JPH07267632A - Production of porous gamma-alumina - Google Patents

Production of porous gamma-alumina

Info

Publication number
JPH07267632A
JPH07267632A JP6061349A JP6134994A JPH07267632A JP H07267632 A JPH07267632 A JP H07267632A JP 6061349 A JP6061349 A JP 6061349A JP 6134994 A JP6134994 A JP 6134994A JP H07267632 A JPH07267632 A JP H07267632A
Authority
JP
Japan
Prior art keywords
alumina
heat
treated
phase
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6061349A
Other languages
Japanese (ja)
Other versions
JP3542632B2 (en
Inventor
Kiyoshi Okada
田 清 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP06134994A priority Critical patent/JP3542632B2/en
Publication of JPH07267632A publication Critical patent/JPH07267632A/en
Application granted granted Critical
Publication of JP3542632B2 publication Critical patent/JP3542632B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/04Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by dissolving-out added substances

Abstract

PURPOSE:To produce porous gamma-alumina having high specific surface area and a sharp pore size and excellent in heat resistance. CONSTITUTION:Kaolin mineral and/or an alumina-silica-based coprecipitated get are heated to prepare a heat treated material which is separated through phase separation into a spinel phase and an amorphous phase. The resultant heat-treated material is then treated with an alkali or fluoric acid to dissolve the amorphous silica. In a preferable method for this invention, phase separation into a spinel phase and an amorphous silica is allowed to take place desirably by heating the kaolin mineral at 900 to 1200 deg.C for <=100hr.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の技術分野】本発明は、γ-アルミナ多孔体の製
造方法に関し、さらに詳しくは、耐熱性に優れ、高い比
表面積を有し、孔径分布がシャープであるようなγ-ア
ルミナ多孔体の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a γ-alumina porous body, and more specifically, to a γ-alumina porous body having excellent heat resistance, a high specific surface area, and a sharp pore size distribution. It relates to a manufacturing method.

【0002】[0002]

【発明の技術的背景】近年、地球環境問題が盛んに議論
されているが、特に大都市近郊における大気汚染の大き
な原因として、自動車エンジンなどの内燃機関からの排
気ガスに含まれる有害物質が挙げられる。これらの内燃
機関から排出される排出ガス中の有害物質を低減させる
には、自動車エンジン等における燃料の燃焼効率をさら
に改善することが望ましい。このような要求に応えるに
は、過酷な条件下でも機能する触媒の開発が求められ
る。
BACKGROUND OF THE INVENTION In recent years, global environmental problems have been actively discussed, and a major cause of air pollution, particularly in the suburbs of large cities, is harmful substances contained in exhaust gas from internal combustion engines such as automobile engines. To be In order to reduce harmful substances in the exhaust gas discharged from these internal combustion engines, it is desirable to further improve the combustion efficiency of fuel in automobile engines and the like. In order to meet such requirements, it is necessary to develop a catalyst that functions even under severe conditions.

【0003】ところで、現在このような触媒としては、
Pt等を担持した不均一触媒が用いられており、その触
媒担体は、γ-アルミナである。しかし、一般的にγ-ア
ルミナは、1000℃付近で安定相のα-アルミナへ相
転移し、その比表面積が著しく低下し、触媒担体として
の機能を失ってしまうとの問題点があった。
Now, as such a catalyst,
A heterogeneous catalyst supporting Pt or the like is used, and the catalyst carrier is γ-alumina. However, in general, γ-alumina undergoes a phase transition to α-alumina which is a stable phase at around 1000 ° C., its specific surface area is remarkably reduced, and the function as a catalyst carrier is lost.

【0004】このため、高温でも高い比表面積を維持で
きるような耐熱性に優れた触媒担体の開発が望まれてい
る。なお、これまでにγ-アルミナからα-アルミナへの
転移温度は、γ-アルミナに酸化物等を添加することに
より著しく変わることが知られており、特にγ-アルミ
ナにSiO2を添加すれば、転移温度を著しく上昇さ
せ、高温下でγ-アルミナの高い比表面積を維持しうる
ことが報告されている(文献:B.E.Yoldas(1976)“Ther
mal stabilization of an active alumina and effect
of dopants on the surface area ”J. Materials Scie
nce,11,465-470.)。
Therefore, it is desired to develop a catalyst carrier having excellent heat resistance that can maintain a high specific surface area even at high temperatures. It has been known that the transition temperature from γ-alumina to α-alumina is significantly changed by adding an oxide or the like to γ-alumina, and especially when SiO 2 is added to γ-alumina. , It has been reported that the transition temperature can be remarkably increased and the high specific surface area of γ-alumina can be maintained at high temperature (Reference: BEYoldas (1976) “Ther.
mal stabilization of an active alumina and effect
of dopants on the surface area ”J. Materials Scie
nce, 11,465-470.).

【0005】[0005]

【発明の目的】本発明は、上記のような従来技術に伴う
問題点を解決しようとするものであって、高い比表面積
を有し、孔径分布がシャープであり、しかも耐熱性に優
れるようなγ-アルミナ多孔体の製造方法を提供するこ
とを目的としている。
SUMMARY OF THE INVENTION The present invention is intended to solve the above problems associated with the prior art, and has a high specific surface area, a sharp pore size distribution, and excellent heat resistance. It is an object of the present invention to provide a method for producing a γ-alumina porous body.

【0006】[0006]

【発明の概要】本発明に係るγ-アルミナ多孔体の製造
方法は、カオリン鉱物および/またはアルミナ-シリカ
系の共沈ゲルを加熱して、スピネル相と非晶質シリカと
に相分離された熱処理物を調製し、次いで得られた熱処
理物をアルカリまたはフッ酸にて処理して非晶質シリカ
を溶出させることを特徴としている。
SUMMARY OF THE INVENTION In the method for producing a γ-alumina porous material according to the present invention, a kaolin mineral and / or an alumina-silica coprecipitated gel is heated to cause phase separation into a spinel phase and an amorphous silica. It is characterized in that a heat-treated product is prepared and then the obtained heat-treated product is treated with alkali or hydrofluoric acid to elute amorphous silica.

【0007】本発明の好ましい態様においては、上記カ
オリン鉱物を、900〜1200℃の温度で、100時
間以下加熱して、スピネル相と非晶質シリカとに相分離
された熱処理物を調製し、次いで得られた熱処理物(焼
結体)をアルカリまたはフッ酸にて処理して非晶質シリ
カを溶出させることが望ましい。また、上記熱処理物を
200℃以下の温度で、1分〜100時間アルカリまた
はフッ酸にて処理することが望ましい。
In a preferred embodiment of the present invention, the above kaolin mineral is heated at a temperature of 900 to 1200 ° C. for 100 hours or less to prepare a heat-treated product in which a spinel phase and amorphous silica are phase-separated, Next, it is desirable to treat the obtained heat-treated product (sintered body) with alkali or hydrofluoric acid to elute the amorphous silica. Further, it is desirable to treat the heat-treated product with alkali or hydrofluoric acid at a temperature of 200 ° C. or lower for 1 minute to 100 hours.

【0008】このような本発明に係るγ-アルミナ多孔
体の製造方法によれば、高い比表面積を有し、孔径分布
がシャープであり、しかも耐熱性に優れるようなγ-ア
ルミナ多孔体が得られる。
According to such a method for producing a γ-alumina porous material according to the present invention, a γ-alumina porous material having a high specific surface area, a sharp pore size distribution and excellent heat resistance is obtained. To be

【0009】[0009]

【発明の具体的説明】以下、本発明に係るγ-アルミナ
多孔体の製造方法について具体的に説明する。 [カオリン鉱物の相分離]本発明においては、カオリン
鉱物を加熱して、スピネル相と非晶質シリカとに相分離
された熱処理物を調製する。
DETAILED DESCRIPTION OF THE INVENTION The method for producing a γ-alumina porous material according to the present invention will be specifically described below. [Phase Separation of Kaolin Mineral] In the present invention, the kaolin mineral is heated to prepare a heat-treated product in which the spinel phase and the amorphous silica are phase separated.

【0010】カオリン鉱物は、一般式:nSiO2・A
23・mH2Oで表わされるが、このようなカオリン
鉱物として、具体的には、例えば、カオリナイト(2S
iO2・Al23・2H2O)、ディッカイト(2SiO
2・Al23・2H2O)、ナクライト(2SiO2・A
23・2H2O)、ハロイサイト(2SiO2・Al2
3・4H2O)、アロフェン(1〜2SiO2・Al2
3・5H2O)、イモゴライト(SiO2・Al23・n
2O)等が挙げられる。
Kaolin mineral has the general formula: nSiO 2 .A
It is represented by l 2 O 3 .mH 2 O. Specific examples of such kaolin minerals include kaolinite (2S
iO 2 · Al 2 O 3 · 2H 2 O), dickite (2SiO)
2・ Al 2 O 3・ 2H 2 O), Nacrite (2SiO 2・ A
l 2 O 3 · 2H 2 O), halloysite (2SiO 2 · Al 2
O 3 · 4H 2 O), allophane (1~2SiO 2 · Al 2 O
3 · 5H 2 O), imogolite (SiO 2 · Al 2 O 3 · n
H 2 O) and the like.

【0011】なお、カオリナイトは、化学式:2SiO
2・Al23・2H2Oで表わされる粘土鉱物で、その粒
子形状は、1μm程度の大きさの六角板状で、結晶構造
は、Al(O,OH)6八面体層とSiO2四面体層とが
1:1でサンドイッチした層構造となっている。このカ
オリナイトの結晶を構成している層間に水分子が一層入
り、数〜10μm程度の管状結晶となったものがハロイ
サイトである。
Kaolinite has the chemical formula: 2SiO
It is a clay mineral represented by 2 · Al 2 O 3 · 2H 2 O, its particle shape is a hexagonal plate with a size of about 1 μm, and its crystal structure is an Al (O, OH) 6 octahedron layer and SiO 2 It has a layered structure in which it is sandwiched 1: 1 with a tetrahedral layer. Halloysite is one in which water molecules are further introduced between the layers constituting the kaolinite crystal to form a tubular crystal of several to 10 μm.

【0012】このカオリン鉱物を加熱すると、カオリン
鉱物→メタカオリン→スピネル相(γ-アルミナ)+非
晶質シリカ→ムライト+クリストバライトへと相変化す
る。このようにカオリン鉱物をスピネル相と非晶質シリ
カとに相分離させるには、通常、900〜1200℃、
好ましくは950〜1000℃の温度で、100時間以
下、好ましくは1〜24時間程度加熱すればよい。
When this kaolin mineral is heated, it undergoes a phase change of kaolin mineral → metakaolin → spinel phase (γ-alumina) + amorphous silica → mullite + cristobalite. As described above, in order to phase-separate the kaolin mineral into the spinel phase and the amorphous silica, it is usually 900 to 1200 ° C.
It is preferable to heat at a temperature of 950 to 1000 ° C. for 100 hours or less, preferably about 1 to 24 hours.

【0013】例えば、カオリン鉱物としてジョージア産
カオリナイトあるいは中国産ハロイサイトを用いる場合
には、950〜1000℃程度の温度で、1〜24時間
程度保持し、スピネル相と非晶質シリカとに相分離され
た熱処理物を調製することが好ましい。
For example, when kaolinite from Georgia or halloysite from China is used as the kaolin mineral, it is held at a temperature of about 950 to 1000 ° C. for about 1 to 24 hours to cause phase separation into a spinel phase and amorphous silica. It is preferable to prepare the heat-treated product.

【0014】なお、中国産ハロイサイト等のカオリン鉱
物を相分離させる熱処理温度が1200℃よりも高くな
ると、γ-アルミナと非晶質シリカが反応してムライト
が生成するため、γ-アルミナが消失する。一方、カオ
リン鉱物の熱処理温度が900℃よりも低いと、スピネ
ル相と非晶質シリカへの相分離が生じない。
When the heat treatment temperature for phase-separating kaolin minerals such as halloysite from China is higher than 1200 ° C., γ-alumina and amorphous silica react with each other to form mullite, so that γ-alumina disappears. . On the other hand, when the heat treatment temperature of the kaolin mineral is lower than 900 ° C., phase separation into spinel phase and amorphous silica does not occur.

【0015】なお、本発明においては、上記加熱温度に
昇温させる際には、通常、5〜30℃/分程度の速度で
昇温させ、また上記加熱温度で上記時間保持した後、降
温させる際には、5〜50℃/分程度の速度で降温させ
ることが望ましい。 [アルカリまたはフッ酸による処理]本発明において
は、上記のようにして得られた熱処理物をアルカリまた
はフッ酸にて処理してγ-アルミナ多孔体を製造する。
In the present invention, when the temperature is raised to the above heating temperature, the temperature is usually raised at a rate of about 5 to 30 ° C./min, and the temperature is maintained for the above time and then lowered. At this time, it is desirable to lower the temperature at a rate of about 5 to 50 ° C./minute. [Treatment with alkali or hydrofluoric acid] In the present invention, the heat-treated product obtained as described above is treated with alkali or hydrofluoric acid to produce a γ-alumina porous body.

【0016】このように熱処理物を、アルカリまたはフ
ッ酸にて処理すると、熱処理物中の非晶質シリカが選択
的にアルカリまたはフッ酸にてその表面から内部に向か
って溶解され、該熱処理物は多孔質化される。このよう
にして得られたγ-アルミナ多孔体には、少量のシリカ
が含まれている。
When the heat-treated product is treated with alkali or hydrofluoric acid as described above, the amorphous silica in the heat-treated product is selectively dissolved by the alkali or hydrofluoric acid from the surface to the inside. Is made porous. The γ-alumina porous material thus obtained contains a small amount of silica.

【0017】上記熱処理物を、アルカリまたはフッ酸に
て処理する際には、用いられるカオリナイト鉱物の種
類、アルカリの濃度、種類あるいはフッ酸の濃度等にも
よるが、例えば、熱処理物1g当りアルカリとして濃度
1〜5モル/リットル程度のKOH溶液を用いる場合には、通
常200℃以下、好ましくは25〜200℃、さらに好
ましくは50〜90℃の温度で、通常100時間以下、
好ましくは1分〜100時間、さらに好ましくは5分〜
100時間、特に好ましくは30分〜5時間程度保持す
ることが望ましい。
When the heat-treated product is treated with alkali or hydrofluoric acid, it depends on the type of kaolinite mineral used, the concentration of alkali, the type, the concentration of hydrofluoric acid, etc. When a KOH solution having a concentration of about 1 to 5 mol / liter is used as an alkali, the temperature is usually 200 ° C. or lower, preferably 25 to 200 ° C., more preferably 50 to 90 ° C., usually 100 hours or less,
Preferably 1 minute to 100 hours, more preferably 5 minutes to
It is desirable to hold for 100 hours, particularly preferably for 30 minutes to 5 hours.

【0018】例えば、カオリン鉱物としてジョージア産
カオリナイトを用いてなる熱処理物では、50〜90℃
の温度で、5分〜100時間程度アルカリ処理すること
が好ましく、また、中国産ハロイサイトを用いてなる熱
処理物では、40〜80℃の温度で5分〜5時間程度ア
ルカリ処理することが望ましい。
For example, in the case of a heat-treated product using Georgia kaolinite as the kaolin mineral, the temperature is 50 to 90 ° C.
It is preferable to carry out the alkali treatment for about 5 minutes to 100 hours at the temperature of 1., and for the heat-treated product using the Chinese halloysite, it is desirable to carry out the alkali treatment for about 5 minutes to 5 hours at the temperature of 40 to 80 ° C.

【0019】上記のようにカオリン鉱物の熱処理物を、
アルカリまたはフッ酸にて処理すると非晶質シリカは溶
出されて細孔が形成され、より高い比表面積と大きな全
細孔容積とを有するγ-アルミナ多孔体が得られる。
As described above, the heat-treated kaolin mineral is
When treated with alkali or hydrofluoric acid, the amorphous silica is eluted to form pores, and a γ-alumina porous body having a higher specific surface area and a large total pore volume is obtained.

【0020】上記アルカリとしては、例えば、水酸化カ
リウム、水酸化ナトリウム等が挙げられる。このように
して得られたγ-アルミナ多孔体では、通常、2〜4n
m付近に細孔径の揃った鋭いピークを示し、10〜数十
nm付近にもピークを示し、平均孔径は3〜6nm程度
であり、比表面積は100〜350m2/g程度であ
り、全細孔容積は0.5〜0.9ml/g程度である。
Examples of the alkali include potassium hydroxide and sodium hydroxide. In the γ-alumina porous body thus obtained, usually 2 to 4n
A sharp peak with a uniform pore size is shown in the vicinity of m, a peak is also shown in the vicinity of 10 to several tens nm, the average pore size is about 3 to 6 nm, the specific surface area is about 100 to 350 m 2 / g, and the total fineness is The pore volume is about 0.5 to 0.9 ml / g.

【0021】このように、得られたγ-アルミナ多孔体
は、細孔径分布がシャープで、高い比表面積を有してお
り、また高温下においても高い比表面積を保持すること
ができる。このようにγ-アルミナ多孔体が高温下にお
いても大きな比表面積を保持できるのは、上記カオリン
鉱物の熱処理物をKOH等により処理した際に溶出せず
にγ-アルミナ多孔体中に固溶または残存しているシリ
カ成分が作用しているためであろうと思われる。
Thus, the obtained γ-alumina porous material has a sharp pore size distribution and a high specific surface area, and can maintain a high specific surface area even at high temperatures. As described above, the γ-alumina porous body can retain a large specific surface area even at high temperature because the heat treated product of the above kaolin mineral does not elute when treated with KOH or the like, and is solid-solved in the γ-alumina porous body or This is probably because the remaining silica component is acting.

【0022】[0022]

【発明の効果】このような本発明に係るγ-アルミナ多
孔体の製造方法によれば、高い比表面積を有し、孔径分
布がシャープであり、しかも耐熱性に優れているような
γ-アルミナ多孔体が得られる。このようなγ-アルミナ
多孔体は、分子篩、触媒担体等としての用途が期待でき
る。
According to the method for producing a γ-alumina porous material according to the present invention, γ-alumina having a high specific surface area, a sharp pore size distribution, and excellent heat resistance. A porous body is obtained. Such a γ-alumina porous material can be expected to be used as a molecular sieve, a catalyst carrier and the like.

【0023】[0023]

【実施例】以下、本発明に係るγ-アルミナ多孔体の製
造方法について、実施例によりさらに具体的に説明する
が、本発明は、これらの実施例により何等制限されるも
のではない。測定方法 [X線回折分析]試料をめのうまたはアルミナ乳鉢で充
分粉砕した後、粉末X線回折法(XRD)により結晶相
の同定を行なった。測定には、(株)リガク製 X線回
折計[Geigerflex]を用いた。
EXAMPLES Hereinafter, the method for producing a γ-alumina porous material according to the present invention will be described more specifically with reference to Examples, but the present invention is not limited to these Examples. Measuring Method [X-ray Diffraction Analysis] The sample was thoroughly crushed in an agate or an alumina mortar, and then the crystal phase was identified by the powder X-ray diffraction method (XRD). An X-ray diffractometer [Geigerflex] manufactured by Rigaku Corporation was used for the measurement.

【0024】測定条件を以下に示す。 ターゲット: Cu(グラファイトで単色化されたも
の) スキャン スピード:2deg./分 チューブ電圧:40KV チューブ電流:20mA。
The measurement conditions are shown below. Target: Cu (monochromaticized with graphite) Scan speed: 2 deg./min Tube voltage: 40 KV Tube current: 20 mA.

【0025】また、試料中のγ-アルミナの結晶子径
を、XRD回折図形の2θ=45.8゜付近の400回
折線と、2θ=67.0゜付近の440回折線からそれ
ぞれ求めた。
The crystallite diameter of γ-alumina in the sample was determined from the 400 diffraction line near 2θ = 45.8 ° and the 440 diffraction line near 2θ = 67.0 ° in the XRD diffraction pattern.

【0026】測定には、下記に示すシェラーの式を用い
た。
The following Scherrer's equation was used for the measurement.

【0027】[0027]

【数1】 [Equation 1]

【0028】[Dhkl:hkl方向の結晶子の大きさ
(オングストローム),K:比例定数(ここでは0.
9),λ:測定X線波長(CuKα1=1.54050オングス
トローム),β:半価幅(ラジアン)] 熱処理によってα-アルミナが生成した試料について
は、市販のα-アルミナ(AKP-30,住友化学(株)製)と
θ-アルミナ(L20N2,旭化成工業(株)製)を用いてピ
ーク強度比をα-アルミナ率に対してプロットした検量
線を作製し、各熱処理時間に対するα-アルミナへの転
移率を見積った。
[D hkl : crystallite size in the hkl direction (angstrom), K: proportional constant (0.
9), λ: measured X-ray wavelength (CuKα 1 = 1.54050 angstrom), β: half-value width (radian)] For samples in which α-alumina was formed by heat treatment, commercially available α-alumina (AKP-30, Sumitomo Chemical Co., Ltd.) and θ-alumina (L20N2, manufactured by Asahi Kasei Kogyo Co., Ltd.) were used to prepare a calibration curve in which the peak intensity ratio was plotted against the α-alumina ratio. The transfer rate was estimated.

【0029】検量線の作成には、α-アルミナでは2θ
=43.3゜付近の113回折線を用い、θ-アルミナ
では2θ=44.9゜付近の111回折線を用い、試料
中のγ-アルミナ(スピネル相)では2θ=45.5゜
付近の400回折線を用いた。 [BET比表面積および細孔径分布測定]各試料の比表
面積測定を窒素吸着によるBET法で、細孔径分布の解
析を脱離側等温線を用いてB.J.H.法により行なっ
た。測定には、全自動ガス吸着量測定装置(AUTOSORB-
1, QUANTA CHROME社製)を用いた。測定に際しては、試
料約0.1gを用いた。脱気は、120℃で10ー3torr
未満になるまで1〜2時間行なった。 [FE−SEMおよびTEM観察]各試料の粒子の状
態、細孔構造等を電界放射型走査電子顕微鏡(FE-SEM,
日本電子(株)製:JSM-890S)および透過型電子顕微鏡
(TEM,(株)日立製作所製:H-9000)にて観察した。な
お、試料には、必要に応じてAu、Ptを蒸着させた。 [蛍光X線分析]蛍光X線分析によって、試料の化学組
成を分析した。装置としては、全自動蛍光X線分析装置
(RIX3000,(株)リガク 製)を用いた。測定した試料
は、中国産ハロイサイトの950℃,24時間熱処理物
(i)と、その熱処理物のKOH(90℃,1時間)処理
物(ii)である。測定に際しては、各成分の金属または化
合物を標準物質とした。中国産ハロイサイトの熱処理物
(i)については、Si、Al、Fe、Ti成分を定量分
析し、KOH処理物(ii)については、Si、Al、F
e、TiおよびK成分を定量分析した。
For the preparation of the calibration curve, 2θ for α-alumina
= 113. 3 diffracted lines around 43.3 °, θ-alumina 2 d = 44.9 ° around 111 diffracted lines, and γ-alumina (spinel phase) in the sample around 2 θ = 45.5 ° around. 400 diffraction lines were used. [Measurement of BET Specific Surface Area and Pore Size Distribution] The specific surface area of each sample was measured by the BET method by nitrogen adsorption, and the analysis of the pore size distribution was performed by using the desorption side isotherm. J. H. Method. For the measurement, a fully automatic gas adsorption amount measuring device (AUTOSORB-
1, QUANTA CHROME) was used. At the time of measurement, about 0.1 g of the sample was used. Degassing, 10 @ 3 torr at 120 ° C.
It carried out for 1-2 hours until it became less than. [FE-SEM and TEM observation] The state of the particles, the pore structure, etc. of each sample were examined by the field emission scanning electron microscope (FE-SEM,
It was observed with JEOL Ltd .: JSM-890S) and a transmission electron microscope (TEM, Hitachi Ltd .: H-9000). Note that Au and Pt were vapor-deposited on the sample as needed. [Fluorescent X-ray analysis] The chemical composition of the sample was analyzed by fluorescent X-ray analysis. A fully automatic X-ray fluorescence analyzer (RIX3000, manufactured by Rigaku Corporation) was used as the device. The measured sample is a heat-treated product of Chinese halloysite at 950 ° C for 24 hours.
(i) and a KOH (90 ° C., 1 hour) treated product (ii) of the heat-treated product. In the measurement, the metal or compound of each component was used as a standard substance. Heat-treated Chinese halloysite
For (i), quantitative analysis of Si, Al, Fe, and Ti components, and for KOH-treated product (ii), Si, Al, F
The e, Ti and K components were quantitatively analyzed.

【0030】[原料の組成][Composition of raw materials]

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【実施例1】(a) ジョージア産カオリナイトを用いたγ-アルミ
ナ多孔体の製造 [ジョージア産カオリナイトの熱処理]カオリン鉱物と
して、表1に示すジョージア産カオリナイト(2SiO
2・Al23・2H2O)[共立窯業原料(株)]を用い
た。
Example 1 (a) γ-aluminum using Georgian kaolinite
Production of Na Porous Body [Heat Treatment of Georgia Kaolinite] As a kaolin mineral, kaolinite of Georgia (2SiO
2 · Al 2 O 3 · 2H 2 O) [Kyoritsu Ceramic Raw Materials Co., Ltd.] was used.

【0033】このジョージア産カオリナイトをアルミナ
乳鉢で解砕した後、電気炉中で、常温から昇温速度15
℃/分で熱処理温度950℃まで昇温させた。次いで、
この熱処理温度(950℃)で24時間保持した。次い
で、降温速度50℃/分で常温まで降温させた。
This Georgian kaolinite was crushed in an alumina mortar and then heated in an electric furnace from room temperature to a heating rate of 15
The heat treatment temperature was raised to 950 ° C. at a rate of ° C./min. Then
This heat treatment temperature (950 ° C.) was maintained for 24 hours. Then, the temperature was decreased to room temperature at a temperature decrease rate of 50 ° C./min.

【0034】このようにジョージア産カオリナイトを電
気炉中で熱処理したのち、得られた熱処理物のX線回折
分析(XRD)および細孔径分布測定を行なった。X線
回折分析(XRD)により、熱処理された該カオリナイ
トは、スピネル相と非晶質シリカとに相分離しているこ
とが確認された。また、アナターゼのピークも明らかに
見られるようになった。この熱処理物の比表面積は、
9.9m2/gであり、全細孔容積は、0.087ml
/gであった。細孔半径2nm付近に0.18dv/d(log
r)の鋭いピークが見られ、また10〜20nm付近に
ブロードなピークが見られた。 [KOH処理]このようにして得られたジョージア産カ
オリナイトの熱処理物を、再びアルミナ乳鉢中にて粉砕
した後、得られた粉砕物1gを、テフロン製ビーカ中で
常温〜90℃に保持された濃度:4モル/リットルのK
OH水溶液中に入れ、マグネチックスターラで数分〜3
日間攪拌した。
After heat treating the Georgian kaolinite in an electric furnace in this manner, the heat treated product was subjected to X-ray diffraction analysis (XRD) and pore size distribution measurement. X-ray diffraction analysis (XRD) confirmed that the heat-treated kaolinite was phase-separated into a spinel phase and amorphous silica. Moreover, the peak of anatase became clear. The specific surface area of this heat-treated product is
9.9 m 2 / g, total pore volume is 0.087 ml
/ G. 0.18 dv / d (log
A sharp peak of r) was observed, and a broad peak was observed around 10 to 20 nm. [KOH treatment] The heat-treated product of Georgian kaolinite thus obtained was pulverized again in an alumina mortar, and 1 g of the obtained pulverized product was kept at room temperature to 90 ° C in a Teflon beaker. Concentration: 4 mol / liter K
Put it in the OH aqueous solution and use a magnetic stirrer for several minutes to 3
It was stirred for a day.

【0035】なお、KOHによる処理を室温にて、3日
間行う際には、カオリン鉱物の熱処理物1gに対してK
OH溶液量を、25ml,100ml,250mlと変
化させた。
When the treatment with KOH is carried out at room temperature for 3 days, K is added to 1 g of the heat-treated kaolin mineral.
The amount of OH solution was changed to 25 ml, 100 ml and 250 ml.

【0036】上記のように熱処理物をKOH処理した
後、遠心分離(1500rpm,15分)により固液分離し、0.
5モル/リットルのKOH水溶液で1回(7000rpm,15
分)、蒸留水で2〜3回(8000rpm,30分)洗浄した。
After the heat-treated product was subjected to KOH treatment as described above, solid-liquid separation was performed by centrifugation (1500 rpm, 15 minutes), and
Once with 5 mol / liter KOH aqueous solution (7000 rpm, 15
Min) and washed 2-3 times with distilled water (8000 rpm, 30 minutes).

【0037】なお、上記洗浄時間経過後、洗浄器の回転
が自然に停止するまで15〜20分間そのまま保持し
た。このようにして得られたKOH処理物を、60℃お
よび110℃の各恒温槽中で充分に乾燥してγ-アルミ
ナ多孔体を得た。
After the washing time, the washing machine was kept for 15 to 20 minutes until the rotation of the washing machine naturally stopped. The KOH-treated product thus obtained was thoroughly dried in each of the constant temperature baths at 60 ° C. and 110 ° C. to obtain a γ-alumina porous body.

【0038】得られたγ-アルミナ多孔体(KOH処理
物)の比表面積、全細孔容積を表2に示す。また、表2
中、ジョージア産カオリナイトの熱処理物を、90℃で
2時間KOH溶液にて処理してなるγ-アルミナ多孔体
の細孔径分布を図1に示す。
Table 2 shows the specific surface area and total pore volume of the obtained γ-alumina porous material (KOH-treated product). Also, Table 2
FIG. 1 shows the pore size distribution of a γ-alumina porous body obtained by treating a heat-treated kaolinite produced in Georgia with a KOH solution at 90 ° C. for 2 hours.

【0039】上記実施例において、原料のジョジージア
産カオリナイトを950℃で24時間熱処理して得られ
た熱処理試料について、温度60℃でKOH処理を行っ
たところ、非晶質シリカは、8時間でほぼ全量が溶出し
た。KOH処理物の比表面積は、処理時間が延びるにつ
れて増大し、KOHの8時間処理試料では、228m 2
/gとなった。
In the above embodiment, the raw material, Jozisia
Obtained by heat-treating kaolinite produced at 950 ℃ for 24 hours
The heat-treated sample was subjected to KOH treatment at a temperature of 60 ° C.
As a result, almost all the amorphous silica was eluted in 8 hours.
It was The specific surface area of the KOH-treated product increases as the treatment time increases.
And increased to 228 m in the sample treated with KOH for 8 hours. 2
/ G.

【0040】[0040]

【表2】 [Table 2]

【0041】(b) 中国産ハロイサイトを用いたγ-
アルミナ多孔体の製造 上記(a)において、ジョージア産カオリナイトに代え
て、表1に示す中国産ハロイサイト(2SiO2・Al2
3・4H2O)[共立窯業原料(株)製]を用い、上記
(a)と同様にしてγ-アルミナ多孔体を製造した。
(B) γ-using Chinese halloysite
Production of Alumina Porous Body In place of the kaolinite produced in Georgia in the above (a), halloysite (2SiO 2 · Al 2 produced in China shown in Table 1 is used.
O 3 .4H 2 O) [manufactured by Kyoritsu Ceramic Materials Co., Ltd.] was used to produce a γ-alumina porous body in the same manner as in (a) above.

【0042】得られたγ-アルミナ多孔体(KOH処理
物)の比表面積、全細孔容積を表3に示す。また、表3
中、中国産ハロイサイトの熱処理物を、75℃で1時間
KOH溶液にて処理してなるγ-アルミナ多孔体の細孔
径分布を図2に示す。
Table 3 shows the specific surface area and total pore volume of the obtained γ-alumina porous material (KOH-treated product). Also, Table 3
Figure 2 shows the pore size distribution of a γ-alumina porous body obtained by treating a heat-treated Chinese halloysite product with a KOH solution at 75 ° C for 1 hour.

【0043】[0043]

【表3】 [Table 3]

【0044】また、原料の中国産ハロイサイトを950
℃で24時間熱処理して得られた熱処理試料を、90℃
で1時間KOH処理してなるKOH処理試料について、
蛍光X線分析による定量分析を行なった。
In addition, the raw material Chinese halloysite was 950
The heat-treated sample obtained by heat-treating for 24 hours at 90 ° C.
For KOH-treated samples that have been KOH-treated for 1 hour at
Quantitative analysis was performed by fluorescent X-ray analysis.

【0045】結果を表4に示す。The results are shown in Table 4.

【0046】[0046]

【表4】 [Table 4]

【0047】γ-アルミナ多孔体の耐熱性試験 上記のようにして得られたγ-アルミナ多孔体につい
て、耐熱性試験を行なった。
Heat Resistance Test of γ-Alumina Porous Body A heat resistance test was performed on the γ-alumina porous body obtained as described above.

【0048】測定条件を以下に示す。 (1)加熱温度を変えた耐熱性試験 実施例1により得られたジョージア産カオリナイトのK
OH(90℃,1時間)処理物および、中国産ハロイサ
イトのKOH(75℃,1時間)処理物を用いて耐熱性
試験を行なった。すなわちこれらのγ-アルミナ多孔体
約0.2gを磁製坩堝に入れて電気炉にて常温から昇温
速度10℃/分で1000℃まで昇温し、この温度(10
00℃)で1時間加熱した後、降温速度10℃/分で常温
まで降温させ、γ-アルミナ多孔体の耐熱性を測定し
た。
The measurement conditions are shown below. (1) Heat resistance test with varying heating temperature K of Georgia kaolinite obtained in Example 1
A heat resistance test was conducted using an OH (90 ° C., 1 hour) treated product and a Chinese halloysite KOH (75 ° C., 1 hour) treated product. That is, about 0.2 g of these γ-alumina porous bodies was put into a porcelain crucible and heated from room temperature to 1000 ° C. at a heating rate of 10 ° C./min.
After heating at 00 ° C) for 1 hour, the temperature was lowered to room temperature at a temperature lowering rate of 10 ° C / min, and the heat resistance of the γ-alumina porous material was measured.

【0049】また、上記γ-アルミナ多孔体の加熱温度
(1000℃)を、1100℃、1150℃、1200℃と
変化させて耐熱性を測定した。 (2) 加熱温度1100℃での加熱時間を変えた耐熱
性試験 上記(1)において、加熱温度1100℃で1時間熱処
理した試料をめのう乳鉢で粉砕した後、磁製坩堝に入れ
て電気炉にて常温から昇温速度15℃/分で1100℃
まで昇温し、この温度(1100℃)で下記所定時間加熱保
持した後、降温速度50℃/分で常温まで降温させ、γ
-アルミナ多孔体の耐熱性を測定した。
The heat resistance was measured by changing the heating temperature (1000 ° C.) of the γ-alumina porous material to 1100 ° C., 1150 ° C. and 1200 ° C. (2) Heat resistance test with heating time changed at heating temperature of 1100 ° C In the above (1), the sample heat-treated at heating temperature of 1100 ° C for 1 hour was crushed in an agate mortar, put in a porcelain crucible and placed in an electric furnace. From normal temperature to 1100 ° C at a heating rate of 15 ° C / min
After heating to this temperature (1100 ° C) and holding for the specified time below, the temperature is lowered to room temperature at a cooling rate of 50 ° C / min.
-The heat resistance of the alumina porous body was measured.

【0050】また、処理条件を以下に示す。 試料量: (1)で得られた処理試料全量(0.2〜
0.05g) 保持時間: 24時間、48時間、72時間、240時
間(24時間×3回+168時間×1回)耐熱性測定結果 上記実施例1で得られた、中国産ハロイサイトからなる
γ-アルミナ多孔体(950℃,24時間熱処理物を75℃,1時
間KOH処理したもの)は、1100℃,1時間の熱処理を
行なった後でも、その比表面積は162m2/gと高い
レベルを保持した。また、ジョージア産カオリナイトか
らなるγ-アルミナ多孔体(950℃,24時間熱処理物を90
℃,1時間KOH処理したもの)は、1100℃,1時間の熱
処理を行なった後でも157m2/gと高いレベルを保
持した。
The processing conditions are shown below. Sample amount: Total amount of treated sample obtained in (1) (0.2 to
0.05g) Holding time: 24 hours, 48 hours, 72 hours, 240 hours (24 hours x 3 times + 168 hours x 1 time) Results of heat resistance measurement γ- consisting of Chinese halloysite obtained in Example 1 above Alumina porous material (950 ° C, 24 hours heat treated product, 75 ° C, 1 hour KOH treated) maintains its high specific surface area of 162 m 2 / g even after 1100 ° C, 1 hour heat treatment. did. In addition, a γ-alumina porous material composed of Georgian kaolinite (heat treated at 950 ° C for 24 hours
The product treated with KOH at 1 ° C. for 1 hour maintained a high level of 157 m 2 / g even after the heat treatment at 1100 ° C. for 1 hour.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、原料のジョージア産カオリナイトを9
50℃で24時間熱処理して得られた熱処理試料につい
て、90℃で2時間のKOH処理してなるγ-アルミナ
多孔体の細孔径分布図である。
FIG. 1 is a schematic view of a raw material of kaolinite from Georgia 9
FIG. 3 is a pore diameter distribution diagram of a γ-alumina porous body obtained by subjecting a heat-treated sample obtained by heat treatment at 50 ° C. for 24 hours to KOH treatment at 90 ° C. for 2 hours.

【図2】図2は、原料の中国産ハロイサイトを950℃
で24時間熱処理して得られた熱処理試料について、7
5℃で1時間のKOH処理してなるγ-アルミナ多孔体
の細孔径分布図である。
[Fig. 2] Fig. 2 shows Chinese raw material halloysite at 950 ° C.
The heat-treated sample obtained by heat-treating for 24 hours at
FIG. 3 is a pore diameter distribution diagram of a γ-alumina porous body obtained by treating with KOH at 5 ° C. for 1 hour.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】カオリン鉱物および/またはアルミナ-シ
リカ系の共沈ゲルを加熱して、スピネル相と非晶質シリ
カとに相分離された熱処理物を調製し、次いで得られた
熱処理物をアルカリまたはフッ酸にて処理して非晶質シ
リカを溶出させることを特徴とするγ-アルミナ多孔体
の製造方法。
1. A kaolin mineral and / or an alumina-silica coprecipitated gel is heated to prepare a heat-treated product in which a spinel phase and amorphous silica are phase-separated, and then the obtained heat-treated product is treated with an alkali. Alternatively, the method for producing a γ-alumina porous body is characterized in that the amorphous silica is eluted by treatment with hydrofluoric acid.
【請求項2】上記カオリン鉱物および/またはアルミナ
-シリカ系の共沈ゲルを900〜1200℃の温度で、
100時間以下加熱して、スピネル相と非晶質シリカと
に相分離させることを特徴とする請求項1に記載のγ-
アルミナ多孔体の製造方法。
2. The kaolin mineral and / or alumina.
-A silica-based coprecipitated gel at a temperature of 900 to 1200 ° C,
The γ − according to claim 1, wherein the spinel phase and the amorphous silica are phase-separated by heating for 100 hours or less.
Method for producing porous alumina body.
【請求項3】上記熱処理物を200℃以下の温度で、1
分〜100時間アルカリまたはフッ酸にて処理して非晶
質シリカを溶出させることを特徴とする請求項1または
2に記載のγ-アルミナ多孔体の製造方法。
3. The heat-treated product at a temperature of 200.degree.
The method for producing a γ-alumina porous body according to claim 1 or 2, wherein the amorphous silica is eluted by treatment with alkali or hydrofluoric acid for a period of minutes to 100 hours.
JP06134994A 1994-03-30 1994-03-30 Method for producing gamma-alumina porous body Expired - Fee Related JP3542632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06134994A JP3542632B2 (en) 1994-03-30 1994-03-30 Method for producing gamma-alumina porous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06134994A JP3542632B2 (en) 1994-03-30 1994-03-30 Method for producing gamma-alumina porous body

Publications (2)

Publication Number Publication Date
JPH07267632A true JPH07267632A (en) 1995-10-17
JP3542632B2 JP3542632B2 (en) 2004-07-14

Family

ID=13168580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06134994A Expired - Fee Related JP3542632B2 (en) 1994-03-30 1994-03-30 Method for producing gamma-alumina porous body

Country Status (1)

Country Link
JP (1) JP3542632B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100468525B1 (en) * 2002-03-22 2005-01-27 재단법인서울대학교산학협력재단 production method of porous gamma-alumina powder having mesopore and macropore
KR100473804B1 (en) * 2002-08-12 2005-03-10 학교법인 포항공과대학교 Mesoporous alumina molecular sieve, and process for preparing the same
KR100792617B1 (en) * 2006-04-26 2008-01-09 한국과학기술원 Producing Method of One-Dimensional Boehmite/Ionic Liquid Complex and One-Dimensional Mesoporous ? Alumina Using Ionic Liquid
KR20180081658A (en) * 2017-01-06 2018-07-17 주식회사 효성 Method of preparing dehydrogenation catalysts

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100468525B1 (en) * 2002-03-22 2005-01-27 재단법인서울대학교산학협력재단 production method of porous gamma-alumina powder having mesopore and macropore
KR100473804B1 (en) * 2002-08-12 2005-03-10 학교법인 포항공과대학교 Mesoporous alumina molecular sieve, and process for preparing the same
KR100792617B1 (en) * 2006-04-26 2008-01-09 한국과학기술원 Producing Method of One-Dimensional Boehmite/Ionic Liquid Complex and One-Dimensional Mesoporous ? Alumina Using Ionic Liquid
KR20180081658A (en) * 2017-01-06 2018-07-17 주식회사 효성 Method of preparing dehydrogenation catalysts

Also Published As

Publication number Publication date
JP3542632B2 (en) 2004-07-14

Similar Documents

Publication Publication Date Title
Gao et al. Porous corundum-type In 2 O 3 nanoflowers: controllable synthesis, enhanced ethanol-sensing properties and response mechanism
El-Didamony et al. Synthesis and characterization of low cost nanosilica from sodium silicate solution and their applications in ceramic engobes
KR100865422B1 (en) Production of metal oxide particles with nano-sized grains
Liu et al. Synthesis and characterization of rutile SnO2 nanorods
Nagarajan et al. Crystallization studies of ZrO 2− SiO 2 composite gels
Amirthavalli et al. Effect of zinc precursor ratio on morphology and luminescent properties of ZnO nanoparticles synthesized in CTAB medium
Francisco et al. Synthesis and characterization of SiO 2–Nb 2 O 5 systems prepared by the sol–gel method: structural stability studies
Lin et al. The synergistic mechanisms of citric acid and oxalic acid on the rapid dissolution of kaolinite
CN108483413A (en) A kind of preparation method of the Bamboo-shaped boron nitride nano-tube hierarchical structure of area load ultrathin boron nitride nanosheet
CN108865120B (en) Europium ion doped CaF2Preparation method and application of optical functional powder
Ribeiro et al. The influences of heat treatment on the structural properties of lithium aluminates
JP3542632B2 (en) Method for producing gamma-alumina porous body
CN110483029A (en) Low thermal coefficient of expansion monocline baryta fledspar matter ceramics and preparation method
Okada et al. In situ zeolite Na–X coating on glass fibers by soft solution process
Jie et al. Effect of far infrared radiation ceramics containing rare earth additives on surface tension of water
Fu et al. Outward conversion of core–shell nanostructured ZnS microspheres to mesoporous ZnO ones
Valášková et al. Cordierite/CeO2 ceramic nanocomposites from vermiculite with fixed CeO2 nanoparticles, talc and kaolin
Zhang et al. Preparation of mesoporous TiO2 photocatalyst by selective dissolving of titania–silica binary oxides
CN113912391B (en) Preparation method of spinel-structured zinc titanate nano powder, composition for curing radioactive waste and method for curing lanthanum oxide by using composition
Liu et al. Synthesis of ZnFe2O4/SiO2 composites derived from a diatomite template
Zhang et al. Synthesis of TiO 2-doped SiO 2 composite films and its applications
CN108723390A (en) A kind of short-cut method preparing nano silver composite antibacterial agent
Scardi et al. Influence of calcium oxide and sodium oxide on the microstructure of cordierite catalyst supports
Tasić Improving the microstructural and physical properties of alumina electrical porcelain with Cr2O3, MnO2 and ZnO additives
CN110642288B (en) Nitrogen-doped metal oxide gas-sensitive material, gas-sensitive element, and preparation method and application thereof

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040401

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees