JPH0971851A - Production of zinc-tin alloy plated steel sheet - Google Patents

Production of zinc-tin alloy plated steel sheet

Info

Publication number
JPH0971851A
JPH0971851A JP22870995A JP22870995A JPH0971851A JP H0971851 A JPH0971851 A JP H0971851A JP 22870995 A JP22870995 A JP 22870995A JP 22870995 A JP22870995 A JP 22870995A JP H0971851 A JPH0971851 A JP H0971851A
Authority
JP
Japan
Prior art keywords
plating
zinc
bath
steel sheet
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22870995A
Other languages
Japanese (ja)
Other versions
JP3581451B2 (en
Inventor
Takayuki Omori
隆之 大森
Masahiro Fuda
雅裕 布田
Yashichi Oyagi
八七 大八木
Ken Sawada
献 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP22870995A priority Critical patent/JP3581451B2/en
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to EP96907700A priority patent/EP0763608B1/en
Priority to DE1996637118 priority patent/DE69637118T2/en
Priority to US08/750,073 priority patent/US5827618A/en
Priority to EP20040018756 priority patent/EP1477582A3/en
Priority to PCT/JP1996/000835 priority patent/WO1996030560A1/en
Priority to AU51219/96A priority patent/AU686502B2/en
Publication of JPH0971851A publication Critical patent/JPH0971851A/en
Application granted granted Critical
Publication of JP3581451B2 publication Critical patent/JP3581451B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • C23C28/025Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only with at least one zinc-based layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating With Molten Metal (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase the plating adhesion of a steel sheet and to improve its corrosion resistance, press workability, solderability and weldability by controlling the conditions of preplating, preplating treatment and alloy hot dipping. SOLUTION: At the time of alloy hot dipping treatment, at first, a steel sheet subjected to annealing is applied with Ni or Ni-Fe preplating by 0,1 to 3g/m<2> per side by the Ni content. Next, it is subjected to preplating treatment in such a manner that the ratio of the staying time in a nonoxidation furnace/ the staying time in a reducing furnace is regulated to 1 to 1/3 and the dew point at the outlet of the reducing furnace is regulated to <=-20 deg.C, then, the temp. of the steel sheet immediately before plating is regulated approximately to the plating bath temp., thereafter, the plating bath composed of 40 to 98wt.% Sn, and the balance Zn with inevitable impurities is used, and it is immersed in the bath at a temp. higher than the m.p. of the plating bath alloy by 20 to 300 deg.C for < 6sec. Furthermore, in the case the content of Zn in the plating bath is more than 8.8wt.%, the cooling rate after the immersion plating is regulated to >=20 deg.C/sec, and in the case the content of Zn is less than 8.8wt.%, it is cooled at a rate of >=20 deg.C/sec.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、亜鉛−錫系合金め
っき鋼板の製造法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing a zinc-tin alloy plated steel sheet.

【0002】[0002]

【従来の技術】従来、亜鉛−錫合金めっき鋼板は例え
ば、特開昭52−130438号公報のように亜鉛およ
び錫イオンを含む溶液中で電解する電気めっき法で主と
して製造されてきた。また亜鉛−錫合金めっき鋼板は亜
鉛以外に錫を含むため耐蝕性やハンダ性に優れており、
電子部品等に多く使用されてきた。溶融めっき法ではめ
っき付着量を比較的容易に厚くすることができるため、
溶融めっき法で製造された製品は屋外用途等厳しい環境
で使用されている。例えば特開平4−214848号公
報では鉄系被めっき物に錫70〜98重量%の亜鉛−錫
合金めっきした被覆物やその製造法が開示されている。
2. Description of the Related Art Conventionally, zinc-tin alloy-plated steel sheets have been mainly produced by an electroplating method in which electrolysis is performed in a solution containing zinc and tin ions, as disclosed in Japanese Patent Laid-Open No. 52-130438. Further, the zinc-tin alloy-plated steel sheet has excellent corrosion resistance and solderability because it contains tin in addition to zinc,
It has been widely used for electronic parts. With the hot dip coating method, the amount of plating applied can be increased relatively easily.
Products manufactured by the hot dip plating method are used in severe environments such as outdoor applications. For example, Japanese Patent Laid-Open No. 214848/1992 discloses an iron-based object to be plated with a zinc-tin alloy of 70 to 98% by weight of tin, and a method for producing the same.

【0003】特開平5−263208号公報では、鉄系
基材に溶融亜鉛または溶融亜鉛合金めっき層として錫を
含む合金層、または亜鉛とアルミニウムを含む合金層の
上にクロムめっき層で順次被覆された亜鉛系めっき被覆
物および製造法が開示されている。特開平3−2298
46号公報では鉄系被めっき物が少なくても鉄および亜
鉛を含む合金層を介して亜鉛皮膜または亜鉛合金皮膜に
よって被覆されている溶融亜鉛めっき被覆物およびめっ
き方法を開示している。一方燃料タンク材料としてこれ
まで耐蝕性、加工性、ハンダ性、溶接性等の優れた鉛−
錫めっき鋼板等が主として用いられ実燃料タンクとして
使用実績を積み重ねてきた。
In Japanese Unexamined Patent Publication (Kokai) No. 5-263208, an iron-based substrate is sequentially coated with a chromium plating layer on an alloy layer containing tin as a molten zinc or molten zinc alloy plating layer or an alloy layer containing zinc and aluminum. Also disclosed are zinc-based coatings and methods of manufacture. JP-A-3-2298
Japanese Unexamined Patent Publication No. 46 discloses a hot dip galvanized coating and a plating method in which an iron-based object to be plated is coated with a zinc coating or a zinc alloy coating via an alloy layer containing iron and zinc. On the other hand, as a fuel tank material, lead-based materials with excellent corrosion resistance, workability, solderability, weldability, etc.
Tin-plated steel sheets are mainly used and have been used as actual fuel tanks.

【0004】[0004]

【発明が解決しようとする課題】このように電気亜鉛−
錫めっき鋼板の使用によって耐蝕性やハンダ性は改善さ
れたものの、燃料タンクのような長期耐蝕性の要求され
る環境には付着量を厚くしためっき鋼板が必要である
が、電気めっき法における付着量の制御は時間と電流の
大きさに依存するため、付着量を厚くはできるが処理時
間を長くしたり、電流をたくさん流す必要があり、生産
性や経済的に大きな問題を生ずる。また溶融めっき法に
よる錫−亜鉛めっき鋼板の使用によって塩水噴霧におい
てもかなりの耐蝕性を示しているが、そのめっき層の構
造は棚状晶と柱状晶といった特徴のある鉄−亜鉛合金層
が通常5〜35μm(その外側のめっき被覆層が5〜4
0μm、好ましくは10〜30μm)とめっき被覆層と
同等以上も厚みがあって素地腐食抑制に関して合金層の
寄与が非常に大きいと共に、燃料タンクのような厳しい
加工に関しては合金層はめっき被覆層よりも硬度が高い
ためにこのような合金層のめっき被覆層に対する比率が
高く厚みが厚い場合にはクラック等が入りやすく燃料タ
ンク内外面の腐食進展が遙かにおこりやすくなり、燃料
タンク材料としては不向きである。これらの製造に際し
ては30秒〜3分程度と長時間浴中に浸漬することが必
要であり生産性や経済的にも大きな問題を生ずる。
[Problems to be Solved by the Invention]
Although the corrosion resistance and solderability have been improved by using tin-plated steel sheets, the plated steel sheet with a thicker adhesion amount is required for environments such as fuel tanks where long-term corrosion resistance is required. Since the control of the amount depends on the time and the magnitude of the electric current, it is possible to increase the adhesion amount, but it is necessary to prolong the processing time and to flow a large amount of electric current, which causes great problems in productivity and economy. Further, the use of tin-zinc plated steel sheet by the hot dip coating method shows considerable corrosion resistance even in salt spray, but the structure of the plating layer is usually an iron-zinc alloy layer having a characteristic of shelf crystals and columnar crystals. 5 to 35 μm (the outer plating layer is 5 to 4 μm)
0 μm, preferably 10 to 30 μm), which is equal to or more than the thickness of the plating coating layer, and the contribution of the alloy layer is very large for the suppression of the base corrosion, and for severe processing such as a fuel tank, the alloy layer is more than the plating coating layer. Since the hardness is also high, if the ratio of the alloy layer to the plating coating layer is high and the thickness is thick, cracks are likely to occur and corrosion progress on the inner and outer surfaces of the fuel tank is much more likely to occur. Not suitable. In the production of these, it is necessary to immerse them in a bath for a long time of about 30 seconds to 3 minutes, which causes a great problem in terms of productivity and economy.

【0005】さらに鉄系基材が亜鉛または亜鉛合金層と
クロムめっき層の順次被覆された場合についてはクロム
被覆層も加わり耐蝕性等がさらに向上するが、亜鉛また
は亜鉛合金層の厚みが5〜75μm、好ましくは10〜
50μm、さらに好ましくは10〜30μmと非常に厚
く、上記と同様に、合金層による耐蝕性の確保と共に、
溶融亜鉛めっき時に素地鉄が合金層中に含有され亜鉛−
鉄合金層が厚く生成するため硬度が上昇し、加工性が大
幅に低下し燃料タンク材料には不向きである。これらの
製造に際しては浴浸漬時間は例えば、1秒〜5分程度、
好ましくは15秒〜2分程度、実施例では1分である。
これは耐蝕性を確保することが主目的であることから厚
みは耐蝕性を損なわない程度確保する必要があり、めっ
き金属での被覆後のプレス加工等の成形性を考慮したも
のでない。
Further, when the iron-based substrate is coated with a zinc or zinc alloy layer and a chromium plating layer in this order, a chromium coating layer is added to further improve the corrosion resistance, but the thickness of the zinc or zinc alloy layer is 5 to 5. 75 μm, preferably 10
It is very thick at 50 μm, more preferably 10 to 30 μm, and similarly to the above, while ensuring corrosion resistance by the alloy layer,
The base iron is contained in the alloy layer during hot dip galvanizing
Since the iron alloy layer is thickly formed, the hardness is increased and the workability is greatly reduced, which is not suitable for the fuel tank material. In the production of these, the bath immersion time is, for example, about 1 second to 5 minutes,
It is preferably about 15 seconds to 2 minutes, and 1 minute in the embodiment.
Since the main purpose of this is to ensure the corrosion resistance, it is necessary to secure the thickness to the extent that the corrosion resistance is not impaired, and the formability such as pressing after coating with the plated metal is not taken into consideration.

【0006】このように後でプレス等の厳しい加工を行
わない場合には従来法でも耐蝕性等の性能は確保される
製造法はあるが、燃料タンク等の厳しい加工や加工後の
耐蝕性等の性能を考慮し、かつ経済性を兼ね備えた製造
法は検討されていない。鉛−錫めっき鋼板の使用におい
ては、車の寿命を満足する耐蝕性、車底部の複雑な構造
にあった加工のできること、燃料タンク部品を接合でき
るハンダ性、溶接性が確保されたもののシュレッダーダ
スト等の産業廃棄物からの鉛溶出規制等の環境規制に対
しては鉛が含まれていることから使用は好ましくない。
そこで本発明では安価に且つ性能に優れた亜鉛−錫系合
金めっき鋼板の溶融めっき法を提供するものである。
[0006] As described above, there is a manufacturing method in which performances such as corrosion resistance are secured even by the conventional method when severe processing such as pressing is not performed later, but severe processing such as fuel tanks and corrosion resistance after processing etc. The manufacturing method which considers the performance of and also has the economical efficiency has not been studied. When using lead-tin plated steel sheets, the shredder dust has corrosion resistance that satisfies the life of the car, that it can be processed according to the complicated structure of the car bottom, solderability that can join fuel tank parts, and weldability. It is not preferable to use lead because it contains lead in environmental regulations such as lead elution regulations from industrial waste.
Therefore, the present invention provides a hot-dip galvanizing method for zinc-tin alloy-plated steel sheet which is excellent in performance.

【0007】[0007]

【課題を解決するための手段】本発明者らは安価でかつ
性能に優れた亜鉛−錫合金めっき鋼板の提供を目的に種
々検討したところ、前処理法および冷却条件を検討する
ことによって溶融めっき法にて亜鉛−錫合金めっき鋼板
を製造できることを見いだしたものである。その要旨
は、 (1)焼鈍済の鋼板にニッケル又はニッケル−鉄系プレ
めっきをニッケル含有量で片面当たり0.1〜3.0g
/m2 行い、無酸化炉での最高板温350〜650℃、
空気比0.85〜1.30、還元炉での最高板温600
〜770℃、無酸化炉滞炉時間/還元炉滞炉時間の比率
が1〜1/3、還元炉出口露点を−20℃以下のめっき
前処理を行い、めっき直前の板温をほぼめっき浴温に調
整した後、錫:40〜98wt%残部亜鉛および不可避
的不純物からなるめっき浴で、前記めっき浴金属の融点
+20〜+300℃の浴温で浴中に6秒未満浸漬しめっ
きを行い、前記浴中の亜鉛が8.8wt%より多い場
合、冷却速度20℃/sec以上の冷却速度で、8.8
wt%未満の場合は任意の冷却速度で冷却することを特
徴とする亜鉛−錫合金めっき鋼板の製造法。
Means for Solving the Problems The inventors of the present invention have made various studies for the purpose of providing a zinc-tin alloy-plated steel sheet which is inexpensive and has excellent performance. As a result, hot-dip galvanizing is performed by examining a pretreatment method and cooling conditions. It was found that a zinc-tin alloy plated steel sheet can be manufactured by the method. The gist is (1) 0.1 to 3.0 g of nickel or nickel-iron-based pre-plating on one side of an annealed steel plate with a nickel content.
/ M 2 and the maximum plate temperature in the non-oxidizing furnace is 350 to 650 ℃,
Air ratio 0.85-1.30, maximum plate temperature 600 in reduction furnace
~ 770 ° C, the ratio of the non-oxidizing reactor retention time / reduction reactor retention time is 1/3, the reduction furnace outlet dew point is -20 ° C or less, and the plate temperature just before plating is almost the plating bath. After adjusting the temperature, tin: plating is performed by immersing the plating bath in the bath for less than 6 seconds at a bath temperature of +20 to + 300 ° C. in a plating bath consisting of 40 to 98 wt% balance zinc and unavoidable impurities, When the zinc content in the bath is more than 8.8 wt%, the cooling rate is 8.8 at a cooling rate of 20 ° C./sec or more.
A method for producing a zinc-tin alloy plated steel sheet, which comprises cooling at an arbitrary cooling rate when the content is less than wt%.

【0008】(2)冷延済の鋼板を、無酸化炉での最高
板温450〜750℃、空気比0.85〜1.30、還
元炉での最高板温680〜850℃、無酸化炉滞炉時間
/還元炉滞炉時間の比率が1〜1/3、還元炉出口露点
−25℃以下のめっき前処理を行いめっき直前の板温を
ほぼめっき浴温に調整した後、錫:40〜98wt%残
部亜鉛および不可避的不純物からなるめっき浴で、前記
めっき金属の融点+20〜+300℃の浴温で浴中に6
秒未満浸漬してめっきを行い、前記浴中の亜鉛含有量が
8.8wt%より多い場合、冷却速度20℃/sec以
上の冷却速度で、亜鉛含有量が8.8wt%未満では任
意の冷却速度で冷却することを特徴とする亜鉛−錫合金
めっき鋼板の製造法である。
(2) The cold rolled steel sheet has a maximum plate temperature of 450 to 750 ° C. in an oxidation-free furnace, an air ratio of 0.85 to 1.30, a maximum plate temperature of 680 to 850 ° C. in a reduction furnace, and no oxidation. After the ratio of the reactor retention time / reduction reactor retention time is 1 to 1/3 and the reduction furnace outlet dew point is -25 ° C. or lower, the plate temperature immediately before plating is adjusted to about the plating bath temperature. A plating bath consisting of 40 to 98 wt% balance zinc and unavoidable impurities, the melting point of the plating metal being +20 to + 300 ° C., and 6 in the bath.
When the zinc content in the bath is higher than 8.8 wt% and the zinc content is higher than 8.8 wt%, the cooling rate is 20 ° C./sec or more and the zinc content is lower than 8.8 wt%. A method for producing a zinc-tin alloy-plated steel sheet, which comprises cooling at a speed.

【0009】以下、本発明について詳細に説明する。鋳
片から熱間圧延、酸洗、冷間圧延等の熱処理、圧延等を
行った、焼鈍済の鋼板、または冷間圧延材をめっき原板
として使用し、前処理を行った後、亜鉛−錫めっきを行
い、付着量の制御、冷却をして亜鉛−錫めっき鋼板を製
造する。亜鉛−錫めっきでは錫中の亜鉛含有量が増加す
ることによって濡れ性が低下し、特に亜鉛が8.8wt
%の共晶点近傍では濡れ難い為に、亜鉛−錫合金めっき
浴と鋼板の濡れ性を向上させる必要がある。濡れ性を向
上させるためには浴温を高めること、通板速度を遅くす
ること、鋼板表面を活性にする前処理をすることが上げ
られる。この中では鋼板表面を活性にする前処理法が特
に重要である。
Hereinafter, the present invention will be described in detail. Hot-rolled, pickled, cold-rolled, heat-treated, rolled, etc. from a slab, annealed steel sheet or cold-rolled material is used as a plating base sheet, and after pretreatment, zinc-tin A zinc-tin plated steel sheet is manufactured by performing plating, controlling the amount of adhesion, and cooling. In zinc-tin plating, the wettability decreases due to an increase in the zinc content in tin, and in particular zinc is 8.8 wt.
Since it is difficult to wet near the eutectic point of%, it is necessary to improve the wettability of the zinc-tin alloy plating bath and the steel sheet. In order to improve the wettability, it is possible to increase the bath temperature, slow the strip running speed, and perform a pretreatment to activate the steel sheet surface. Of these, the pretreatment method that activates the surface of the steel sheet is particularly important.

【0010】前処理法としてプレめっきおよび操炉条件
が影響する。プレめっきではニッケルまたはニッケル−
鉄系が亜鉛−錫合金めっき浴との組み合わせにおいて
鉄、ニッケル、錫、亜鉛を主体とする合金を容易に生成
するために濡れ性向上効果が極めて大きい。付着量はニ
ッケル含有量で0.1g/m2 未満では被覆性が充分で
ないために濡れ性向上効果が小さい。3.0g/m2
越えて付着すると濡れ性が飽和すると共にめっき層と鋼
界面に合金層が厚く生成しタンクに成形した時のめっき
密着性が低下する。従ってプレめっき量はニッケル含有
量で0.1〜3.0g/m2 とした。
As a pretreatment method, pre-plating and furnace conditions influence. Nickel or nickel-
When the iron-based alloy is combined with the zinc-tin alloy plating bath, the wettability improving effect is extremely large because an alloy mainly containing iron, nickel, tin, and zinc is easily formed. If the nickel content is less than 0.1 g / m 2 , the wettability improving effect is small because the coverage is insufficient. If the amount of adhesion exceeds 3.0 g / m 2 , the wettability will be saturated and a thick alloy layer will be formed at the interface between the plating layer and the steel, and the plating adhesion when formed into a tank will decrease. Therefore, the amount of pre-plating was set to 0.1 to 3.0 g / m 2 in terms of nickel content.

【0011】操炉条件ではプレめっき材はプレめっき金
属が高温中を通過して鋼内部に多量に拡散して最表面の
プレめっき量が極端に減少し、本来の目的浴との濡れ性
を低下させないようにする必要がある。従って操炉条件
はプレめっき金属の鋼中拡散量を抑制し亜鉛−錫系浴で
の反応性を確保できるように設定する必要がある。無酸
化炉温度、空気比、還元炉温度、無酸化炉滞炉時間/還
元炉滞炉時間の比率、露点は相互関連性が大きく、めっ
き浴へ進入する時のめっき原板表面状態をこれらの条件
を最適設定して酸化皮膜を部分的に残存させた状態また
は酸化皮膜が残存していても酸化皮膜表面が活性な状態
で一部酸化皮膜のない状態にし、反応性の極めて低い亜
鉛−錫めっき浴で濡れ性を向上させることが必要であ
る。
Under the operating conditions, in the pre-plated material, the pre-plated metal passes through the high temperature and diffuses a large amount inside the steel, the pre-plated amount on the outermost surface is extremely reduced, and the wettability with the original intended bath is reduced. It is necessary not to lower it. Therefore, it is necessary to set the furnace operating conditions so that the diffusion amount of the pre-plated metal in the steel can be suppressed and the reactivity in the zinc-tin system bath can be secured. The non-oxidizing furnace temperature, air ratio, reducing furnace temperature, non-oxidizing furnace holding time / reducing furnace holding time ratio, and dew point are closely related to each other. Zinc-tin plating with extremely low reactivity by setting the optimum setting of the condition that the oxide film is partially left, or even if the oxide film remains, the oxide film surface is active and there is no oxide film It is necessary to improve the wettability in the bath.

【0012】無酸化炉温度は炉中で生成する酸化膜厚
み、最高到達温度に影響し、350℃未満では酸化膜生
成厚みは薄いが、最高板温度も低くなり、還元が不十分
となって浴との反応性が低下する。650℃を越える温
度では最高板温度も高くなりプレめっき金属の鋼への拡
散が懸念される。従って無酸化炉最高板温は350〜6
50℃とした。空気比は使用空気量/理論燃焼空気量の
比率で酸化皮膜の厚みおよび質に影響する。この場合ク
ロム等が多量にはいったステンレス等の特殊鋼を考慮し
ていないので主として無酸化炉で生成する鉄、ニッケル
系酸化膜の厚みを調節することとなる。0.85〜1.
30の範囲では次の還元炉条件とも調和がとれて還元炉
を通過後のめっき原板表面が本めっき浴との濡れ性確保
に最適な状態となる。
The non-oxidizing furnace temperature influences the thickness of the oxide film formed in the furnace and the maximum temperature reached. If the temperature is less than 350 ° C., the thickness of the oxide film formed is thin, but the maximum plate temperature is also low and the reduction is insufficient. Reactivity with bath decreases. If the temperature exceeds 650 ° C, the maximum plate temperature also increases, and there is a concern that the pre-plated metal will diffuse into the steel. Therefore, the maximum plate temperature of the non-oxidizing furnace is 350-6
50 ° C. The air ratio is the ratio of the used air amount / theoretical combustion air amount and affects the thickness and quality of the oxide film. In this case, since the special steel such as stainless steel containing a large amount of chromium and the like is not taken into consideration, the thickness of the iron / nickel oxide film mainly produced in the non-oxidizing furnace is adjusted. 0.85-1.
In the range of 30, the surface of the plating original plate after passing through the reducing furnace is in an optimum state for ensuring wettability with the main plating bath in harmony with the conditions of the following reducing furnace.

【0013】還元炉温度は無酸化炉で生成した酸化皮膜
の還元による濡れ性確保と材質確保に影響するが、焼鈍
済材料を使用の為、材質は確保されているので濡れ性の
確保のみが必要である。600℃未満では還元が不十分
で酸化皮膜がかなり残存し表面が不活性で浴との反応性
が充分に確保されない。770℃を越える温度ではプレ
めっき金属の鋼中への拡散が起こりやすく、プレめっき
金属による反応性の向上が懸念される。従って還元炉最
高板温は600〜770℃とした。
The temperature of the reducing furnace affects the securing of wettability and the securing of the material by the reduction of the oxide film formed in the non-oxidizing furnace. However, since the annealed material is used, the material is secured, so that only the securing of the wettability is required. is necessary. If the temperature is lower than 600 ° C, the reduction is insufficient, the oxide film remains considerably, the surface is inactive, and the reactivity with the bath cannot be sufficiently secured. If the temperature exceeds 770 ° C, the pre-plated metal is likely to diffuse into the steel, and there is a concern that the reactivity may be improved by the pre-plated metal. Therefore, the maximum plate temperature of the reduction furnace was set to 600 to 770 ° C.

【0014】無酸化炉滞炉時間/還元炉滞炉時間の時間
比率は無酸化炉で生成した酸化膜を還元炉で充分に還元
できるかどうかを左右し、1/3より小さい場合、還元
時間が長すぎてめっき原板表面の鉄、ニッケル系酸化物
が充分に還元され表面が活性化される点では良いが、還
元炉での滞炉時間が長くなりプレめっき金属の鋼中への
拡散が懸念される。1より大きい場合、無酸化炉で生成
した酸化皮膜が充分に還元、活性化できず濡れ性の低下
が懸念される。従って無酸化炉滞炉時間/還元炉滞炉時
間の比率を1/3〜1とした。
The time ratio of the non-oxidizing furnace staying time / reducing furnace staying time determines whether the oxide film produced in the non-oxidizing furnace can be sufficiently reduced in the reducing furnace. Is too long and the iron and nickel-based oxides on the surface of the plated original plate are sufficiently reduced to activate the surface, but the reactor holding time in the reduction furnace becomes long and the diffusion of pre-plated metal into the steel I am concerned. When it is larger than 1, the oxide film formed in the non-oxidizing furnace cannot be sufficiently reduced and activated, and there is a concern that the wettability is lowered. Therefore, the ratio of the non-oxidizing reactor retention time / reduction reactor retention time was set to 1/3 to 1.

【0015】還元炉内部の露点は酸化皮膜が還元できる
雰囲気かどうかの点で重要であり、鉄、ニッケル系酸化
物を還元可能な雰囲気に設定する必要がある。鉄、ニッ
ケル系酸化皮膜は鉄系酸化皮膜よりも還元されやすい
が、還元炉出口の露点が−20℃より高い場合、標記操
炉条件と組み合わせて検討しても充分には皮膜は還元で
きず酸化膜が多量に残存し濡れ性が確保できない。よっ
て還元炉出口の露点を−20℃以下とした。なお還元炉
中の水素は還元に必須であるが特に大量に導入する必要
はなく、還元炉出口濃度で望ましくは5〜20%程度あ
ればよい。
The dew point inside the reduction furnace is important from the viewpoint of whether the atmosphere can reduce the oxide film, and it is necessary to set the atmosphere where iron and nickel oxides can be reduced. Iron and nickel-based oxide films are more easily reduced than iron-based oxide films, but when the dew point at the reducing furnace outlet is higher than -20 ° C, the film cannot be sufficiently reduced even when studied in combination with the above-mentioned operating conditions. A large amount of oxide film remains and wettability cannot be secured. Therefore, the dew point at the outlet of the reduction furnace is set to −20 ° C. or lower. Although hydrogen in the reduction furnace is essential for the reduction, it is not particularly necessary to introduce a large amount, and the concentration at the exit of the reduction furnace is preferably about 5 to 20%.

【0016】次に冷延板をめっき原板とする場合の操炉
条件を記す。冷延板は焼鈍して加工可能な材質を確保す
ると共に、めっき浴での良好な濡れ性を確保しなければ
ならない。無酸化炉温度が450℃未満では還元炉での
最高到達板温も低くなり充分に再結晶せずに材質確保が
懸念される。750℃を越える温度では還元炉での最高
板温も高くなりすぎ、結晶粒粗大化による材質劣化や鋼
中易酸化物の表面濃化による濡れ性低下が懸念される。
また無酸化炉を通過中にめっき原板表面に多量の酸化皮
膜が生成し濡れ性に影響を及ぼす。従って無酸化炉最高
板温は450〜750℃とした。還元炉温度は680℃
未満では酸化皮膜がかなり残存し活性度が不足すること
から、浴との反応性が確保されないと共に充分に再結晶
されず材質不良を引き起こす。
Next, the furnace operating conditions when the cold-rolled sheet is used as the plating original sheet will be described. The cold-rolled sheet must be annealed to secure a workable material and ensure good wettability in the plating bath. If the temperature of the non-oxidizing furnace is less than 450 ° C, the maximum attainable plate temperature in the reducing furnace will be low, and there is a concern that the material will not be sufficiently recrystallized to secure the material. If the temperature exceeds 750 ° C., the maximum plate temperature in the reduction furnace becomes too high, and there is concern that the material may deteriorate due to the coarsening of crystal grains and the wettability may decrease due to the surface concentration of the easy oxide in the steel.
Also, a large amount of oxide film is formed on the surface of the original plating plate while passing through the non-oxidizing furnace, which affects the wettability. Therefore, the maximum plate temperature of the non-oxidizing furnace was set to 450 to 750 ° C. Reduction furnace temperature is 680 ° C
If the amount is less than the above value, the oxide film is considerably left and the activity is insufficient, so that the reactivity with the bath is not secured and the material is not sufficiently recrystallized to cause a defective material.

【0017】850℃を越える温度では、結晶粒粗大化
による材質劣化や鋼中易酸化物の表面濃化による濡れ性
低下が懸念される。従って還元炉最高板温は680〜8
50℃とした。還元炉内部の露点は無酸化炉で生成した
鉄系酸化物を還元できる雰囲気にすることから、還元性
の良い鉄、ニッケル系酸化皮膜よりもさらに露点をさげ
る必要があり、還元炉出口露点を−25℃以下とした。
浴成分に関しては、燃料タンク内外面耐蝕性、加工時の
めっき密着性、ハンダ性、溶接性等のガソリンタンクに
必要な基本性能を考慮すると、亜鉛含有量が60wt%
より多い場合、劣化ガソリン等の燃料タンク内の耐蝕性
およびハンダ性が懸念される。亜鉛含有量が2wt%未
満では亜鉛含有量が少ないためにタンク外面耐蝕性が懸
念される、従って錫:40〜98wt%残部亜鉛および
不可避的不純物からなる浴とした。
At a temperature of more than 850 ° C., there is a concern that the material may deteriorate due to the coarsening of crystal grains and the wettability may decrease due to the surface concentration of the easy oxide in the steel. Therefore, the maximum plate temperature of the reduction furnace is 680-8
50 ° C. Since the dew point inside the reduction furnace is an atmosphere that can reduce the iron-based oxides produced in the non-oxidizing furnace, it is necessary to lower the dew point more than the iron- and nickel-based oxide film with good reducing properties. It was set to -25 ° C or lower.
Regarding the bath components, considering the basic performance required for gasoline tanks such as corrosion resistance on the inside and outside of the fuel tank, plating adhesion during processing, solderability, and weldability, the zinc content is 60 wt%.
If the amount is larger, corrosion resistance and solderability of the deteriorated gasoline or the like in the fuel tank are a concern. If the zinc content is less than 2 wt%, the zinc content is small, and therefore corrosion resistance of the outer surface of the tank is concerned. Therefore, the bath was made of tin: 40 to 98 wt% balance zinc and inevitable impurities.

【0018】浴温についてはかなり適正範囲が広いが濡
れ性は高い方が有利である。めっき浴中金属の融点+2
0℃未満では反応性が低く不めっきやめっき密着性不良
が発生しやすいと共に浴の流動性が低く外観不良が発生
しやすい。+300℃を越える温度では濡れ性は飽和す
ると共に、浴内で生成する合金層が厚くなったり、めっ
きが流れやすく外観不良を引き起こしやすい。従ってめ
っき浴温はめっき浴中金属の融点+20〜+300℃と
した。
The bath temperature has a fairly wide range, but it is advantageous that the wettability is high. Melting point of metal in plating bath +2
If the temperature is lower than 0 ° C., the reactivity is low and non-plating or poor plating adhesion is likely to occur, and the fluidity of the bath is low so that poor appearance is likely to occur. When the temperature exceeds + 300 ° C, the wettability is saturated, the alloy layer formed in the bath becomes thick, and the plating is likely to flow, resulting in poor appearance. Therefore, the plating bath temperature was set to +20 to + 300 ° C of the melting point of the metal in the plating bath.

【0019】浴中浸漬時間はめっき浴とめっき原板との
めっき反応程度と関連する。本製造法ではめっき浴進入
直前のめっき原板の表面には酸化皮膜がほとんどない状
態または非常に活性な酸化皮膜がごく少量残存し、部分
的に皮膜のない状態になっていると考えられこれが錫−
亜鉛との反応性に効果をもたらす。浸漬時間が長い方が
合金層が厚く生成し耐蝕性確保の点では有利であるが、
加工時のめっき密着性を低下させる原因となるため、燃
料タンク用には極力薄くする必要がある。従ってめっき
密着性を確保する程度の薄い合金層であることが望まし
く、活性なめっき原板の表面状態を考慮して浸漬時間の
上限を6秒未満とした。
The immersion time in the bath is related to the degree of plating reaction between the plating bath and the original plating plate. In this manufacturing method, it is considered that there is almost no oxide film on the surface of the original plating plate immediately before entering the plating bath, or a very small amount of very active oxide film remains, resulting in a partial absence of the tin film. −
It has an effect on the reactivity with zinc. The longer the immersion time is, the thicker the alloy layer is, which is advantageous in terms of ensuring corrosion resistance.
Since it causes a decrease in plating adhesion during processing, it must be made as thin as possible for fuel tanks. Therefore, it is desirable that the alloy layer is thin enough to secure the plating adhesion, and the upper limit of the immersion time is set to less than 6 seconds in consideration of the surface condition of the active plating original plate.

【0020】冷却速度に関しては、めっき浴中亜鉛量が
8.8wt%より多い場合、20℃/sec未満ではめ
っき後の冷却過程で粗大な亜鉛晶が析出するために、加
工時のめっき割れや粗大な亜鉛晶の優先腐食によってタ
ンク内外面の局部腐食が懸念される。従って8.8wt
%以上では諸性能への影響を考慮し冷却速度は20℃/
sec以上とした。8.8wt%未満では冷却の過程で
錫が析出するがめっき層の大部分を占めると共に耐蝕
性、加工性等の諸性能に悪影響を及ぼさないので任意の
冷却速度で冷却するとした。
Regarding the cooling rate, when the amount of zinc in the plating bath is more than 8.8 wt%, coarse zinc crystals are precipitated in the cooling process after plating at less than 20 ° C./sec, so that plating cracks during processing and Due to the preferential corrosion of coarse zinc crystals, local corrosion on the inner and outer surfaces of the tank is a concern. Therefore 8.8 wt
% Or more, the cooling rate is 20 ° C /
It was set to sec or more. If it is less than 8.8 wt%, tin is deposited during the cooling process, but it occupies most of the plating layer and does not adversely affect various properties such as corrosion resistance and workability.

【0021】[0021]

【実施例】以下に本発明によって製造される亜鉛−錫合
金めっき鋼板の実施例を述べる。 実施例1 鋳片から熱間圧延、酸洗、冷間圧延した後、焼鈍した低
炭素鋼にNiプレめっき0.5g/m2 した材料をめっ
き原板とした。その後、無酸化炉−還元炉を有する溶融
めっきラインを通板させた。無酸化炉最高板温500
℃、空気比0.95、還元炉最高板温760℃、無酸化
炉滞炉時間/還元炉滞炉時間の比率が0.9、還元炉出
口露点−45℃、還元炉出口水素濃度12Vol%のめ
っき前処理を行い、浴進入部板温を300℃に調整し、
浴温295℃の亜鉛10wt%−錫90wt%のめっき
浴中を5秒で通板し、浴から立ち上がった所で付着量を
片面40g/m2 に調整するとともに30℃/secで
冷却し製造した。その結果、肉眼観察で不めっきは無
く、ボールインパクトによるめっき剥離もなく良好な基
本性能を有していることが確認された。まためっき層中
に長径が250μm以上の巨大亜鉛晶の発生もなく良好
なめっき組織であった。
EXAMPLES Examples of zinc-tin alloy plated steel sheets produced according to the present invention will be described below. Example 1 A material obtained by hot rolling, pickling and cold rolling an ingot and then pre-plating 0.5 g / m 2 of Ni on an annealed low carbon steel was used as a plating original plate. Then, the hot dip galvanizing line having a non-oxidizing furnace and a reducing furnace was passed. Non-oxidizing furnace maximum plate temperature 500
℃, air ratio 0.95, reduction furnace maximum plate temperature 760 ℃, ratio of non-oxidation reactor retention time / reduction reactor retention time is 0.9, reduction furnace outlet dew point -45 ℃, reduction furnace outlet hydrogen concentration 12 Vol% Plating pretreatment, adjust the bath entry plate temperature to 300 ° C,
Manufacturing is carried out by passing through a plating bath of 10 wt% zinc-90 wt% tin at a bath temperature of 295 ° C for 5 seconds, adjusting the adhesion amount to 40 g / m 2 on one side and cooling at 30 ° C / sec when the bath rises. did. As a result, it was confirmed by visual observation that there was no non-plating and that there was no peeling of the plating due to ball impact, and that it had good basic performance. In addition, there was no generation of giant zinc crystals having a major axis of 250 μm or more in the plating layer, and the plating structure was good.

【0022】実施例2 鋳片から熱間圧延、酸洗、冷間圧延した後、焼鈍した低
炭素鋼にプレめっきした材料、またはプレめっきのない
冷延板をめっき原板とした。その後、無酸化炉−還元炉
を有する溶融めっきラインを通板させ、亜鉛−錫めっき
鋼板を製造した。尚、付着量は片面40g/m2 に冷却
速度はめっき層中亜鉛量が8.8wt%以上では25℃
/secで、8.8wt%未満では10℃/secで製
造している。表1及び表2に各種操炉条件等の基本製造
条件を表4にめっき後の不めっき状態、めっき密着性を
示す。表1,2及び表4に示すようにNo.1〜No.
33の条件のもとで製造した鋼板は、不めっき、加工試
験によるめっき剥離も発生せず良好な結果であった。一
方、No.34〜No.39の条件のもとで製造した鋼
板は不めっきまたはめっき密着性といった基本性能に何
らかの問題が発生した。
Example 2 A material obtained by hot-rolling, pickling and cold-rolling a cast slab and then pre-plating annealed low carbon steel or a cold-rolled sheet without pre-plating was used as a plating original plate. Then, a hot dip galvanizing line having a non-oxidizing furnace-reducing furnace was passed through to produce a zinc-tin plated steel sheet. The adhesion amount is 40 g / m 2 on one side, and the cooling rate is 25 ° C. when the amount of zinc in the plating layer is 8.8 wt% or more.
/ Sec, if less than 8.8 wt%, it is manufactured at 10 ° C / sec. Tables 1 and 2 show basic manufacturing conditions such as various furnace operating conditions, and Table 4 shows non-plated state after plating and plating adhesion. As shown in Tables 1, 2, and 4, No. 1 to No.
The steel sheets produced under the conditions of No. 33 had good results without non-plating and no plating peeling due to the working test. On the other hand, No. 34-No. The steel sheet manufactured under the conditions of 39 had some problems in basic performance such as non-plating or plating adhesion.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【表2】 [Table 2]

【0025】なお、表1及び表2記載の*1〜*4は次
のことを示すものである。 *1: ニッケル−鉄プレめっきはニッケル含有量(w
t%)で示す。 *2: プレめっき量はニッケル含有量で示す(g/m
2 )。 *3: NOFは無酸化炉、RTFは還元炉を示す。 *4: 亜鉛添加量に対する錫−亜鉛浴の融点を示すも
ので、この関係は表3に示す。
Note that * 1 to * 4 in Tables 1 and 2 indicate the following. * 1: Nickel-iron pre-plating contains nickel content (w
t%). * 2: Pre-plating amount is indicated by nickel content (g / m
2 ). * 3: NOF means non-oxidizing furnace and RTF means reducing furnace. * 4: Shows the melting point of the tin-zinc bath with respect to the amount of zinc added, and this relationship is shown in Table 3.

【0026】[0026]

【表3】 [Table 3]

【0027】[0027]

【表4】 [Table 4]

【0028】表4に示す不めっき状況及びめっき密着性
は次の評点にて行った。 ・不めっき評点/肉眼観察 ◎ 不めっきなし △ 微小不めっきあり × 小さな不めっきあり ・めっき密着性評点/円筒プレス(ブランク径70m
m、絞り深さ15mm)の外側のテーピングによるめっ
き剥離の確認 ◎ めっき剥離なし △ 微小めっき剥離あり × 小さなめっき剥離あり
The non-plating conditions and plating adhesion shown in Table 4 were evaluated according to the following ratings.・ Non-plating score / visual observation ◎ No non-plating △ Micro non-plating × Small non-plating ・ Plating adhesion score / Cylindrical press (blank diameter 70m
Confirmation of plating peeling by taping on the outside of m, drawing depth 15 mm) ◎ No plating peeling △ Micro plating peeling × Small plating peeling

【0029】表5及び表6に製造条件時のめっき層中、
亜鉛の結晶状態を示す。表5及び表6に示す様なNo.
1〜No.33で製造した試料はめっき層表面のZn分
布状況を観察したところ、めっき密着性、耐蝕性に影響
を及ぼす長径250μm以上のZn晶が20個以下/
0.25mm2 と非常に少なくめっき密着性も良好であ
った。No.34〜No.39の製造された試料は長さ
の長いZn結晶の密度が高くめっき密着性に問題を発生
した。
Tables 5 and 6 show the plating layers under the manufacturing conditions,
The crystalline state of zinc is shown. No. as shown in Table 5 and Table 6
1 to No. In the sample manufactured in No. 33, the Zn distribution on the surface of the plating layer was observed. As a result, 20 or less Zn crystals having a major axis of 250 μm or more, which affect the plating adhesion and corrosion resistance, were found.
It was 0.25 mm 2, which was very small and the plating adhesion was good. No. 34-No. The sample No. 39 produced had a high density of long Zn crystals and had a problem in plating adhesion.

【0030】[0030]

【表5】 [Table 5]

【0031】[0031]

【表6】 [Table 6]

【0032】表5及び表6に示す事項及び評点は次の通
りである。 *1: ニッケル−鉄プレめっきはニッケル含有量(w
t%)で示す。 *2: プレめっき量はニッケル含有量で示す(g/m
2 )。 ・めっき層中亜鉛分布状況の評点/SEMによるめっき
層表面観察による粗大亜鉛晶の面積率とめっき密着性評
価(表4法を行う) ◎ 長さ250μm以上の亜鉛晶が20個以下/0.2
5mm2 でめっき剥離なし。 △ 長さ250μm以上の亜鉛晶が21〜50個以下/
0.25mm2 で微小めっき剥離あり。 × 長さ250μm以上の亜鉛晶が51個以上/0.2
5mm2 で小さなめっき剥離あり。
Items and ratings shown in Tables 5 and 6 are as follows. * 1: Nickel-iron pre-plating contains nickel content (w
t%). * 2: Pre-plating amount is indicated by nickel content (g / m
2 ). Evaluation of zinc distribution in plating layer / area ratio of coarse zinc crystals and plating adhesion evaluation by SEM observation of plating layer surface (performs Table 4 method) ◎ 20 or less zinc crystals having a length of 250 μm or more / 0. Two
No plating peeling at 5 mm 2 . △ 21 to 50 or less zinc crystals having a length of 250 μm or more /
Fine plating peeled off at 0.25 mm 2 . × More than 51 zinc crystals with a length of 250 μm or more / 0.2
Small plating peeling at 5 mm 2 .

【0033】[0033]

【発明の効果】以上述べたように、本発明により安価
で、かつめっき密着性等性能の極めて優れた亜鉛−錫系
合金めっき鋼板を溶融めっき法で製造することが可能と
なった。
As described above, according to the present invention, it is possible to manufacture a zinc-tin alloy-plated steel sheet which is inexpensive and has excellent performance such as plating adhesion by the hot dipping method.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 澤田 献 福岡県北九州市戸畑区飛幡町1番1号 新 日本製鐵株式会社八幡製鐵所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ken Sawada 1-1, Toibata-cho, Tobata-ku, Kitakyushu-shi, Fukuoka Shin Nippon Steel Co., Ltd. Yawata Works

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 焼鈍済の鋼板にニッケル又はニッケル−
鉄系プレめっきをニッケル含有量で片面当たり0.1〜
3.0g/m2 行い、無酸化炉での最高板温350〜6
50℃、空気比0.85〜1.30、還元炉での最高板
温600〜770℃、無酸化炉滞炉時間/還元炉滞炉時
間の比率が1〜1/3、還元炉出口露点を−20℃以下
のめっき前処理を行い、めっき直前の板温をほぼめっき
浴温に調整した後、錫:40〜98wt%残部亜鉛およ
び不可避的不純物からなるめっき浴で、前記めっき浴金
属の融点+20〜+300℃の浴温で浴中に6秒未満浸
漬しめっきを行い、前記浴中の亜鉛が8.8wt%より
多い場合、冷却速度20℃/sec以上の冷却速度で、
8.8wt%未満の場合は任意の冷却速度で冷却するこ
とを特徴とする亜鉛−錫合金めっき鋼板の製造法。
1. Annealed steel sheet is coated with nickel or nickel-
Iron-based pre-plating with nickel content of 0.1 to 0.1
3.0g / m 2 is performed and the maximum plate temperature in the non-oxidizing furnace is 350 to 6
50 ° C., air ratio 0.85 to 1.30, maximum plate temperature in reduction furnace 600 to 770 ° C., ratio of non-oxidizing reactor retention time / reduction reactor retention time is 1/3, reduction reactor outlet dew point Is subjected to a pre-plating treatment at -20 ° C. or less, and the plate temperature immediately before plating is adjusted to a plating bath temperature. Then, a tin: 40 to 98 wt% balance zinc and an unavoidable impurity are added to the plating bath metal. When the zinc content in the bath is more than 8.8 wt% and the plating temperature is 20 ° C./sec or more, the cooling rate is 20 ° C./sec or more.
A method for producing a zinc-tin alloy plated steel sheet, which comprises cooling at an arbitrary cooling rate when the content is less than 8.8 wt%.
【請求項2】 冷延済の鋼板を、無酸化炉での最高板温
450〜750℃、空気比0.85〜1.30、還元炉
での最高板温680〜850℃、無酸化炉滞炉時間/還
元炉滞炉時間の比率が1〜1/3、還元炉出口露点−2
5℃以下のめっき前処理を行いめっき直前の板温をほぼ
めっき浴温に調整した後、錫:40〜98wt%残部亜
鉛および不可避的不純物からなるめっき浴で、前記めっ
き金属の融点+20〜+300℃の浴温で浴中に6秒未
満浸漬してめっきを行い、前記浴中の亜鉛含有量が8.
8wt%より多い場合、冷却速度20℃/sec以上の
冷却速度で、亜鉛含有量が8.8wt%未満では任意の
冷却速度で冷却することを特徴とする亜鉛−錫合金めっ
き鋼板の製造法。
2. A cold rolled steel sheet having a maximum plate temperature of 450 to 750 ° C. in an oxidation-free furnace, an air ratio of 0.85 to 1.30, a maximum plate temperature of 680 to 850 ° C. in a reduction furnace, and an oxidation-free furnace. Retention reactor time / reduction reactor retention reactor ratio is 1 to 1/3, reduction reactor outlet dew point -2
After performing a pretreatment for plating at 5 ° C. or less to adjust the plate temperature immediately before plating to a plating bath temperature, tin: 40 to 98 wt%, a balance of zinc and inevitable impurities, and a melting point of the plating metal +20 to +300. Plating is carried out by immersing the bath in the bath for less than 6 seconds at a bath temperature of 8.degree. C., and the zinc content in the bath is 8.
A method for producing a zinc-tin alloy-plated steel sheet, which comprises cooling at a cooling rate of 20 ° C./sec or more when the content is more than 8 wt% and at an arbitrary cooling rate when the zinc content is less than 8.8 wt%.
JP22870995A 1995-03-28 1995-09-06 Manufacturing method of zinc-tin alloy plated steel sheet Expired - Fee Related JP3581451B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP22870995A JP3581451B2 (en) 1995-09-06 1995-09-06 Manufacturing method of zinc-tin alloy plated steel sheet
DE1996637118 DE69637118T2 (en) 1995-03-28 1996-03-28 CORROSION-RESISTANT STEEL SHEET FOR FUEL TANK AND METHOD FOR PRODUCING THE LEAD
US08/750,073 US5827618A (en) 1995-03-28 1996-03-28 Rust-proofing steel sheet for fuel tanks and production method thereof
EP20040018756 EP1477582A3 (en) 1995-03-28 1996-03-28 Rust-proofing steel sheet for fuel tanks and production method thereof
EP96907700A EP0763608B1 (en) 1995-03-28 1996-03-28 Rust-preventive steel sheet for fuel tank and process for producing the sheet
PCT/JP1996/000835 WO1996030560A1 (en) 1995-03-28 1996-03-28 Rust-preventive steel sheet for fuel tank and process for producing the sheet
AU51219/96A AU686502B2 (en) 1995-03-28 1996-03-28 Rust-preventive steel sheet for fuel tank and process for producing the sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22870995A JP3581451B2 (en) 1995-09-06 1995-09-06 Manufacturing method of zinc-tin alloy plated steel sheet

Publications (2)

Publication Number Publication Date
JPH0971851A true JPH0971851A (en) 1997-03-18
JP3581451B2 JP3581451B2 (en) 2004-10-27

Family

ID=16880586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22870995A Expired - Fee Related JP3581451B2 (en) 1995-03-28 1995-09-06 Manufacturing method of zinc-tin alloy plated steel sheet

Country Status (1)

Country Link
JP (1) JP3581451B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006348344A (en) * 2005-06-16 2006-12-28 Jfe Steel Kk Method for producing hot dip galvanized steel sheet
JP2007239063A (en) * 2006-03-10 2007-09-20 Nippon Steel Corp METHOD OF MANUFACTURING Sn-Zn PLATING STEEL PLATE
JP2012001818A (en) * 2005-07-05 2012-01-05 Nippon Steel Corp METHOD FOR MANUFACTURING HOT-DIP Sn-Zn COATED STEEL SHEET AND HOT-DIP Sn-Zn COATED STEEL SHEET HAVING EXCELLENT CORROSION RESISTANCE
WO2020148944A1 (en) * 2019-01-18 2020-07-23 Jfeスチール株式会社 Method for manufacturing hot-dip galvanized steel sheet

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006348344A (en) * 2005-06-16 2006-12-28 Jfe Steel Kk Method for producing hot dip galvanized steel sheet
JP4701852B2 (en) * 2005-06-16 2011-06-15 Jfeスチール株式会社 Method for producing hot-dip galvanized steel sheet
JP2012001818A (en) * 2005-07-05 2012-01-05 Nippon Steel Corp METHOD FOR MANUFACTURING HOT-DIP Sn-Zn COATED STEEL SHEET AND HOT-DIP Sn-Zn COATED STEEL SHEET HAVING EXCELLENT CORROSION RESISTANCE
JP2007239063A (en) * 2006-03-10 2007-09-20 Nippon Steel Corp METHOD OF MANUFACTURING Sn-Zn PLATING STEEL PLATE
WO2020148944A1 (en) * 2019-01-18 2020-07-23 Jfeスチール株式会社 Method for manufacturing hot-dip galvanized steel sheet
JPWO2020148944A1 (en) * 2019-01-18 2021-02-18 Jfeスチール株式会社 Manufacturing method of hot-dip galvanized steel sheet
CN113272466A (en) * 2019-01-18 2021-08-17 杰富意钢铁株式会社 Method for producing hot-dip galvanized steel sheet

Also Published As

Publication number Publication date
JP3581451B2 (en) 2004-10-27

Similar Documents

Publication Publication Date Title
EP2794950B1 (en) Hot-dip galvanized steel sheet having excellent adhesiveness at ultra-low temperatures and method of manufacturing the same
JP2904809B2 (en) Method for producing hot-dip galvanized steel sheet
US5494706A (en) Method for producing zinc coated steel sheet
JP2707928B2 (en) Hot-dip galvanizing method for silicon-containing steel sheet
KR101528010B1 (en) High manganese hot dip galvanized steel sheet with superior weldability and method for manufacturing the same
JP2970445B2 (en) Hot-dip galvanizing method for Si-added high tensile steel
JPH0688187A (en) Production of alloyed galvannealed steel sheet
KR20120048399A (en) Galvanized steel sheet containing high manganese with excellent galvanizing properties and coating adhesion and method for manufacturing the same
JP2783453B2 (en) Hot-dip Zn-Mg-Al plated steel sheet and method for producing the same
JP3581451B2 (en) Manufacturing method of zinc-tin alloy plated steel sheet
JP2848250B2 (en) Hot-dip galvanized steel sheet
JP7247946B2 (en) Hot-dip galvanized steel sheet and its manufacturing method
JPH11140587A (en) Galvannealed steel sheet excellent in plating adhesion
KR970000190B1 (en) Method for producing zinc coated steel sheet
JPH0361352A (en) Manufacture of hot dip-galvanized hot rolled steel sheet
JP3135818B2 (en) Manufacturing method of zinc-tin alloy plated steel sheet
JPS58189363A (en) Manufacture of steel plate coated with alloyed zinc by galvanization
JP2002332556A (en) METHOD FOR PRODUCING HOT DIP Sn-Zn PLATED STEEL SHEET
JP3078456B2 (en) Manufacturing method of high-strength hot-dip galvanized steel sheet
JPH05106001A (en) Hot-dip galvanizing method for silicon-containing steel sheet
KR20190078330A (en) Plated steel wire and manufacturing method for the same
JPH0551714A (en) Hot-dip galvanizing method for si-containing steel sheet
JP3383125B2 (en) Hot-dip aluminized steel sheet with excellent corrosion resistance and heat resistance, and its manufacturing method
JP3262061B2 (en) Hot-dip galvanizing method
JP3449244B2 (en) Manufacturing method of galvannealed steel sheet

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040723

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070730

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees