JPH07257932A - Glass optical element forming die - Google Patents

Glass optical element forming die

Info

Publication number
JPH07257932A
JPH07257932A JP7156194A JP7156194A JPH07257932A JP H07257932 A JPH07257932 A JP H07257932A JP 7156194 A JP7156194 A JP 7156194A JP 7156194 A JP7156194 A JP 7156194A JP H07257932 A JPH07257932 A JP H07257932A
Authority
JP
Japan
Prior art keywords
lens
glass
mold
molding
molding die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7156194A
Other languages
Japanese (ja)
Inventor
Ryoichi Kitahara
良一 北原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP7156194A priority Critical patent/JPH07257932A/en
Publication of JPH07257932A publication Critical patent/JPH07257932A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/084Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor
    • C03B11/086Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor of coated dies
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/14Die top coat materials, e.g. materials for the glass-contacting layers
    • C03B2215/20Oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/30Intermediate layers, e.g. graded zone of base/top material

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

PURPOSE:To prevent the falling of the die base material particle from the peripheral part of the die on which a large thermal stress is exerted. CONSTITUTION:This glass optical element forming die 1 has a lens working part 4 having the effective diameter of a formed lens and a flat land working part 5 formed on the periphery. The parts 4 and 5 are smoothly joined by a rounded surface. A Cr film 6 is formed from outside the lens effective face positioned on the lens working part 4 of the die 1 toward the flat land working part 6. The Cr film 6 is oxidized and annealed, and a Cr2O3 layer 13 having a lower formation free energy than the forming glass is formed on the outermost surface.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、軟化ガラス素材を押圧
して所望の光学素子を成形するガラス光学素子成形用型
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a glass optical element molding die for pressing a softened glass material to mold a desired optical element.

【0002】[0002]

【従来の技術】近年、軟化ガラスを直接プレス成形する
ことにより、その後の冷間での研削・研磨を不要にし、
光学性能を満足する光学ガラスレンズの成形方法が盛ん
に用いられている。本加工法に於いては、高温下でガラ
ス素材は球面・非球面形状の成形面を有する成形型によ
りプレス成形された後、常温まで降温され取り出される
為、ガラス成形面に熱サイクルによる熱応力が生じ、型
とガラスとの熱膨張差が大きな場合には、脆性的性質を
有するガラス成形レンズは応力集中及び熱応力から割れ
てしまうことがある。又、軟化ガラスが流動する際、型
外周部には特に大きな熱応力が加わり劣化が著しいた
め、型寿命を決定するのは成形型の外周部となってい
る。
2. Description of the Related Art In recent years, by directly press-molding softened glass, the subsequent cold grinding / polishing becomes unnecessary,
A molding method of an optical glass lens that satisfies optical performance is actively used. In this processing method, the glass material is press-molded with a mold having spherical and aspherical molding surfaces at high temperature, then cooled to room temperature and taken out. When the difference in thermal expansion between the mold and the glass is large, the glass molded lens having brittle properties may be cracked due to stress concentration and thermal stress. Further, when the softened glass flows, a particularly large thermal stress is applied to the outer peripheral portion of the mold to cause remarkable deterioration, so that the outer peripheral portion of the molding die determines the mold life.

【0003】上記欠点を解決するために、例えば特公平
3−52417号公報で開示された事例がある。本事例
は型の曲面加工部とこの曲面加工部の外方に位置する平
面加工部との境界部に面取りを施し、曲面加工部と平面
加工部との境界部を鋭角とせず、応力集中を防止したも
のである。
In order to solve the above-mentioned drawbacks, for example, there is a case disclosed in Japanese Patent Publication No. 3-52417. In this example, the boundary between the curved surface processing part of the mold and the flat surface processing part located outside the curved surface processing part is chamfered so that the boundary between the curved surface processing part and the flat surface processing part does not have an acute angle, and stress concentration is reduced. It has been prevented.

【0004】[0004]

【発明が解決しようとする課題】ガラスレンズ成形に使
用される型は、成形温度が高温のため耐熱温度の高いセ
ラミック(Al2 3 ・SiC・TiO2 ・Cr2 3
・BN・WC等)が用いられる。セラミック材は、脆性
的性質を有し、かつ硬度が高いために砥石を用いた研削
で加工される。成形レンズ用の型に於いても同様の加工
法が取られ、特に所望の光学性能を有するガラス成形レ
ンズを得るためにはサブミクロンの形状精度で光学鏡面
を創成させる必要がある。その為、一般的には超精密N
C制御の加工機にて研削加工後、研磨工程を経て所望の
精度に仕上げられている。
A mold used for molding a glass lens is a ceramic (Al 2 O 3 .SiC.TiO 2 .Cr 2 O 3) having a high heat resistant temperature because the molding temperature is high.
・ BN ・ WC etc. are used. Since the ceramic material has brittleness and high hardness, it is processed by grinding with a grindstone. The same processing method is applied to the mold for molded lenses, and it is necessary to create an optical mirror surface with submicron shape accuracy in order to obtain a glass molded lens having a desired optical performance. Therefore, in general, ultra-precision N
After being ground by a C-controlled processing machine, it is finished to a desired accuracy through a polishing process.

【0005】型素材(型基材)であるセラミックは、焼
結によって生成されるが、上記のごとく脆性材料である
ために、研削加工時にその内部に微小なクラックが生じ
る。一般的剛性の高い超精密加工機においてもセラミッ
クでは、研削加工での表面粗さの約10倍の深さの微小
クラックが基材内に入ってしまう。このクラックは、研
磨では外観上明確ではないが、高温下でのガラス成形
時、その熱応力によって亀裂化し、その部分からセラミ
ックに含有されている添加材料(Ti・Zr・Ni等)
が酸化物等に変質し、部分的に強度が弱くなり基材粒子
の脱落を引き起こし、極端な場合には成形時に軟化ガラ
スとの密着によって型表面がはぎ取られてしまう場合も
ある。
Ceramic, which is a mold material (mold base material), is produced by sintering, but since it is a brittle material as described above, minute cracks occur inside it during grinding. Even in an ultra-precision processing machine having a high rigidity in general, with a ceramic, a microcrack having a depth of about 10 times the surface roughness in the grinding process enters the base material. These cracks are not clear in appearance by polishing, but they are cracked by the thermal stress during glass molding at high temperature, and the additive material (Ti, Zr, Ni, etc.) contained in the ceramic from that portion
Are transformed into oxides and the like, and the strength thereof is partially weakened, causing the base particles to fall off, and in an extreme case, the mold surface may be peeled off due to adhesion with the softened glass during molding.

【0006】特公平3−52417号公報の成形型で
は、曲面加工部と平面加工部との間に鋭い角がないため
に、型自体が損傷を受けにくいと共に、被成形ガラスレ
ンズにもそのような角が転写されず、著しい応力集中の
防止という効果が記載されている。確かに面取りにより
成形初期に於いては上記の効果が図られる。
In the molding die disclosed in Japanese Patent Publication No. 3-52417, there is no sharp corner between the curved surface processing portion and the flat surface processing portion, so that the mold itself is less likely to be damaged, and the glass lens to be molded has the same structure. It is described that the large corners are not transferred and the remarkable stress concentration is prevented. Certainly, chamfering achieves the above effect in the initial stage of molding.

【0007】しかしながら、曲面加工部と平面加工部と
の間の面取りも砥石を用いた研削加工で形成されるた
め、長期にガラスレンズの成形に用いられ高温下にさら
された際には、ガラスの流動が多い外端部の微小クラッ
クから焼結素材の脱落が生じ、成形レンズにカン・表層
部の割れ等が生じたり、面粗さを劣化させたりして所望
のレンズ品質が得られないという欠点がある。さらに、
型耐久性という点では、劣化が著しく早い欠点がある。
However, the chamfer between the curved surface processing portion and the flat surface processing portion is also formed by grinding using a grindstone, so that when the glass lens is used for a long period of time and exposed to a high temperature, The sintered material may fall off from the micro-cracks on the outer edge of the lens, which may cause cracks in the can and the surface layer of the molded lens, and may deteriorate the surface roughness, making it impossible to obtain the desired lens quality. There is a drawback that. further,
In terms of mold durability, there is a drawback that deterioration is extremely fast.

【0008】本発明は上記問題点に鑑みてなされたもの
で、請求項1のガラス光学素子成形型において、光学鏡
面(非球面あるいは球面)が形成されているレンズ有効
面より外周部に薄膜を生成することにより、熱応力が大
きく作用する型外周部での型基材粒子の脱落及び面粗さ
劣化の遅延を実現し、耐久寿命の長いガラス光学素子成
形用型を提供することを目的とする。
The present invention has been made in view of the above problems, and in the glass optical element molding die of claim 1, a thin film is formed on the outer peripheral portion of the lens effective surface on which the optical mirror surface (aspherical surface or spherical surface) is formed. By producing, it is intended to provide a glass optical element molding die having a long durability life, which realizes the delay of the die base material particles falling off and the surface roughness deterioration in the die outer peripheral portion where a large thermal stress acts. To do.

【0009】請求項2の光学ガラス素子成形型におい
て、レンズ有効面の外周部に平面よりなるランド部を形
成しかつ連続的に結合せしめ、該外周部に薄膜を成形す
ることにより、成形時の高圧に耐える強度を有すると共
に高温ガラスの流動を円滑にし、型基材の粒子脱落と面
粗さ劣化の遅延および高精度成形転写性を実現した耐久
性の長いガラス光学素子成形用型を提供することを目的
とする。
In the optical glass element molding die of claim 2, a flat land portion is formed on the outer peripheral portion of the lens effective surface and is continuously connected to each other, and a thin film is molded on the outer peripheral portion, thereby forming a thin film at the time of molding. Provided is a long-lasting glass optical element molding die that has strength to withstand high pressure, smoothes the flow of high-temperature glass, delays particle drop of the die base material and surface roughness deterioration, and realizes high-precision molding transferability. The purpose is to

【0010】請求項3の光学ガラス素子成形型におい
て、レンズ有効面より外周部に軟化ガラスとの反応性が
低い(表面自由エネルギーが小さい)物質を薄膜生成
し、型外周部でガラス融着の防止および型基材の面粗さ
劣化の遅延を実現した耐久性の長いガラス光学素子成形
用型を提供することを目的とする。
In the optical glass element molding die of claim 3, a thin film of a substance having a low reactivity with the softened glass (small surface free energy) is formed on the outer peripheral portion of the lens effective surface, and glass fusion is performed on the outer peripheral portion of the mold. It is an object of the present invention to provide a glass optical element molding die having long durability, which realizes prevention and delay of deterioration of surface roughness of a die base material.

【0011】[0011]

【課題を解決するための手段および作用】請求項1にあ
っては、レンズ成形用型の光学有効径外に薄膜が形成さ
れていることにより、最も熱応力の加わる型外周部(つ
まり光学有効径外のレンズ部)に薄膜が施されているこ
とから、薄膜が成形雰囲気中の酸素の進入を防ぐ作用に
より、型基材内部に加工の際生じたクラックから発生す
る基材に含有されている助材が酸化進行することを防止
する。また、長時間の成形によって酸化物が生成されて
も薄膜によって型基材粒子の脱落をさえぎる作用が働く
ことにより、成形面の面粗さ劣化が進行することを遅延
防止する。また、薄膜の欠点である膜の剥離が生じたと
しても、レンズ有効径外であるため成形レンズの性能に
全く影響しない。
According to the first aspect of the present invention, since the thin film is formed outside the optically effective diameter of the lens molding die, the outer peripheral portion of the die to which the most thermal stress is applied (that is, the optically effective diameter). Since the thin film is applied to the lens part (outer diameter), the thin film is contained in the base material generated from cracks generated during processing inside the mold base material by the action of preventing oxygen from entering in the molding atmosphere. It prevents the auxiliary material from oxidizing. Further, even if an oxide is produced by molding for a long time, the thin film acts to prevent the mold base particles from falling off, thereby delaying the progress of deterioration of the surface roughness of the molding surface. Further, even if peeling of the film, which is a defect of the thin film, occurs, since it is outside the lens effective diameter, it does not affect the performance of the molded lens at all.

【0012】請求項2にあっては、成形型のレンズ有効
径と該有効面の外周部に平面より形成された平面ランド
加工部を連続的に結合形成することにより、成形時、軟
化されたガラス素材にレンズ面を精密転写すべく押圧さ
れた際の圧力に耐える高強度の構造が得られ、軟化ガラ
スの流動を円滑にする作用により、型基材にダメージを
与える熱応力を軽減する。
According to a second aspect of the present invention, the lens effective diameter of the molding die and the flat land processed portion formed by a flat surface on the outer peripheral portion of the effective surface are continuously coupled to form a softening during molding. A high-strength structure that can withstand the pressure when pressed to precisely transfer the lens surface to the glass material is obtained, and the action of smoothing the flow of the softened glass reduces the thermal stress that damages the mold base material.

【0013】請求項3にあっては、レンズ有効径外に生
成された薄膜物質と、成形される軟化ガラスとの反応性
が小さい(表面エネルギーが小さい)ことにより、成形
時、軟化ガラスは焼き付きが無く円滑に流動すると共
に、型と成形レンズの密着力が弱いという作用によって
離型時に大きな力が不要で変形等防止し、高精度な転写
面精度を維持したままで離型できる。
According to the third aspect of the present invention, since the thin film material formed outside the lens effective diameter has a small reactivity (small surface energy) with the softened glass to be molded, the softened glass is seized during molding. It smoothly flows and has a weak adhesion between the mold and the molded lens, so that a large force is not required at the time of mold release, deformation is prevented, and mold release can be performed while maintaining a high precision transfer surface.

【0014】[0014]

【実施例1】本発明の実施例1を図1、図2および表1
に基づき説明する。 (構成)本実施例の成形型1は、Al2 3 材3上にC
2 3 材2が焼結結合されている。そしてCr2 3
材2には気泡等を防止し、均一かつ高強度に焼結する為
にTi・Zrが助材として微小量含有されている。
[Embodiment 1] Embodiment 1 of the present invention is shown in FIGS.
It will be explained based on. (Structure) The molding die 1 of the present embodiment has C on the Al 2 O 3 material 3.
The r 2 O 3 material 2 is sintered and bonded. And Cr 2 O 3
Material 2 contains a small amount of Ti.Zr as an auxiliary material in order to prevent bubbles and the like and to sinter uniformly and with high strength.

【0015】上記Cr2 3 材2上には所望の光学レン
ズ形状(非球面・球面)が生成されたレンズ加工部4
と、外縁部に平面形成された平面ランド加工部5とから
成り、両者の境界部はレンズ加工部4の曲面とランド加
工部5の平面が滑らかに結がる様なR面取りが施されて
いる。レンズ加工部4は超精密研削により曲面を形成
し、更に光学部品としての性能を満足するよう、研磨加
工により光学鏡面を有した所望の非球面形状に創成され
ている。レンズ加工部4と平面ランド加工部5との境界
に形成されたR面取り部は、微細砥粒径から成る砥石に
より研削加工され形成されている。
A lens processing section 4 in which a desired optical lens shape (aspherical surface / spherical surface) is formed on the Cr 2 O 3 material 2
And a flat land processing portion 5 formed in a flat shape on the outer edge portion, and the boundary between the two is subjected to R chamfering so that the curved surface of the lens processing portion 4 and the flat surface of the land processing portion 5 are smoothly connected. There is. The lens processing portion 4 is formed into a desired aspherical shape having an optical mirror surface by forming a curved surface by ultra-precision grinding and further polishing it so as to satisfy the performance as an optical component. The R chamfered portion formed at the boundary between the lens processing portion 4 and the flat land processing portion 5 is formed by grinding with a grindstone having a fine abrasive grain size.

【0016】その後、成形後のレンズにおける必要有効
面(φD)外全周となるランド加工部5とR面取り部に
成形ガラスの軟化点より耐熱性が高いCr膜6をスパッ
タ処理により(詳細成膜手段は図示省略)成膜形成す
る。更に上記Cr膜6を酸化アニール処理し、最表面に
界面での反応性を示すGibbsの標準生成自由エネル
ギーが約−80000cal/g・molを有する軟化
ガラスにより低いCr23 膜13(−150000c
al/g・mol)を生成させる。
After that, a Cr film 6 having a heat resistance higher than the softening point of the molded glass is sputtered on the land processing portion 5 and the R chamfered portion which are the outer circumference of the necessary effective surface (φD) of the molded lens (detailed formation). The film means is not shown). Further, the Cr film 6 is subjected to oxidation annealing treatment, and the Cr 2 O 3 film 13 (-150000c) which is lower in softened glass having a Gibbs standard free energy of formation of about -80000 cal / g · mol showing reactivity at the interface on the outermost surface.
al / g · mol).

【0017】(作用)本実施例の成形型1(上成形型1
a,下成形型1b)は、図2に示すように成形機に設置
された押圧可能な型保持部7,8に上・下対向するよう
に、それぞれ固持させる。そして、搬送アーム11の先
部に搬送部材9を介して光学ガラス素材10を保持さ
せ、加熱炉12内に搬入して加熱軟化した光学ガラス素
材10が搬送アーム11により搬送部材10とともに上
成形型1a、下成形型1bの間に搬送して所定位置に停
止された後、下成形型1bを型保持部材8により矢印A
方向に移動させて、上成形型1a、下成形型1bで挟持
・押圧する。これにより、成形型1の光学鏡面に創成さ
れた非球面もしくは球面形状からなる所望のレンズ加工
部4が、軟化されたガラス素材10に接触押圧転写され
光学性能を満足するガラスレンズが大量に成形加工され
る。この上成形型1a、下成形型1bによる軟化したガ
ラス素材10の押圧成形の際には、上成形型1a、下成
形型1bを共に接近するように移動してもよく、また、
下成形型1bを移動して搬送部材10で保持した軟化ガ
ラス素材10を下成形型1bで保持した後、停止させた
状態で上成形型1aを移動してガラス素材10を押圧成
形しても良い。
(Operation) Mold 1 of this embodiment (upper mold 1
a, the lower molding die 1b) is firmly held so as to face the upper and lower sides of the pressable die holding portions 7 and 8 installed in the molding machine as shown in FIG. Then, the optical glass material 10 is held at the tip of the transfer arm 11 via the transfer member 9, and the optical glass material 10 which is carried into the heating furnace 12 and softened by heating is transferred by the transfer arm 11 together with the transfer member 10 to the upper molding die. After being conveyed between the lower molding die 1a and the lower molding die 1b and stopped at a predetermined position, the lower molding die 1b is moved by the mold holding member 8 in the direction of arrow A.
It is moved in the direction, and is clamped and pressed by the upper molding die 1a and the lower molding die 1b. As a result, the desired lens processing portion 4 having an aspherical surface or spherical shape created on the optical mirror surface of the molding die 1 is contact-press-transferred onto the softened glass material 10 to form a large amount of glass lenses satisfying the optical performance. Is processed. When the softened glass material 10 is press-molded by the upper mold 1a and the lower mold 1b, the upper mold 1a and the lower mold 1b may be moved so as to approach each other.
Even if the lower molding die 1b is moved and the softened glass material 10 held by the conveying member 10 is held by the lower molding die 1b, the upper molding die 1a is moved in a stopped state to press-mold the glass material 10. good.

【0018】この時、図1に示したCr2 3 材2を焼
結結合した成形型1は、加熱されたガラス材料が接触す
ると共に、成形圧力によって、軟化されたガラスが成形
型1の成形面に沿って流動するため、該成形型1には大
きな熱と圧力衝撃がかかり、特にレンズ加工部4と平面
ランド加工部5の境界部および必要有効面(φD)外に
は軟化ガラスの流動時、大きな熱および力学的な負荷が
加わり、成形の経過と共にCr2 3 材2内部に生じて
いる微小クラックから、Cr2 3 材2に添加されてい
るTi・Zrが酸化することで、粒子が脱落し成形型1
のレンズ加工部4の面粗さ劣化・表面の損傷や、該脱落
部をトリガーにして成形されたレンズにワレ(カン)が
生じることがあったが、本発明の実施例1に示した成形
型1では必要有効面(φD)外に耐熱性が高く、軟化ガ
ラス10の標準生成自由エネルギー(−80000ca
l/g・mol)より該標準生成自由エネルギーが−1
50000cal/g・molと低いCr2 3 層13
が蒸着生成されている為、軟化ガラス素材10と界面で
反応が生じず、型への焼き付きが無く加熱軟化されたガ
ラス素材10は成形押圧時に型曲面に沿って滑らかに流
動し、レンズ加工部4は軟化ガラスへ精密に転写され
る。前記成形が継続されても本実施例の成形型では、C
2 3 層13により軟化ガラス素材10から生じる酸
化ガスや成形雰囲気の酸素が成形型1に介入することを
ガードする。また、さらに熱応力が繰り返され作用する
成形工程が繰り返されて、Cr2 3 材2内に助材とし
て介在されているTi・Zrが酸化され、加工時生じた
クラックをトリガーに脱落しようとしても、該Cr膜6
がガードとなり、その脱落劣化を防止する。
At this time, the molding die 1 in which the Cr 2 O 3 material 2 shown in FIG. 1 is sintered and bonded is brought into contact with the heated glass material, and the glass softened by the molding pressure is converted into the molding die 1. Since it flows along the molding surface, a large amount of heat and pressure shock is applied to the molding die 1, and particularly, the softened glass is outside the boundary between the lens processing portion 4 and the flat land processing portion 5 and outside the required effective surface (φD). During flow, a large amount of heat and mechanical load are applied, and Ti · Zr added to the Cr 2 O 3 material 2 is oxidized from minute cracks generated inside the Cr 2 O 3 material 2 with the progress of molding. Then, the particles fall off and the mold 1
The surface roughness of the lens-processed portion 4 of FIG. 4 was deteriorated, the surface was damaged, and a crack (can) was sometimes generated on the lens formed by using the drop-off portion as a trigger, but the molding described in Example 1 of the present invention was performed. The mold 1 has high heat resistance in addition to the required effective surface (φD), and the standard free energy of formation of the softened glass 10 (−80,000 ca).
1 / g · mol), the standard free energy of formation is −1.
Cr 2 O 3 layer 13 as low as 50,000 cal / g · mol 13
Since no reaction occurs at the interface with the softened glass material 10, the glass material 10 that has been heated and softened without sticking to the mold flows smoothly along the curved surface of the mold during molding and pressing, and 4 is precisely transferred to softened glass. Even if the molding is continued, in the molding die of this embodiment, C
The r 2 O 3 layer 13 prevents the oxidizing gas generated from the softened glass material 10 and the oxygen in the molding atmosphere from intervening in the molding die 1. Further, repeated molding step of acting is repeated further thermal stress, Ti · Zr which are interposed as Sukezai the Cr 2 O 3 material in 2 is oxidized, the cracks generated during machining trying dropping the trigger Also the Cr film 6
Serves as a guard to prevent the fall and deterioration.

【0019】(効果)本実施例のCr2 3 材成形型1
を用いて図2に示した構成で、従来型と成形評価した結
果を表1に示す。ガラス材料はSK−11(独国:Sh
ott社称呼名)である。
(Effect) Cr 2 O 3 material forming die 1 of this embodiment
Table 1 shows the results of molding evaluation with the conventional type having the configuration shown in FIG. Glass material is SK-11 (Germany: Sh
Ott company name).

【0020】[0020]

【表1】 [Table 1]

【0021】表1に示したように従来の何ら薄膜生成の
無いCr2 3 材成形型では、20000ショットで型
外周部に微小クラックからの粒子脱落・表面損傷が生
じ、成形型として全く使用に耐えられない状況になっ
た。しかしながら本実施例の型外周部にCr2 3 層1
3を形成したレンズ成形型1では、20000ショット
以上でも劣化がなく、成形型として継続使用可能であっ
た。
As shown in Table 1, in the conventional Cr 2 O 3 material forming die without any thin film formation, particles were dropped from the micro cracks and surface damage occurred on the outer periphery of the die after 20,000 shots, and it was used as a forming die at all. I couldn't stand it. However, the Cr 2 O 3 layer 1 is formed on the outer periphery of the mold of this embodiment.
In the lens mold 1 having No. 3 formed therein, there was no deterioration even after 20,000 shots or more, and the mold could be continuously used.

【0022】さらに成形継続した所、型外周部のCr2
3 層13が一部剥離したが、レンズ必要有効径外であ
り、成形されたレンズの外周を心取りした際、除去され
品質的に問題無く成形レンズが得られ、約50000シ
ョット経過しても良品レンズの成形が可能であった。
When the molding was further continued, Cr 2 on the outer periphery of the mold was
Although the O 3 layer 13 was partly peeled off, it was outside the lens effective diameter, and when the outer periphery of the molded lens was centered, it was removed and a molded lens was obtained without any problem in terms of quality, and about 50,000 shots passed. It was possible to mold good lenses.

【0023】[0023]

【実施例2】 (構成)本発明の実施例2は成形型1の材料にW(ウル
ツ型)−BNを用いた例である。本成形型は超硬(W
C)基材にW−BNチップを結合させたものであり、本
発明の特徴であるレンズ必要有効径外にはPt膜が蒸着
形成されている。
Example 2 (Structure) Example 2 of the present invention is an example in which W (Wurtz type) -BN is used as the material of the molding die 1. This forming die is carbide (W
C) A W-BN chip is bonded to a base material, and a Pt film is formed by vapor deposition outside the lens effective diameter which is a feature of the present invention.

【0024】(作用)W−BNにはこの焼結に際し、T
iCN、AlN等のバインダーが混在し長期のガラス光
学素子の成形時にこれらが微小クラックから析出し、成
形面の劣化を生じさせるが本実施例の成形型では、成形
時の熱衝撃・負荷を受けてもそのバインダーの析出を防
止することができる。
(Function) When W-BN is sintered, T
Binders such as iCN and AlN are mixed and these are precipitated from minute cracks during the molding of a glass optical element for a long period of time, which causes deterioration of the molding surface. However, the molding die of this embodiment is subject to thermal shock and load during molding. However, precipitation of the binder can be prevented.

【0025】(効果)図2の構成でガラス素材にLaS
F03(独国:Shott社称呼名)を用い成形評価し
た結果、従来同様、研削・研磨加工を施しただけの型で
は、約5000ショットで面取り部から型中心部に向か
いTiの析出による微小なクラックが生じ、成形型とし
て実用に耐えられない状況に劣化が進行したが、本実施
例のようにレンズの必要有効径外にPt膜を蒸着生成さ
れた型は30000ショット継続使用でもまったく問題
がなかった。
(Effect) With the configuration of FIG. 2, LaS is added to the glass material.
As a result of molding evaluation using F03 (Germany: Shott company name), as in the conventional case, in the case of the mold only subjected to the grinding / polishing process, it is possible to make a minute amount of Ti from the chamfered part toward the center part of the mold in about 5000 shots. Although cracks occurred and the mold progressed to a condition where it could not be practically used as a mold, a mold in which a Pt film was vapor-deposited outside the required effective diameter of the lens as in this example had no problem even after continuous use of 30,000 shots. There wasn't.

【0026】[0026]

【実施例3】 (構成)実施例3は成形型素材にTiB2 を用いた例で
ある。本実施例においても、成形型のレンズ必要有効径
外にはAlN膜がスパッタ法で蒸着されている。
Example 3 (Structure) Example 3 is an example in which TiB 2 is used as the material for the molding die. Also in this embodiment, an AlN film is vapor-deposited outside the required effective diameter of the lens of the molding die by the sputtering method.

【0027】(作用)本実施例の型素材ではTiB2
にCr、C、BC、TiNが含有されているが、成形時
の熱衝撃・応力に対しても酸化したCr、C、BC、T
iが微小クラックから脱落することが防止できる。
(Operation) In the mold material of this embodiment, TiB 2 contains Cr, C, BC, and TiN, but Cr, C, BC, which have been oxidized by thermal shock and stress during molding, T
It is possible to prevent i from falling out of the minute cracks.

【0028】(効果)本実施例の成形型を用いて図3に
示した成形実験を行った。成形ガラスはSF08(独
国:Shott社称呼名)を用い、溶融されたゴブ16
aを成形素材として使用した。
(Effect) The molding experiment shown in FIG. 3 was conducted using the molding die of this example. Molded glass is SF08 (Germany: Shott company name), and melted gob 16
a was used as the molding material.

【0029】以下に本成形例の詳細を述べる。溶融ガラ
ス(SF08材)16は周辺が保温されたルツボ17内
に貯められ、該ルツボ17の下部のノズル17aから滴
下される。その際、ゴブ16aはシャー18により所望
の計量精度で切断され、搬送アーム11上に保持された
搬送部材9を介して、受け型19に滴下される。つまり
ゴブ16aの下面は受け皿19の形状が形成され、搬送
部材9に外周が保持される。次に受け皿19が下方に逃
げた後、搬送アーム11により搬送部材9上に保持され
たゴブ16aは上主軸7に固持された上成形型15aと
下主軸8に固持された下成形型15b間に搬送され、下
主軸8の押圧により成形した。その結果、従来の様にレ
ンズ加工部と平面ランド加工部の境界部はR面取りのみ
の成形型では、わずか200ショットで成形面に粒子の
脱落が生じたのに対し、本実施例の成形型では3000
ショット経過しても粒子の脱落はなく実用に耐えられる
ものであった。
Details of this molding example will be described below. Molten glass (SF08 material) 16 is stored in a crucible 17 whose periphery is kept warm, and is dripped from a nozzle 17a below the crucible 17. At that time, the gob 16 a is cut by the shear 18 with a desired weighing accuracy, and is dropped onto the receiving mold 19 via the carrying member 9 held on the carrying arm 11. That is, the lower surface of the gob 16 a is formed in the shape of the tray 19, and the outer periphery is held by the transport member 9. Next, after the tray 19 has escaped downward, the gob 16a held on the conveying member 9 by the conveying arm 11 is between the upper mold 15a fixed to the upper spindle 7 and the lower mold 15b fixed to the lower spindle 8. Then, it was molded by pressing the lower main shaft 8. As a result, in the conventional molding die having only the R chamfering in the boundary portion between the lens processed portion and the flat land processed portion, particles dropped out on the molding surface after only 200 shots, whereas in the molding die of this embodiment. Then 3000
Even after the shot, the particles did not fall off and could be put to practical use.

【0030】上記実施例1〜3ではガラスや成形型の材
料を特定して説明しているが、本発明にあっては成形さ
れるガラスは光学ガラスなら何でも良い。また、成形型
の基材はガラスの軟化温度以上の耐熱性を有する各種セ
ラミック(Cr2 3 ・AlN・BN・SiO2 ・Zr
2 3 ・TiO2 )や超硬材(WC)を用いることがで
きる。さらに、成形型の成形面に位置するレンズ有効面
より外周の一部または全部にCr膜またはPt膜または
AlN膜からなる薄膜を成膜してガラス光学素子成形型
を構成し、成形するガラスの標準生成自由エネルギーよ
り低い薄膜を設けてガラスとの融着防止および劣化の遅
延を図り型寿命を長くする。なお、薄膜を形成する材料
は成形ガラスとの反応性を示す表面自由エネルギーが成
形ガラス以下の物質なら選択することができる。さら
に、薄膜生成の手段に真空蒸着・スパッタ法等のPVD
法を用いるとともに、上記方法以外にイオン注入などの
改善処理等の周知の手段で選択することもできる。
In the above-mentioned Examples 1 to 3, the materials of the glass and the molding die are specified and explained, but in the present invention, the glass to be molded may be any optical glass. Further, the base material of the mold is various ceramics (Cr 2 O 3 , AlN, BN, SiO 2 , Zr) having heat resistance higher than the softening temperature of glass.
2 O 3 · TiO 2 ) or super hard material (WC) can be used. Further, a thin film made of a Cr film, a Pt film, or an AlN film is formed on a part or all of the outer periphery of the lens effective surface located on the molding surface of the molding die to form a glass optical element molding die, and A thin film lower than the standard free energy of formation is provided to prevent fusion with glass and delay deterioration, thereby extending the die life. The material for forming the thin film can be selected as long as the surface free energy showing the reactivity with the molded glass is not more than that of the molded glass. Furthermore, PVD such as vacuum deposition / sputtering method is used for thin film formation.
In addition to the above method, it is also possible to select by a known means such as an improvement treatment such as ion implantation other than the above method.

【0031】[0031]

【発明の効果】本願の請求項1に係る発明によれば、成
形レンズにとって必要な有効径外から型最外周まで薄膜
生成することにより、型外周部への大きな熱衝撃や軟化
ガラスの流動が頻繁に作用しても、成形型基材に含有さ
れている粒子助材等の脱落および型表面の劣化を防ぎ、
長期にわたって使用でき、成形型の型寿命を延ばすこと
ができる。また、薄膜の劣化により型基材からの剥離が
生じても、所望のレンズ有効径の外側であるため成形レ
ンズ品質には全く影響無く、さらに長期間の使用が可能
である。
According to the invention of claim 1 of the present application, by forming a thin film from the outside of the effective diameter required for the molded lens to the outermost periphery of the mold, a large thermal shock to the outer peripheral portion of the mold and the flow of the softened glass are caused. Even if it acts frequently, it prevents falling of particle auxiliary materials contained in the mold base and deterioration of the mold surface,
It can be used for a long period of time and the life of the mold can be extended. Further, even if peeling from the mold base material occurs due to deterioration of the thin film, since it is outside the desired lens effective diameter, the quality of the molded lens is not affected at all, and it can be used for a longer period of time.

【0032】また、請求項2によれば、成形型に平面ラ
ンド加工部が形成されていることにより、成形押圧時応
力集中が生じる型外周部が保護され、さらにレンズ有効
径部との境界部で軟化ガラスの流動が滑らかになり、外
周まで良好な転写性が得られた光学精度の高い成形レン
ズが得られる効果が請求項1の効果に付加される。
Further, according to the second aspect, since the flat land processing portion is formed on the molding die, the outer peripheral portion of the die where stress concentration occurs at the time of molding pressing is protected, and the boundary portion with the lens effective diameter portion is protected. In addition to the effect of claim 1, the flow of the softened glass is smoothed, and a molded lens with high optical accuracy in which good transferability is obtained up to the outer periphery is obtained.

【0033】さらに、請求項3によれば、レンズ有効径
の外周部に表面自由エネルギーが軟化ガラスより小さな
物質を薄膜生成することにより、成形時、軟化ガラスと
の反応性が無く薄膜への焼き付きが生じない長期間使用
できる成形型が実現できる効果が請求項1の効果に付加
される。
Further, according to the third aspect, by forming a thin film of a substance having a surface free energy smaller than that of the softened glass on the outer peripheral portion of the lens effective diameter, there is no reactivity with the softened glass at the time of molding, and image sticking to the thin film occurs. In addition to the effect of claim 1, an effect of realizing a molding die that can be used for a long period of time without causing the above problem is added.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1を一部切り欠いて示す正面図
である。
FIG. 1 is a front view showing a first embodiment of the present invention with a part thereof cut away.

【図2】本発明の実施例1の成形型を用いた成形レンズ
の成形方法を示す説明図である。
FIG. 2 is an explanatory diagram showing a method of molding a molded lens using the molding die of Example 1 of the present invention.

【図3】本発明の実施例2の成形型を用いた成形レンズ
の成形方法を示す説明図である。
FIG. 3 is an explanatory diagram showing a method for molding a molded lens using the molding die of Example 2 of the present invention.

【符号の説明】[Explanation of symbols]

1 成形型 2 Cr2 3 材 3 Al2 3 材 4 レンズ加工部 5 平面レンズ加工部 6 Cr膜 13 Cr2 3 1 Mold 2 Cr 2 O 3 Material 3 Al 2 O 3 Material 4 Lens Processing Section 5 Plane Lens Processing Section 6 Cr Film 13 Cr 2 O 3 Layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 軟化ガラス素材を押圧し、成形加工する
ガラス光学素子成形型において、成形型の成形面に位置
するレンズ有効面より外周の一部または全部に薄膜を生
成したことを特徴とするガラス光学素子成形用型。
1. A glass optical element molding die for pressing and processing a softened glass material, wherein a thin film is formed on a part or all of the outer periphery of the lens effective surface located on the molding surface of the molding die. Mold for molding glass optical elements.
【請求項2】 成形レンズの有効径なるレンズ加工面と
その外周に形成された平面ランド加工部を形成せしめ、
該レンズ加工面と該平面ランド加工部とを滑らかに連続
的に結合させたことを特徴とする請求項1記載のガラス
光学素子成形用型。
2. A lens processing surface having an effective diameter of a molded lens and a flat land processing portion formed on the outer periphery of the lens processing surface are formed.
The glass optical element molding die according to claim 1, wherein the lens processing surface and the flat land processing portion are smoothly and continuously joined.
【請求項3】 薄膜材質の表面自由エネルギーが被成形
軟化ガラスの表面自由エネルギーより小さい合金・金属
あるいはセラミックからなる物質であることを特徴とす
る請求項1記載のガラス光学素子成形用型。
3. The glass optical element molding die according to claim 1, wherein the thin film material has a surface free energy smaller than that of the softened glass to be molded and is made of an alloy, metal or ceramic.
JP7156194A 1994-03-16 1994-03-16 Glass optical element forming die Pending JPH07257932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7156194A JPH07257932A (en) 1994-03-16 1994-03-16 Glass optical element forming die

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7156194A JPH07257932A (en) 1994-03-16 1994-03-16 Glass optical element forming die

Publications (1)

Publication Number Publication Date
JPH07257932A true JPH07257932A (en) 1995-10-09

Family

ID=13464261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7156194A Pending JPH07257932A (en) 1994-03-16 1994-03-16 Glass optical element forming die

Country Status (1)

Country Link
JP (1) JPH07257932A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010105875A (en) * 2008-10-31 2010-05-13 Konica Minolta Opto Inc Releasing device of glass molded body, molding device of glass molded body, and method for producing glass molded body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010105875A (en) * 2008-10-31 2010-05-13 Konica Minolta Opto Inc Releasing device of glass molded body, molding device of glass molded body, and method for producing glass molded body

Similar Documents

Publication Publication Date Title
JP6087454B2 (en) Glass lens blank for polishing, manufacturing method thereof, and manufacturing method of optical lens
JPH07257932A (en) Glass optical element forming die
JPH0247411B2 (en) KOGAKUGARASUSOSHINOPURESUSEIKEIYOKATA
JP2001335334A (en) Optical element-forming mold
JPH0717729A (en) Glass lens forming mold
JP2008150225A (en) Press mold for molding glass optical device and manufacturing method and manufacturing apparatus therefor
JP3492005B2 (en) Glass optical element molding method
JP2002348129A (en) Method for manufacturing molding die for optical glass element and method for molding optical glass element
JPH11268920A (en) Forming mold for forming optical element and its production
JP6962702B2 (en) Molds for press molding, manufacturing methods for glass blanks, and manufacturing methods for glass substrates for magnetic disks
JP2008105874A (en) Method of manufacturing optical device and optical device
JPH11268921A (en) Press mold for forming glass
JPH01172542A (en) Mold member for molding of optical element
JP3185299B2 (en) Glass lens molding die and glass lens molding device
JP2004210550A (en) Molding mold
JPWO2015063888A1 (en) Optical glass material, polishing glass lens blank and optical lens, and polishing glass lens blank and optical lens manufacturing method
JPH06263462A (en) Glass lens forming mold
JP2984410B2 (en) Mold for optical element molding
JPH0361615B2 (en)
JPH0343214Y2 (en)
JP2964367B2 (en) Mold for optical element molding
JPH03159927A (en) Mold for forming optical element
JPH02137741A (en) Mold for making optical glass element
JPH03271125A (en) Mold for molding glass
JP2000072452A (en) Optical element molding die

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040601

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050517