、高次シラン等あるいはそれらの
混合ガスが好ましい原料ガスとして挙げられる。他の堆
積膜を形成する場合であれば、例えば、ゲルマン、メタ
ン、エチレン等の原料ガス又はそれらの混合ガスが挙げ
られる。いずれの場合であっても、成膜用の原料ガスは
キャリアーガスと共に反応容器内に導入することができ
る。キャリアーガスとしては、水素ガスや、アルゴンガ
ス・ヘリウムガス等の不活性ガスなどを挙げることがで
きる。
As a gas used in the plasma CVD apparatus of the present invention, a known source gas that contributes to film formation is appropriately selected and used according to the type of deposited film to be formed. For example, in the case of forming an amorphous silicon-based deposited film, silane, disilane, higher order silane, etc., or a mixed gas thereof is mentioned as a preferable source gas. In the case of forming another deposited film, for example, source gases such as germane, methane and ethylene, or a mixed gas thereof can be used. In any case, the raw material gas for film formation can be introduced into the reaction vessel together with the carrier gas. Examples of the carrier gas include hydrogen gas and inert gases such as argon gas and helium gas.

【0051】本発明においては、堆積膜のバンドギャッ
プを調整する等の特性改善用ガスを使用することもでき
る。このようなガスとしては、例えば、窒素、アンモニ
ア等の窒素原子を含むガス、酸素、酸化窒素、酸化二窒
素等の酸素原子を含むガス、メタン、エタン、エチレ
ン、アセチレン、プロパン等の炭化水素ガス、四フッ化
珪素、六フッ化二珪素、四フッ化ゲルマニウム等のガス
状フッ素化合物、またはこれらの混合ガス等が挙げられ
る。
In the present invention, a characteristic improving gas such as adjusting the band gap of the deposited film can also be used. Examples of such a gas include nitrogen, a gas containing a nitrogen atom such as ammonia, a gas containing an oxygen atom such as oxygen, nitric oxide, and dinitrogen oxide, and a hydrocarbon gas such as methane, ethane, ethylene, acetylene, and propane. , A gaseous fluorine compound such as silicon tetrafluoride, disilicon hexafluoride and germanium tetrafluoride, or a mixed gas thereof.

【0052】本発明においては、形成される堆積膜のド
ーピングにおいてドーパントガスを使用することもでき
る。ドーピングガスとしては、例えば、ガス状のジボラ
ン、フッ化ホウ素、ホスフィン、フッ化リン等が挙げら
れる。
In the present invention, a dopant gas can be used in doping the deposited film to be formed. Examples of the doping gas include gaseous diborane, boron fluoride, phosphine, phosphorus fluoride and the like.

【0053】本発明における堆積膜形成時の基体温度
は、適宜設定できるが、アモルファスシリコン系の堆積
膜を形成する場合には、60〜400℃が好ましく、1
00〜350℃がより好ましい。
The substrate temperature at the time of forming the deposited film in the present invention can be appropriately set, but in the case of forming an amorphous silicon-based deposited film, it is preferably 60 to 400 ° C.
More preferably, it is from 00 to 350 ° C.

【0054】[0054]

【実施例】以下、本発明を実施例によりさらに説明する
が、本発明はこれらに限定するものではない。
EXAMPLES The present invention will be further described below with reference to examples, but the present invention is not limited thereto.

【0055】実施例1 周波数30〜600MHzの高周波電源を接続した、図
1及び図2に示すプラズマCVD装置を使用した。カソ
ード電極は、図3に示すように円柱状のカソード電極
(103)をアルミナセラミックス製の誘電体カバー
(104)で覆った構成とし、伝送線路(130)の内
部導体(130a)はカソード電極(103)と外径の
同じ連続体とし、伝送線路の伝送媒体(130b)は誘
電体カバー(104)と内径・外径・材質ともに同一の
円筒形誘電体で構成した。他の成膜条件は後述の比較例
1と同様に、高周波電力:1KW、SiH4ガス流量:
500sccm、成膜圧力:50mTorr、25mTorr又は5mT
orr、基体温度:250℃とし、成膜手順も比較例1と
同様にして、円筒状基体(106)上および電気特性評
価基板上にアモルファスシリコン膜を形成した。
Example 1 The plasma CVD apparatus shown in FIGS. 1 and 2 to which a high frequency power source having a frequency of 30 to 600 MHz was connected was used. As shown in FIG. 3, the cathode electrode has a structure in which a cylindrical cathode electrode (103) is covered with a dielectric cover (104) made of alumina ceramics, and the internal conductor (130a) of the transmission line (130) is a cathode electrode ( 103) and a continuous medium having the same outer diameter, and the transmission medium (130b) of the transmission line is made of a cylindrical dielectric material having the same inner diameter, outer diameter, and material as the dielectric cover (104). Other film forming conditions are the same as in Comparative Example 1 described later, and high frequency power: 1 KW, SiH 4 gas flow rate:
500sccm, film forming pressure: 50mTorr, 25mTorr or 5mT
Orr, substrate temperature: 250 ° C., and an amorphous silicon film was formed on the cylindrical substrate (106) and the electrical property evaluation substrate in the same manner as in Comparative Example 1 in the film forming procedure.

【0056】以上のようにして形成したアモルファスシ
リコン膜の膜質および膜質分布、並びに堆積速度および
堆積速度分布を比較例1と同様の評価方法で評価をし
た。50mTorr、25mTorr及び5mTorrの3つの圧力条
件で成膜した試料の光感度のそれぞれの評価結果を表
1、表2及び表3に、堆積速度の評価結果を表4、表
5、表6に示す。なお、表7に成膜条件を他の実施例・
比較例の条件とともに示す。
The film quality and the film quality distribution, and the deposition rate and the deposition rate distribution of the amorphous silicon film formed as described above were evaluated by the same evaluation method as in Comparative Example 1. The evaluation results of the photosensitivity of the samples formed under the three pressure conditions of 50 mTorr, 25 mTorr and 5 mTorr are shown in Table 1, Table 2 and Table 3, and the evaluation results of the deposition rate are shown in Table 4, Table 5 and Table 6. . Table 7 shows the film forming conditions in other examples.
It shows with the conditions of a comparative example.

【0057】30MHzの周波数を持つ高周波エネルギ
ーによる試料においては、50mTorrの圧力条件で成膜
したものは全ての試料において光感度が8×103〜2
×10 4の範囲にあり実用上問題のない(△)又は良好
な膜特性(○)であつた(表1)。平均堆積速度は0.
5nm/sであり、堆積速度分布は6%であった(表
4)。25mTorrの圧力条件で成膜したものは全ての試
料において光感度が1×104〜3×104の範囲にあり
良好な膜特性(○)であった(表2)。平均堆積速度は
0.5nm/sであり堆積速度分布は6%であった(表
5)。なお、5mTorrの圧力条件では放電を生起させる
ことができなかった。
High frequency energy with a frequency of 30 MHz
Film is formed under the pressure condition of 50 mTorr
The photosensitivity of all samples was 8 × 10Three~ 2
× 10 FourThere is no problem in practice (△) or good
The film characteristics were good (○) (Table 1). The average deposition rate is 0.
5 nm / s and the deposition rate distribution was 6% (Table
4). All samples were tested under the pressure condition of 25 mTorr.
Light sensitivity is 1 × 10Four~ 3 x 10FourIs in the range
The film characteristics were good (◯) (Table 2). The average deposition rate is
0.5 nm / s and the deposition rate distribution was 6% (Table
5). It should be noted that discharge is generated under the pressure condition of 5 mTorr.
I couldn't do that.

【0058】60〜300MHzの周波数を持つ高周波
エネルギーによる試料においては、50mTorrの圧力条
件で成膜したものは全ての試料において光感度が1×l
4〜3×l04の範囲にあり良好な膜特性(○)であっ
た(表1)。平均堆積速度は1〜1.8nm/sであり
堆積速度分布は4〜6%であった(表4)。25mTorr
の圧力条件で成膜したものは全ての試料において光感度
が4×104〜8×10 4であり良好な膜特性(○)であ
った(表2)。平均堆積速度は0.9〜2.0nm/s
であり推積速度分布は4〜5%であつた(表5)。5mT
orrの圧力条件で成膜したものはすべての試料おいて光
感度が1×l05〜5×105であり非常に優れた膜特性
(◎)であった(表3)。平均堆積速度は0.8〜1.
7nm/sであり、堆積速度分布は4%であった(表
6)。
High frequency having a frequency of 60 to 300 MHz
In the case of a sample with energy, a pressure line of 50 mTorr
The photosensitivity of all the samples formed in this case is 1 × l
0Four~ 3 x 10FourAnd the film characteristics are good (○).
(Table 1). The average deposition rate is 1 to 1.8 nm / s
The deposition rate distribution was 4-6% (Table 4). 25mTorr
Photosensitivity of all samples formed under pressure conditions
Is 4 × 10Four~ 8 × 10 FourAnd good film characteristics (○)
(Table 2). Average deposition rate is 0.9-2.0 nm / s
The pile speed distribution was 4 to 5% (Table 5). 5mT
The film formed under the orr pressure condition is
Sensitivity is 1 × 10Five~ 5 × 10FiveAnd excellent film properties
It was (⊚) (Table 3). The average deposition rate is 0.8-1.
7 nm / s and the deposition rate distribution was 4% (Table
6).

【0059】400〜600MHzの周波数を持つ高周
波エネルギーによる試料においては、50mTorrの圧力
条件で成膜したものは全ての試料において光感度が7×
103〜1×104の範囲にあり実用上問題のない膜特性
(△)であった(表1)。平均堆積速度は0.6〜0.
7nm/sであり堆積速度分布は6〜8%であった(表
4)。25mTorrの圧力条件で成膜したものは、全ての
試料において光感度が1×104〜3×104であり良好
な膜特性(○)であった(表2)。平均堆積速度は0.
6〜0.7nm/sであり、堆積速度分布は6〜8%で
あった(表5)。5mTorrの圧力条件で成膜したものは
全ての試料において光感度が5×104〜8×104であ
り良好な膜特性(○)であった(表3)。平均堆積速度
は0.5〜0.7nm/sであり、堆積速度分布は6〜
7%であった(表6)。
Among the samples by the high frequency energy having the frequency of 400 to 600 MHz, all the samples formed under the pressure condition of 50 mTorr have the photosensitivity of 7 ×.
The film characteristics (Δ) were in the range of 10 3 to 1 × 10 4 and had no practical problems (Table 1). The average deposition rate is 0.6-0.
It was 7 nm / s and the deposition rate distribution was 6 to 8% (Table 4). In all of the samples formed under the pressure condition of 25 mTorr, the photosensitivity was 1 × 10 4 to 3 × 10 4 , and the film characteristics were good (◯) (Table 2). The average deposition rate is 0.
6 to 0.7 nm / s, and the deposition rate distribution was 6 to 8% (Table 5). In all the samples formed under the pressure condition of 5 mTorr, the photosensitivity was 5 × 10 4 to 8 × 10 4 , and the film characteristics were good (◯) (Table 3). The average deposition rate is 0.5 to 0.7 nm / s, and the deposition rate distribution is 6 to
It was 7% (Table 6).

【0060】[0060]

【表1】 [Table 1]

【0061】[0061]

【表2】 [Table 2]

【0062】[0062]

【表3】 [Table 3]

【0063】[0063]

【表4】 [Table 4]

【0064】[0064]

【表5】 [Table 5]

【0065】[0065]

【表6】 *放電が生起しなかったため成膜評価を行えなかった。[Table 6] * Since no discharge occurred, the film formation could not be evaluated.

【0066】[0066]

【表7】 [Table 7]

【0067】実施例2 図1及び図2に示すプラズマCVD装置を用い、実施例
1で光感度105以上の値が得られた条件、すなわち、
成膜圧力:5mTorr、電源周波数:60MHz、100
MHz、200MHz及び300MHzの各々の条件で
電子写真感光体を作製した。なお、カソード電極(10
3)、誘電体カバー(104)及び伝送線路(130)
は、各々の電源周波数に対して実施例1で用いたものと
同様の形状・材質のものを用いた。
Example 2 Using the plasma CVD apparatus shown in FIGS. 1 and 2, conditions under which a value of photosensitivity of 10 5 or more was obtained in Example 1, that is,
Film forming pressure: 5 mTorr, power supply frequency: 60 MHz, 100
Electrophotographic photoreceptors were produced under the respective conditions of MHz, 200 MHz and 300 MHz. The cathode electrode (10
3), dielectric cover (104) and transmission line (130)
Used the same shape and material as those used in Example 1 for each power source frequency.

【0068】電子写真感光体は、表8に示す成膜条件で
6本のAl製の円筒状基体上に、電荷注入阻止層、光導
電層および表面保護層をこの順序で形成した。
In the electrophotographic photosensitive member, a charge injection blocking layer, a photoconductive layer and a surface protective layer were formed in this order on 6 cylindrical bases made of Al under the film forming conditions shown in Table 8.

【0069】各々の電源周波数の条件で得られた試料に
ついて、帯電能、画像濃度および画像欠陥について評価
した。その結果、いずれの電子写真感光体もこれらの評
価項目について電子写真感光体全面にわたって非常に優
れた結果を示した。このことからいずれの電子写真感光
体も電子写真特性に優れたものであることがわかる。
The samples obtained under the respective power supply frequency conditions were evaluated for charging ability, image density and image defects. As a result, all the electrophotographic photosensitive members showed very excellent results for these evaluation items over the entire surface of the electrophotographic photosensitive member. From this, it is understood that all the electrophotographic photoconductors have excellent electrophotographic characteristics.

【0070】[0070]

【表8】 [Table 8]

【0071】実施例3 図4に示すプラズマCVD装置を用い、直径108mm、
長さ358mm、厚さ5mmの6本のAl製円筒状基体(1
06)を反応容器(100)内に配置して基体は回転さ
せずに成膜を行った。カソード電極系の構成は図3に示
すものを用いた。すなわち、伝送線路の内部導体(13
0b)と外径および材質が同一であるAl製の全長45
0mmの円柱状のカソード電極(103)を、伝送線路の
伝送媒体(130b)と内径、外径および材質が同一の
アルミナセラミックス製の誘電体カバー(l04)で覆
ったものを用い、図3に示すように7本のカソード電極
を反応容器内に配置した。
Example 3 Using the plasma CVD apparatus shown in FIG. 4, a diameter of 108 mm,
6 aluminum cylindrical substrates with a length of 358 mm and a thickness of 5 mm (1
No. 06) was placed in the reaction vessel (100), and film formation was performed without rotating the substrate. The structure of the cathode electrode system used was that shown in FIG. That is, the inner conductor (13
0b), the total outer diameter and material are the same and made of Al 45
A 0 mm cylindrical cathode electrode (103) covered with a dielectric cover (104) made of alumina ceramics having the same inner diameter, outer diameter and the same material as the transmission medium (130b) of the transmission line is used in FIG. Seven cathode electrodes were placed in the reaction vessel as shown.

【0072】高周波電源の周波数を100MHzとし、
表7に示す成膜条件で6本の円筒状基体状にアモルファ
スシリコン膜を形成した。
The frequency of the high frequency power source is 100 MHz,
Amorphous silicon films were formed on six cylindrical substrates under the film forming conditions shown in Table 7.

【0073】以下の手順で堆積速度および堆積速度分布
の評価を行った。アモルフファスシリコン膜を形成した
円筒状基体6本の内1本の軸方向に約20mmおきに線を
引き、周方向に約32mmおきに線を引いた場合の交点l
80箇所について、比較例1で用いた渦電流式膜厚計を
使用して膜厚を測定し、各測定箇所における堆積速度を
算出し、得られた値の平均値を平均堆積速度とした。得
られた平均堆積速度は7.2nm/sであった。軸方向
の堆積速度分布は、軸方向1列の測定点18箇所におけ
る堆積速度の最大値と最小値との差を求め、この差を1
8箇所の平均堆積速度で割り、1列あたりの堆積速度分
布を求めた。次いで、他の9列についても同様に1列あ
たりの堆積速度分布を求め、得られた10列の堆積速度
分布の平均値を算出し、これを軸方向の堆積速度分布と
して百分率で表した。軸方向の堆積速度分布は5%であ
った。周方向の堆積速度分布は、周方向1列の測定点1
0箇所における堆積速度の最大値と最小値との差を求
め、この差を10箇所の平均堆積速度で割り、1列あた
りの堆積速度分布を求めた。次いで、他の17列につい
ても同様に1列あたりの堆積速度分布を求め、得られた
18列の堆積速度分布の平均値を算出し、これを周方向
の堆積速度分布として百分率で表した。周方向の堆積速
度分布は9%であった。
The deposition rate and the deposition rate distribution were evaluated by the following procedure. Intersection point 1 when a line is drawn about every 20 mm in the axial direction and a line is drawn about every 32 mm in the circumferential direction of one of the six cylindrical substrates on which the amorphous silicon film is formed.
The film thickness was measured at 80 points using the eddy current film thickness meter used in Comparative Example 1, the deposition rate at each measurement point was calculated, and the average value of the obtained values was taken as the average deposition rate. The average deposition rate obtained was 7.2 nm / s. For the deposition rate distribution in the axial direction, the difference between the maximum value and the minimum value of the deposition rate at 18 measurement points in one row in the axial direction is calculated, and this difference is
It was divided by the average deposition rate at eight locations to obtain the deposition rate distribution per row. Next, the deposition rate distribution per row was similarly determined for the other 9 rows, the average value of the obtained deposition rate distributions of the 10 rows was calculated, and this was expressed as a percentage as the axial deposition rate distribution. The axial deposition rate distribution was 5%. The deposition rate distribution in the circumferential direction is measured at one measuring point in one row in the circumferential direction.
The difference between the maximum value and the minimum value of the deposition rate at 0 points was obtained, and this difference was divided by the average deposition rate at 10 points to obtain the deposition rate distribution per row. Next, similarly for the other 17 rows, the deposition rate distribution per row was obtained, the average value of the obtained deposition rate distributions of the 18 rows was calculated, and this was expressed as a percentage as the circumferential deposition rate distribution. The circumferential deposition rate distribution was 9%.

【0074】実施例4 実施例3と同じプラズマCVD装置を用いて基体を回転
させずに電子写真感光体を作製した。電子写真感光体
は、表9に示す成膜条件で6本のAl製の円筒状基体上
に、電荷注入阻止層、光導電層および表面保護層をこの
順序で形成した。
Example 4 Using the same plasma CVD apparatus as in Example 3, an electrophotographic photosensitive member was produced without rotating the substrate. In the electrophotographic photosensitive member, a charge injection blocking layer, a photoconductive layer and a surface protective layer were formed in this order on six cylindrical cylindrical substrates made of Al under the film forming conditions shown in Table 9.

【0075】得られた試料について、帯電能、画像濃度
および画像欠陥について評価した。その結果、いずれの
電子写真感光体もこれらの評価項目について電子写真感
光体全面にわたって非常に優れた結果を示した。このこ
とからいずれの電子写真感光体も電子写真特性に優れた
ものであることがわかる。
The obtained samples were evaluated for charging ability, image density and image defects. As a result, all the electrophotographic photosensitive members showed very excellent results for these evaluation items over the entire surface of the electrophotographic photosensitive member. From this, it is understood that all the electrophotographic photoconductors have excellent electrophotographic characteristics.

【0076】[0076]

【表9】 [Table 9]

【0077】実施例5 成膜時に基体を回転させた以外は実施例3と同様にして
6本の円筒状基体上にアモルファスシリコン膜を形成し
た。実施例3と同様にして、堆積速度および堆積速度分
布を評価したところ、平均堆積速度は7.2nm/sで
あり、軸方向の堆積速度分布は5%であり、周方向の堆
積速度分布は3%であった。
Example 5 An amorphous silicon film was formed on six cylindrical substrates in the same manner as in Example 3 except that the substrate was rotated during film formation. When the deposition rate and the deposition rate distribution were evaluated in the same manner as in Example 3, the average deposition rate was 7.2 nm / s, the axial deposition rate distribution was 5%, and the circumferential deposition rate distribution was It was 3%.

【0078】実施例6 実施例5と同じプラズマCVD装置で成膜時に基体を回
転させて電子写真感光体を作製した。電子写真感光体
は、表9に示す成膜条件で6本のAl製の円筒状基体上
に、電荷注入阻止層、光導電層および表面保護層をこの
順序で形成した。得られた試料について、帯電能、画像
濃度、画像欠陥について評価した。その結果、いずれの
電子写真感光体もこれらの評価項目について電子写真感
光体全面にわたって非常に優れた結果を示した。このこ
とからいずれの電子写真感光体も電子写真特性に優れた
ものであることがわかる。
Example 6 An electrophotographic photosensitive member was produced by rotating the substrate during film formation with the same plasma CVD apparatus as in Example 5. In the electrophotographic photosensitive member, a charge injection blocking layer, a photoconductive layer and a surface protective layer were formed in this order on six cylindrical cylindrical substrates made of Al under the film forming conditions shown in Table 9. The obtained samples were evaluated for charging ability, image density, and image defects. As a result, all the electrophotographic photosensitive members showed very excellent results for these evaluation items over the entire surface of the electrophotographic photosensitive member. From this, it is understood that all the electrophotographic photoconductors have excellent electrophotographic characteristics.

【0079】実施例7 図5に示す構成を有するプラズマCVD装置を用い、縦
500mm、横500mm、厚さ1mmのガラス製の平板状基
体を反応容器に配置して成膜を行った。Al製の長さ2
00mm、直径25mmの円柱状のカソード電極(203)
を、長さ605mm、内径26mm,外径38mmのアルミナ
セラミックス製の誘電体カバー(204)で覆ったもの
を用い、図5に示すように5本のカソード電極を反応容
器内に配置した。高周波電源の周波数を250MHzと
し、表7に示す成膜条件で平板状基体上にアモルファス
シリコン膜を形成した。
Example 7 Using a plasma CVD apparatus having the structure shown in FIG. 5, a flat glass substrate made of glass having a length of 500 mm, a width of 500 mm and a thickness of 1 mm was placed in a reaction vessel to form a film. Length 2 made of Al
A cylindrical cathode electrode (203) with a diameter of 00 mm and a diameter of 25 mm
Was covered with a dielectric cover (204) made of alumina ceramics having a length of 605 mm, an inner diameter of 26 mm, and an outer diameter of 38 mm, and five cathode electrodes were arranged in the reaction vessel as shown in FIG. An amorphous silicon film was formed on the flat substrate under the film forming conditions shown in Table 7 with the frequency of the high frequency power source set to 250 MHz.

【0080】以下の手順で堆積速度および堆速度分布を
評価した。アモルファスシリコン膜を形成した平板状基
体の縦方向に約30mmおきに線を引き、横方向にも約3
0mmおきに線を引いた場合の交点256箇所について、
比較例1で用いた渦電流式膜厚計を使用して膜厚を測定
し、各測定箇所における堆積速度を算出して得られた値
の平均値を平均堆積速度とした。得られた平均堆積速度
は6.5nm/sであった。堆積速度分布は、測定点2
56箇所における堆積速度の最大値と最小値との差を求
め、この差を平均堆積速度で割り堆積速度分布としてl
00分率で表した。得られた堆積速度分布は8%であっ
た。
The deposition rate and the deposit rate distribution were evaluated by the following procedure. Lines are drawn every 30 mm in the vertical direction on a flat substrate with an amorphous silicon film, and about 3 in the horizontal direction.
About 256 intersections when a line is drawn every 0 mm,
The film thickness was measured using the eddy current film thickness meter used in Comparative Example 1, and the average value of the values obtained by calculating the deposition rate at each measurement location was taken as the average deposition rate. The average deposition rate obtained was 6.5 nm / s. Deposition rate distribution is at measurement point 2
The difference between the maximum value and the minimum value of the deposition rate at 56 points is calculated, and this difference is divided by the average deposition rate to obtain a deposition rate distribution
It was expressed as a percentage. The obtained deposition rate distribution was 8%.

【0081】実施例8 図6に示す構成を有するプラズマCVD装置を用い、幅
500mm、厚さ0.1mmのステンレス製のシート状基体
(306)を反応容器内に配置して、巻き取りロール
(352)に巻き取りながら成膜を行った。カソード電
極(303)及び誘電体カバー(304)は実施例7と
同様のものを1本用い、反応容器内に配置した。高周波
電源の周波数は550MHzとし、表7に示す成膜条件
でシート状基体上にアモルファスシリコン膜を形成し、
長さ500mmのシート状基体を切り出して、実施例7と
同様の手順で堆積速度および堆速度分布を評価した。得
られた平均堆積速度は1.5nm/sであり、堆積速度
分布は5%であった。
Example 8 Using a plasma CVD apparatus having the structure shown in FIG. 6, a sheet-like substrate (306) made of stainless steel having a width of 500 mm and a thickness of 0.1 mm was placed in a reaction vessel, and a winding roll ( The film was formed while being wound around 352). As the cathode electrode (303) and the dielectric cover (304), the same one as in Example 7 was used and was placed in the reaction vessel. The frequency of the high-frequency power source was 550 MHz, and the amorphous silicon film was formed on the sheet-shaped substrate under the film forming conditions shown in Table 7.
A sheet-like substrate having a length of 500 mm was cut out, and the deposition rate and the deposition rate distribution were evaluated by the same procedure as in Example 7. The obtained average deposition rate was 1.5 nm / s, and the deposition rate distribution was 5%.

【0082】比較例1 前述した文献2(特開昭60−186849号公報)に
記載されたRFエネルギー源を用いたRFプラズマCV
D技術に基づいて実験を行った。すなわち、図8及び図
9に示すプラズマCVD装置において、種々の周波数の
高周波電源を用いて円筒状基体の全周全面にアモルファ
スシリコン膜を形成した。それぞれのアモルファスシリ
コン膜の形成において、高周波電源の周波数が堆積膜の
膜質および膜質分布、並びに堆積速度および堆積速度分
布に及ぼす影響について観察した。当初、文献1に示す
ような0.2Torr程度の圧力条件での実験を行ったがポ
リシラン等の粉体の発生が顕著なため、50mTorr以下
の圧力において以下の手順で実験を行った。
Comparative Example 1 RF plasma CV using the RF energy source described in the above-mentioned document 2 (Japanese Patent Laid-Open No. 60-186849).
Experiments were performed based on the D technique. That is, in the plasma CVD apparatus shown in FIGS. 8 and 9, an amorphous silicon film was formed on the entire circumference of the cylindrical substrate by using high frequency power sources of various frequencies. In the formation of each amorphous silicon film, the influence of the frequency of the high frequency power source on the film quality and film quality distribution of the deposited film, and the deposition rate and the deposition rate distribution was observed. Initially, an experiment was conducted under a pressure condition of about 0.2 Torr as shown in Document 1, but since the generation of powder such as polysilane was remarkable, the experiment was conducted according to the following procedure at a pressure of 50 mTorr or less.

【0083】本実験では、直径108mm、長さ358m
m、厚さ5mmのAl製の円筒状基体をそれぞれの成膜ご
とに6本ずつ反応容器(l00)内に設置して回転させ
ながら成膜を行った。カソード電極(103)には、直
径30mm、長さ450mmのAl製の円柱状のものを用い
た。膜質の評価のため、250μmギャップのCr製の
櫛形電極を蒸着したコーニング#7059ガラス基板を
電気特性評価基板として6本のうちの1本の円筒状基体
の表面上の回転軸方向の長さ358mmにわたって設置
し、以下の手順で操作を行った。
In this experiment, the diameter is 108 mm and the length is 358 m.
Six Al-made cylindrical substrates each having a thickness of 5 mm and a thickness of 5 mm were placed in the reaction vessel (100) for each film formation, and film formation was performed while rotating. As the cathode electrode (103), an aluminum columnar electrode having a diameter of 30 mm and a length of 450 mm was used. For the evaluation of film quality, a Corning # 7059 glass substrate on which a comb-shaped electrode made of Cr having a 250 μm gap was vapor-deposited was used as an electrical property evaluation substrate, and one of the six cylindrical substrates had a length of 358 mm in the rotation axis direction on the surface of the cylindrical substrate. And installed according to the following procedure.

【0084】まず、反応容器(100)内を排気機構
(135)を作動して排気し、反応容器(100)内を
1×10-6Torrの圧力に調整した。次いで、ヒーター
(140)に通電し、それぞれの円筒状基体(106)
を250℃に加熱保持した。
First, the inside of the reaction vessel (100) was evacuated by operating the exhaust mechanism (135) to adjust the pressure inside the reaction vessel (100) to 1 × 10 −6 Torr. Then, the heater (140) is energized, and each cylindrical substrate (106)
Was heated and held at 250 ° C.

【0085】次に、以下の手順で成膜を行った。原料ガ
ス供給手段(108)からガス供給パイプ(117)及
びガス放出パイプ(116)を介してSiH4ガスを5
00sccmの流量で反応容器(100)内に導入し、この
反応容器内を50mTorr、25mTorr及び5mTorrの3つ
の条件の圧力に調整した。こうしたところで、各圧力条
件において高周波電源(111)により周波数13.5
6〜650MHzの高周波を1KW発生させ、この高周
波を整合回路(109)を介してカソード電極(10
3)に供給した。ここで高周波電源(111)としては
上述した範囲の周波数が与えられるように所定の高周波
電源を用いた。整合回路(109)は、当該高周波電源
の周波数に応じて適宜調整した。このようにして円筒状
基体(106)上及び前記の電気特性評価基板上にアモ
ルファスシリコン膜を形成した。
Next, a film was formed by the following procedure. SiH 4 gas is supplied from the source gas supply means (108) through the gas supply pipe (117) and the gas discharge pipe (116) to 5
It was introduced into the reaction vessel (100) at a flow rate of 00 sccm, and the pressure inside the reaction vessel was adjusted to three conditions of 50 mTorr, 25 mTorr and 5 mTorr. In such a place, a frequency of 13.5 is generated by the high frequency power source (111) under each pressure condition.
A high frequency of 6 to 650 MHz is generated at 1 kW, and this high frequency is passed through the matching circuit (109) to the cathode electrode (10
3). Here, as the high frequency power supply (111), a predetermined high frequency power supply was used so that a frequency in the above range was given. The matching circuit (109) was appropriately adjusted according to the frequency of the high frequency power source. In this way, an amorphous silicon film was formed on the cylindrical substrate (106) and the above-mentioned electric characteristic evaluation substrate.

【0086】膜質及び膜質分布は、電気特性評価基板の
上端から下端までにわたって約20mm間隔の18箇所の
位置で、光感度((光導電率σp)/(暗導電率σ
d))を測定することにより評価した。ここでは、光導
電率σpは、1mW/cm2の強度のHe−Neレーザー
(波長632.8nm)の照射時の導電率により評価し
た。
The film quality and the film quality distribution were determined by measuring the photosensitivity ((photoconductivity σp) / (dark conductivity σ) at 18 positions at intervals of about 20 mm from the upper end to the lower end of the electrical characteristic evaluation substrate.
It was evaluated by measuring d)). Here, the photoconductivity σp was evaluated by the conductivity upon irradiation with a He—Ne laser (wavelength 632.8 nm) having an intensity of 1 mW / cm 2 .

【0087】本発明者らのこれまでの電子写真感光体の
作製からの知見によると、上記の方法による光感度が1
3以上の品質の堆積膜が得られる条件を基に最適化し
て作製した電子写真感光体において、実用に値する画像
が得られる。しかし、近年の画像の高コントラスト化に
より、上述の光感度が104以上のものが必須になって
きており、さらに近い将来105以上の光感度が求めら
れることが予想される。このような観点から、今回の実
験では光感度の値を次の基準で評価した。光感度が10
5以上:◎(非常に優れた膜特性)、光感度が104以上
105未満:○(良好な膜特性)、光感度が103以上1
4未満:△(実用上問題なし)、光感度が103未満:
×(実用に適さない)。
According to the findings of the present inventors from the production of the electrophotographic photosensitive member up to now, the photosensitivity by the above method is 1
An image suitable for practical use can be obtained with an electrophotographic photosensitive member that is optimized and manufactured based on the condition that a deposited film with a quality of 0 3 or more is obtained. However, due to the high contrast of images in recent years, the above-mentioned photosensitivity of 10 4 or more is indispensable, and it is expected that the photosensitivity of 10 5 or more will be required in the near future. From this point of view, the value of photosensitivity was evaluated according to the following criteria in this experiment. Light sensitivity is 10
5 or more: ◎ (very excellent film characteristics), photosensitivity of 10 4 or more and less than 10 5 : ○ (good film characteristics), photosensitivity of 10 3 or more 1
Less than 0 4 : △ (no problem in practical use), photosensitivity less than 10 3 :
X (not suitable for practical use).

【0088】堆積速度および堆積速度分布の評価は、6
本の円筒状基体のうち膜質評価用コーニング#7059
基板を設置した1本を除く、アモルファスシリコン膜を
形成した5本の円筒状基体の内のl本の軸方向にわたっ
て、上述した光感度の測定位置と同様に約20mmおきの
18箇所について渦電流式膜厚計(Kett科学研究所
製)を使用して膜厚を測定することにより評価した。堆
積速度は18箇所における膜厚に基づいて算出し、得ら
れた値の平均値を平均堆積速度とした。堆積速度分布の
評価は次のようにして行った。すなわち、軸方向の堆積
速度分布については、軸方向の18箇所における堆積速
度の最大値と最小値との差を求め、その差を18箇所の
平均堆積速度で割り、堆積速度分布((最大値―最小
値)/平均値)を求め、これを軸方向の堆積速度分布と
して百分率で表した。
Evaluation of the deposition rate and the deposition rate distribution is 6
Corning # 7059 for film quality evaluation of a cylindrical body
Eddy currents at 18 points every 20 mm, similar to the above-mentioned photosensitivity measurement positions, over the axial direction of 1 of the 5 cylindrical substrates on which the amorphous silicon film is formed, excluding the one on which the substrate is installed. The film thickness was evaluated by using a film thickness meter (manufactured by Kett Scientific Research Institute). The deposition rate was calculated based on the film thickness at 18 locations, and the average value of the obtained values was used as the average deposition rate. The deposition rate distribution was evaluated as follows. That is, for the axial deposition rate distribution, the difference between the maximum value and the minimum value of the deposition rate at 18 locations in the axial direction is calculated, and the difference is divided by the average deposition rate at 18 locations to obtain the deposition rate distribution ((maximum value -Minimum value / average value) was obtained and expressed as a percentage as the axial deposition rate distribution.

【0089】50mtorr、25mTorr及び5mTorrの圧力
条件で成膜したそれぞれの試料について、光感度の評価
結果を表10、表11及び表12に示し、推積速度の評
価結果を表13、表14及び表15に示す。
The photosensitivity evaluation results of the samples formed under the pressure conditions of 50 mtorr, 25 mTorr and 5 mTorr are shown in Table 10, Table 11 and Table 12, and the estimation speed results are shown in Table 13, Table 14 and It shows in Table 15.

【0090】13.56MHzの周波数を持つ高周波エ
ネルギーによる試料においては、50mTorrの圧力条件
で成膜したものは膜質および堆積速度とも比較的均一で
あるが、平均堆積速度が0.15nm/sと非常に遅
く、25mTorr以下の圧力条件では放電を生起させるこ
とができなかった。
In the sample by the high frequency energy having the frequency of 13.56 MHz, the film formed under the pressure condition of 50 mTorr was relatively uniform in film quality and deposition rate, but the average deposition rate was 0.15 nm / s. However, the discharge could not be generated under the pressure condition of 25 mTorr or less.

【0091】30MHzの周波数を持つ高周波エネルギ
ーによる試料においては、50mTorr及び25mTorrの圧
力条件で成膜したものは円筒状基体の上部位置で光感度
の低下が見られた。また、50mTorrの圧力条件で成膜
したものは平均堆積速度は13.56MHzの場合の3
倍程度に増大したが、堆積速度分布が悪化した。5mTor
rの圧力条件では放電を生起させることができなかっ
た。
In the sample by the high frequency energy having the frequency of 30 MHz, the film formed under the pressure conditions of 50 mTorr and 25 mTorr showed a decrease in the photosensitivity at the upper position of the cylindrical substrate. The film formed under the pressure condition of 50 mTorr has an average deposition rate of 13.56 MHz, which is 3
It doubled, but the deposition rate distribution deteriorated. 5mTor
No discharge could be generated under the pressure condition of r.

【0092】60〜300MHzの周波数を持つ高周波
エネルギーによる試料においては、円筒状基体の中央上
部位置から中央下部位置において光感度の低下が見ら
れ、光感度が低下しない位置では、圧力の低下に伴い光
感度が向上する傾向がみられた。平均堆積速度は13.
56MHzの7〜12倍程度に増加したが、堆積速度分
布は悪化した。
In the sample by the high frequency energy having the frequency of 60 to 300 MHz, the photosensitivity was decreased from the central upper position to the central lower position of the cylindrical substrate, and at the position where the optical sensitivity was not decreased, the pressure was decreased. There was a tendency for the photosensitivity to improve. The average deposition rate is 13.
Although it increased about 7 to 12 times of 56 MHz, the deposition rate distribution deteriorated.

【0093】400〜600MHzの周波数をもつ高周
波エネルギーによる試料においては、円筒状基体の複数
の位置において光感度の低下が見られ、光感度が低下し
ない位置では、圧力の低下にともなって光感度が向上す
る傾向が見られた。平均堆積速度は13.56MHzの
場合の4〜6倍程度に増大したが、堆積速度分布は悪化
した。
In the sample by the high frequency energy having the frequency of 400 to 600 MHz, the photosensitivity was decreased at a plurality of positions of the cylindrical substrate, and at the position where the photosensitivity was not decreased, the photosensitivity was decreased as the pressure was decreased. There was a tendency to improve. The average deposition rate increased to about 4 to 6 times that of 13.56 MHz, but the deposition rate distribution deteriorated.

【0094】650MHzの放電条件においては、全て
の圧力条件で放電が断続的になり、評価用の成膜試料を
作製できなかった。
Under the discharge condition of 650 MHz, the discharge was intermittent under all pressure conditions, and a film-forming sample for evaluation could not be prepared.

【0095】以上の実験結果から、RFエネルギーの周
波数を30MHz以上にすると、気相反応が起こりにく
い高真空領域での放電が可能となり、優れた膜特性を得
ることができ、堆積速度も13.56MHzの場合に比
ベて向上するが、膜質分布および堆積速度分布は悪化す
ることがわかった。
From the above experimental results, when the frequency of the RF energy is set to 30 MHz or more, the discharge can be performed in the high vacuum region where the gas phase reaction is hard to occur, the excellent film characteristics can be obtained, and the deposition rate is 13. It was found that the film quality distribution and the deposition rate distribution were deteriorated although they were improved as compared with the case of 56 MHz.

【0096】[0096]

【表10】 [Table 10]

【0097】[0097]

【表11】 [Table 11]

【0098】[0098]

【表12】 [Table 12]

【0099】[0099]

【表13】 *放電が断続的になり成膜評価を行えなかった。[Table 13] * Since the discharge was intermittent, the film formation could not be evaluated.

【0100】[0100]

【表14】 * 放電が生起しなかったため成膜評価を行えなかった。[Table 14] * Since no discharge occurred, the film formation could not be evaluated.

【0101】**放電が断続的になり成膜評価を行えな
かった。
** Discharge was intermittent and the film formation could not be evaluated.

【0102】[0102]

【表15】 * 放電が生起しなかったため成膜評価を行えなかった。 **放電が断続的になり成膜評価を行えなかった。[Table 15] * Since no discharge occurred, the film formation could not be evaluated. ** Discharge was intermittent and the film formation could not be evaluated.

【0103】比較例2 カソード電極の構成として、カソード電極(103)を
誘電体カバー(104)で覆わない以外は実施例7と同
様にして平板状基体上にアモルファスシリコン膜を形成
した。堆積速度および堆積速度分布を評価したところ、
平均堆積速度は6.3nm/sであり、堆積速度分布は
35%であった。
Comparative Example 2 An amorphous silicon film was formed on a flat substrate in the same manner as in Example 7 except that the cathode electrode (103) was not covered with the dielectric cover (104) as the cathode electrode. When the deposition rate and the deposition rate distribution were evaluated,
The average deposition rate was 6.3 nm / s and the deposition rate distribution was 35%.

【0104】比較例3 図7に示す従来の平行平板型のプラズマCVD装置を用
い、縦500mm、横500mm、厚さ1mmのガラス製の平
板状基体を対向電極(705)に配置して、表7に示す
成膜条件で平板状基体上にアモルファスシリコン膜を形
成した。実施例7と同様の手順で推積速度および堆積速
度分布を評価したところ、平均堆積速度は3.5nm/
sであり、堆積速度分布は85%であった。
Comparative Example 3 Using the conventional parallel plate type plasma CVD apparatus shown in FIG. 7, a flat plate substrate made of glass having a length of 500 mm, a width of 500 mm and a thickness of 1 mm was arranged on the counter electrode (705), and the An amorphous silicon film was formed on the flat substrate under the film forming conditions shown in FIG. When the deposition rate and the deposition rate distribution were evaluated by the same procedure as in Example 7, the average deposition rate was 3.5 nm /
s, and the deposition rate distribution was 85%.

【0105】[0105]

【発明の効果】以上の説明から明らかなように本発明に
よれば、種々の形状の大面積の基体、すなわち、円筒状
基体、平板状基体、シート状基体などに膜厚および膜質
が極めて均一で高品質な堆積膜を高速度で形成できる。
したがって、本発明によれば、大面積で高品質の半導体
デバイスを効率的に作製することができる。また、本発
明によれば、特に電子写真特性に優れた大面積の堆積膜
を安定して量産することができる。
As is apparent from the above description, according to the present invention, a large-area substrate having various shapes, that is, a cylindrical substrate, a flat substrate, a sheet substrate, etc., has extremely uniform film thickness and film quality. Thus, a high quality deposited film can be formed at high speed.
Therefore, according to the present invention, a high-quality semiconductor device having a large area can be efficiently manufactured. Further, according to the present invention, it is possible to stably mass-produce a large-area deposited film having excellent electrophotographic characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のプラズマCVD装置の模式図である。FIG. 1 is a schematic diagram of a plasma CVD apparatus of the present invention.

【図2】本発明のプラズマCVD装置を示す図1のX−
X線断面図である。
FIG. 2 is an X- line of FIG. 1 showing a plasma CVD apparatus of the present invention.
It is an X-ray sectional view.

【図3】本発明のプラズマCVD装置のカソード電極お
よび伝送線路の説明図である。
FIG. 3 is an explanatory diagram of a cathode electrode and a transmission line of the plasma CVD device of the present invention.

【図4】図1とは異なる本発明のプラズマCVD装置の
模式図であって、図1のX−X線に対応する線に沿った
断面図である。
FIG. 4 is a schematic view of a plasma CVD apparatus of the present invention different from FIG. 1, and is a cross-sectional view taken along a line corresponding to line XX in FIG.

【図5】本発明のプラズマCVD装置の模式図である。FIG. 5 is a schematic diagram of a plasma CVD apparatus of the present invention.

【図6】本発明のプラズマCVD装置の模式図である。FIG. 6 is a schematic view of a plasma CVD apparatus of the present invention.

【図7】従来のプラズマCVD装置の模式図である。FIG. 7 is a schematic view of a conventional plasma CVD apparatus.

【図8】従来のプラズマCVD装置の模式図である。FIG. 8 is a schematic diagram of a conventional plasma CVD apparatus.

【図9】従来のプラズマCVD装置を示す図8のY−Y
線断面図ある。
FIG. 9 is a view showing a conventional plasma CVD apparatus YY of FIG.
FIG.

【符号の説明】[Explanation of symbols]

100 反応容器 102 アースシールド 103、203 カソード電極 104、204 誘電体カバー 105A 基体ホルダー l05B 補助保持部材 106 円筒状基体 l07 排気パイプ 108 原料ガス供給手段 109 整合回路 111 高周波電源 ll6 ガス放出パイプ 117 ガス供給パイプ 120 カソード電極支持部材 130 伝送線路 130a 内部導体 130b 電送媒体 131 基体回転用シャフト 132 モーター 133 シール部材 135 排気機構 140 ヒーター 206 平板状基体 306 シート状基体 351 保持ロール 352 巻き取りロール 701 反応容器 702 カソード電極支持台 703 カソード電極 704 アースシールド 705 対向電極 706 被成膜基体 707 真空排気手段 708 ガス供給手段 709 整合回路 710 高周波電力供給線 711 高周波電源 100 Reaction Container 102 Earth Shield 103, 203 Cathode Electrode 104, 204 Dielectric Cover 105A Substrate Holder 105B Auxiliary Holding Member 106 Cylindrical Substrate l07 Exhaust Pipe 108 Raw Material Gas Supply Means 109 Matching Circuit 111 High Frequency Power Supply l16 Gas Release Pipe 117 Gas Supply Pipe 120 Cathode Electrode Support Member 130 Transmission Line 130a Inner Conductor 130b Transmission Medium 131 Shaft for Base Rotation 132 Motor 133 Sealing Member 135 Exhaust Mechanism 140 Heater 206 Flat Substrate 306 Sheet Substrate 351 Holding Roll 352 Winding Roll 701 Reaction Vessel 702 Cathode Electrode Support base 703 Cathode electrode 704 Earth shield 705 Counter electrode 706 Deposition substrate 707 Vacuum exhausting means 708 Gas supplying means 70 Matching circuit 710 high-frequency power supply line 711 high frequency power source

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/31 H01L 21/31 C H01S 3/18 H01S 3/18 H03H 7/40 H03H 7/40 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location H01L 21/31 H01L 21/31 C H01S 3/18 H01S 3/18 H03H 7/40 H03H 7/40

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】 減圧可能な反応容器、該反応容器内にプ
ラズマCVDの原料ガスを供給する原料ガス供給手段、
前記反応容器内に配された基体保持手段およびカソード
電極、並びに高周波電源を有し、該高周波電源で発生さ
せた高周波電力を整合回路を介して前記カソード電極へ
供給し、前記基体保持手段により保持される基体と前記
カソード電極との間にプラズマを発生させて基体に堆積
膜を形成するプラズマCVD装置において、 1)前記高周波電源の発振周波数が少なくとも30〜6
00MHzの範囲に制御可能であり、 2)前記整合回路と前記カソード電極とが伝送線路を介
して接続され、該伝送線路を介して前記高周波電力が伝
送され、 3)前記カソード電極が棒状の導電性構造体であり、且
つ、該カソード電極と前記伝送線路の内部導体との接続
部において、カソード電極の断面の外部形状と内部導体
の断面の外部形状とが同一であり、 4)前記カソード電極と前記伝送線路の内部導体との少
なくとも接続部分が、該伝送線路の断面における伝送媒
体の外部形状と同じ外部形状を有する誘電体部材によっ
て被覆されていることを特徴とするプラズマCVD装
置。
1. A depressurizable reaction vessel, a raw material gas supply means for supplying a raw material gas for plasma CVD into the reaction vessel,
It has a substrate holding means and a cathode electrode arranged in the reaction container, and a high frequency power source, supplies the high frequency power generated by the high frequency power source to the cathode electrode through a matching circuit, and holds it by the substrate holding means. A plasma CVD apparatus for forming a deposited film on a substrate by generating plasma between the substrate and the cathode electrode to be formed, 1) The oscillation frequency of the high frequency power source is at least 30 to 6
Controllable in the range of 00 MHz, 2) the matching circuit and the cathode electrode are connected via a transmission line, the high-frequency power is transmitted via the transmission line, and 3) the cathode electrode is rod-shaped conductive. And the external shape of the cross section of the cathode electrode is the same as the external shape of the cross section of the internal conductor at the connecting portion between the cathode electrode and the internal conductor of the transmission line. 4) The cathode electrode At least a connecting portion between the inner conductor of the transmission line and the inner conductor of the transmission line is covered with a dielectric member having the same outer shape as the outer shape of the transmission medium in the cross section of the transmission line.
【請求項2】 基体が円筒状基体であり、複数の該円筒
状基体が、反応容器内に配されたカソード電極の周囲
に、円筒状基体の中心軸が実質的に同一円周上に位置す
るように配列され、複数の該円筒状基体と前記カソード
電極との間にプラズマを発生させて円筒状基体の表面上
に堆積膜を形成できるように構成された請求項1記載の
プラズマCVD装置。
2. The substrate is a cylindrical substrate, and the plurality of cylindrical substrates are positioned around a cathode electrode arranged in a reaction vessel, and the central axes of the cylindrical substrates are substantially on the same circumference. 2. The plasma CVD apparatus according to claim 1, wherein the plasma CVD apparatus is arranged so as to form a deposited film on the surface of the cylindrical substrate by generating plasma between the plurality of cylindrical substrates and the cathode electrode. .
【請求項3】 基体が円筒状基体であり、該円筒状基体
の周囲に複数のカソード電極が配列され、これらのカソ
ード電極と円筒状基体との間にプラズマを発生させて円
筒状基体の表面上に堆積膜を形成できるように構成され
た請求項1又は2記載のプラズマCVD装置。
3. The surface of the cylindrical substrate, wherein the substrate is a cylindrical substrate, a plurality of cathode electrodes are arranged around the cylindrical substrate, and plasma is generated between the cathode electrode and the cylindrical substrate. The plasma CVD apparatus according to claim 1 or 2, which is configured so that a deposited film can be formed thereon.
【請求項4】 円筒状基体を回転させながら該円筒状基
体の表面上に堆積膜を形成できるように構成された請求
項2又は3記載のプラズマCVD装置。
4. The plasma CVD apparatus according to claim 2, which is configured so that a deposited film can be formed on the surface of the cylindrical substrate while rotating the cylindrical substrate.
【請求項5】 基体が平板状基体であり、該平板状基体
に対して平行に単数または複数のカソード電極が配列さ
れ、該カソード電極と平板状基体との間にプラズマを発
生させて平板状基体の表面上に堆積膜を形成できるよう
に構成された請求項1に記載のプラズマCVD装置。
5. The substrate is a flat substrate, and a single or a plurality of cathode electrodes are arranged in parallel to the flat substrate, and plasma is generated between the cathode electrode and the flat substrate to form a flat substrate. The plasma CVD apparatus according to claim 1, which is configured so that a deposited film can be formed on the surface of the substrate.
【請求項6】 基体が、成膜時に保持ロールから送り出
され、巻き取りロールにより巻き取られるシート状基体
であり、該シート状基体に対して平行に単数または複数
のカソード電極が配列され、該カソード電極とシート状
基体との間にプラズマを発生させてシート状基体の表面
上に堆積膜を形成できるように構成された請求項1記載
のプラズマCVD装置。
6. The substrate is a sheet-shaped substrate that is sent out from a holding roll during film formation and wound by a winding roll, and a single or a plurality of cathode electrodes are arranged in parallel to the sheet-shaped substrate. The plasma CVD apparatus according to claim 1, wherein plasma is generated between the cathode electrode and the sheet-shaped substrate to form a deposited film on the surface of the sheet-shaped substrate.
【請求項7】 高周波電源の発振周波数が少なくとも6
0〜300MHzの範囲に制御可能である請求項1〜6
のいずれか1項に記載のプラズマCVD装置。
7. The oscillating frequency of the high frequency power source is at least 6
It is possible to control in the range of 0 to 300 MHz.
The plasma CVD apparatus according to any one of 1.
【請求項8】 請求項1記載のプラズマCVD装置を用
い、高周波電源の発振周波数を30〜600MHzの範
囲に制御して、基体とカソード電極との間にプラズマを
発生させて基体の表面上に堆積膜を形成することを特徴
とするプラズマCVDによる堆積膜形成方法。
8. The plasma CVD apparatus according to claim 1, wherein the oscillating frequency of the high frequency power source is controlled within a range of 30 to 600 MHz to generate plasma between the substrate and the cathode electrode, and the plasma is generated on the surface of the substrate. A method for forming a deposited film by plasma CVD, which comprises forming a deposited film.
【請求項9】 請求項2記載のプラズマCVD装置を用
い、高周波電源の発振周波数を30〜600MHzの範
囲に制御して、基体とカソード電極との間にプラズマを
発生させて基体の表面上に堆積膜を形成することを特徴
とするプラズマCVDによる堆積膜形成方法。
9. The plasma CVD apparatus according to claim 2, wherein the oscillation frequency of the high frequency power source is controlled in the range of 30 to 600 MHz to generate plasma between the substrate and the cathode electrode, and the plasma is generated on the surface of the substrate. A method for forming a deposited film by plasma CVD, which comprises forming a deposited film.
【請求項10】 請求項3記載のプラズマCVD装置を
用い、高周波電源の発振周波数を30〜600MHzの
範囲に制御して、基体とカソード電極との間にプラズマ
を発生させて基体の表面上に堆積膜を形成することを特
徴とするプラズマCVDによる堆積膜形成方法。
10. The plasma CVD apparatus according to claim 3, wherein the oscillating frequency of the high frequency power source is controlled in the range of 30 to 600 MHz to generate plasma between the substrate and the cathode electrode, and the plasma is generated on the surface of the substrate. A method for forming a deposited film by plasma CVD, which comprises forming a deposited film.
【請求項11】 円筒状基体を回転させながら円筒状基
体の表面上に堆積膜を形成する請求項9又は10記載の
プラズマCVDによる堆積膜形成方法。
11. The method of forming a deposited film by plasma CVD according to claim 9, wherein the deposited film is formed on the surface of the cylindrical substrate while rotating the cylindrical substrate.
【請求項12】 請求項5記載のプラズマCVD装置を
用い、高周波電源の発振周波数を30〜600MHzの
範囲に制御して、基体とカソード電極との間にプラズマ
を発生させて平板状基体の表面上に堆積膜を形成するこ
とを特徴とするプラズマCVDによる堆積膜形成方法。
12. The surface of a flat substrate by controlling the oscillation frequency of a high frequency power source in the range of 30 to 600 MHz by using the plasma CVD apparatus according to claim 5 to generate plasma between the substrate and the cathode electrode. A method for forming a deposited film by plasma CVD, which comprises forming a deposited film on the top.
【請求項13】 請求項6記載のプラズマCVD装置を
用い、高周波電源の発振周波数を30〜600MHzの
範囲に制御し、シート状基体を保持ロールから送り出
し、巻き取りロールにより巻き取りながら、該シート状
基体とカソード電極との間にプラズマを発生させてシー
ト状基体の表面上に堆積膜を形成することを特徴とする
プラズマCVDによる堆積膜形成方法。
13. The plasma CVD apparatus according to claim 6, wherein the oscillating frequency of a high frequency power source is controlled within a range of 30 to 600 MHz, the sheet-shaped substrate is sent out from a holding roll, and the sheet is wound by a winding roll. A method for forming a deposited film by plasma CVD, characterized in that plasma is generated between a sheet-shaped substrate and a cathode electrode to form a deposited film on the surface of the sheet-shaped substrate.
【請求項14】 高周波電源の発振周波数を60〜30
0MHzの範囲に制御する請求項8〜13のいずれか1
項に記載のプラズマCVDによる堆積膜形成方法。
14. The oscillating frequency of the high frequency power source is 60 to 30.
The control according to any one of claims 8 to 13 for controlling in the range of 0 MHz.
Item 7. A method for forming a deposited film by plasma CVD according to Item.
【請求項15】 少なくとも1種類のIV族元素を含むア
モルファス物質からなる堆積膜を形成する請求項8〜1
4のいずれか1項に記載のプラズマCVDによる堆積膜
形成方法。
15. A deposited film comprising an amorphous substance containing at least one group IV element is formed.
5. The deposited film forming method by plasma CVD according to any one of 4 above.
【請求項16】 少なくともシリコンを含むアモルファ
ス物質からなる堆積膜を形成する請求項8〜14のいず
れか1項に記載のプラズマCVDによる堆積膜形成方
法。
16. The method for forming a deposited film by plasma CVD according to claim 8, wherein the deposited film is formed of an amorphous material containing at least silicon.
【請求項17】 電子写真感光体用であり、少なくとも
シリコンを含むアモルファス物質からなる堆積膜を形成
する請求項8〜14のいずれか1項に記載のプラズマC
VDによる堆積膜形成方法。
17. The plasma C for an electrophotographic photosensitive member according to claim 8, which forms a deposited film made of an amorphous substance containing at least silicon.
A method for forming a deposited film by VD.
JP8068360A 1996-03-25 1996-03-25 Plasma cvd device and deposited film forming method by plasma cvd Pending JPH09256160A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP8068360A JPH09256160A (en) 1996-03-25 1996-03-25 Plasma cvd device and deposited film forming method by plasma cvd
KR1019970010297A KR100256192B1 (en) 1996-03-25 1997-03-25 Plasma process apparatus and plasma process method
US09/120,319 US6065425A (en) 1996-03-25 1998-07-22 Plasma process apparatus and plasma process method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8068360A JPH09256160A (en) 1996-03-25 1996-03-25 Plasma cvd device and deposited film forming method by plasma cvd

Publications (1)

Publication Number Publication Date
JPH09256160A true JPH09256160A (en) 1997-09-30

Family

ID=13371561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8068360A Pending JPH09256160A (en) 1996-03-25 1996-03-25 Plasma cvd device and deposited film forming method by plasma cvd

Country Status (2)

Country Link
JP (1) JPH09256160A (en)
KR (1) KR100256192B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100301601B1 (en) * 1998-01-29 2001-10-19 가와무라 히로또시 Plasma generating apparatus
US6645573B2 (en) 1998-03-03 2003-11-11 Canon Kabushiki Kaisha Process for forming a microcrystalline silicon series thin film and apparatus suitable for practicing said process
CN102820198A (en) * 2011-06-10 2012-12-12 东京毅力科创株式会社 High frequency power distribution device and substrate processing apparatus using same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100698876B1 (en) * 2001-07-20 2007-03-22 삼성전자주식회사 Apparatus for Manufacturing Using Plasma

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63235478A (en) * 1987-03-24 1988-09-30 Canon Inc Device for microwave cvd

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100301601B1 (en) * 1998-01-29 2001-10-19 가와무라 히로또시 Plasma generating apparatus
US6645573B2 (en) 1998-03-03 2003-11-11 Canon Kabushiki Kaisha Process for forming a microcrystalline silicon series thin film and apparatus suitable for practicing said process
CN102820198A (en) * 2011-06-10 2012-12-12 东京毅力科创株式会社 High frequency power distribution device and substrate processing apparatus using same

Also Published As

Publication number Publication date
KR100256192B1 (en) 2000-05-15
KR970065764A (en) 1997-10-13

Similar Documents

Publication Publication Date Title
US6065425A (en) Plasma process apparatus and plasma process method
US5534070A (en) Plasma CVD process using a very-high-frequency and plasma CVD apparatus
JP3501668B2 (en) Plasma CVD method and plasma CVD apparatus
WO2004083486A1 (en) Method and apparatus for plasma cdv by use of ultrashort wave
JP3630831B2 (en) Method for forming deposited film
JP3406936B2 (en) Plasma CVD method using ultrashort wave and plasma CVD apparatus
JP3372647B2 (en) Plasma processing equipment
JPH09256160A (en) Plasma cvd device and deposited film forming method by plasma cvd
JPH09268370A (en) Plasma cvd system and formation of deposited film by plasma cvd
JP2001115265A (en) High frequency plasma cvd process and high frequency plasma cvd system
JP3544076B2 (en) Plasma CVD apparatus and method for forming deposited film by plasma CVD
JP3501669B2 (en) Method of forming deposited film by plasma CVD method, high-frequency electrode for plasma generation, and plasma CVD apparatus composed of the electrode
KR100269930B1 (en) Plasma processing apparatus and plasma processing method
JPH11131244A (en) High-frequency electrode for plasma generation, plasma cvd device composed by the electrode, and plasma cvd method
JP2001335944A (en) System and method for plasma treatment
JPH09279348A (en) Plasma cvd apparatus and formation of deposited film by plasma cvd
JP2001316827A (en) High frequency plasma cvd method and device
JP2000232070A (en) High-frequency plasma cvd method
JPH11131245A (en) Plasma cvd device and formation of deposited coating film by plasma cvd
JPH1143775A (en) Plasma cvd device and formation of deposited film by plasma cvd
JPH11131246A (en) Plasma cvd device and formation of deposited coating film by plasma cvd
JP2867150B2 (en) Microwave plasma CVD equipment
JP2925310B2 (en) Deposition film formation method
JP2994658B2 (en) Apparatus and method for forming deposited film by microwave CVD
JP3337813B2 (en) Plasma CVD method using ultrashort wave and plasma CVD apparatus