JPH07255462A - 有機溶媒耐性微生物の取得方法及び該方法により取得した有機溶媒耐性微生物 - Google Patents

有機溶媒耐性微生物の取得方法及び該方法により取得した有機溶媒耐性微生物

Info

Publication number
JPH07255462A
JPH07255462A JP6264544A JP26454494A JPH07255462A JP H07255462 A JPH07255462 A JP H07255462A JP 6264544 A JP6264544 A JP 6264544A JP 26454494 A JP26454494 A JP 26454494A JP H07255462 A JPH07255462 A JP H07255462A
Authority
JP
Japan
Prior art keywords
microorganism
organic solvent
fatty acid
ferm
parent strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6264544A
Other languages
English (en)
Inventor
Ryuichiro Kurane
隆一郎 倉根
Takuichi Tsubata
卓一 津幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Tonen Corp filed Critical Agency of Industrial Science and Technology
Priority to JP6264544A priority Critical patent/JPH07255462A/ja
Priority to DE69534954T priority patent/DE69534954T2/de
Priority to EP95300656A priority patent/EP0666316B1/en
Publication of JPH07255462A publication Critical patent/JPH07255462A/ja
Priority to US08/741,335 priority patent/US5804435A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G32/00Refining of hydrocarbon oils by electric or magnetic means, by irradiation, or by using microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/01Preparation of mutants without inserting foreign genetic material therein; Screening processes therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/38Pseudomonas
    • C12R2001/40Pseudomonas putida
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/8215Microorganisms
    • Y10S435/822Microorganisms using bacteria or actinomycetales
    • Y10S435/874Pseudomonas
    • Y10S435/877Pseudomonas putida

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Virology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

(57)【要約】 【目的】 有機溶媒耐性微生物を得ること。 【構成】 親株微生物に変異処理を施し、有機溶媒を加
えて選択培養することを特徴とする有機溶媒耐性微生物
の取得方法及び該方法によって得られ得る有機溶媒耐性
微生物。 【効果】 元来、親水性で有用な機能を示すが有機溶媒
中では耐性を示さずその有用機能を発揮出来ない微生物
を、有機溶媒中で増殖し、なおかつ親株の有する有用機
能を発現する微生物に変換することができた。さらに、
親株微生物にシュウドモナス属細菌を用いることで、微
好気・有機溶媒中で難除去性有機硫黄化合物を分解する
バイオ脱硫菌を得ることができた。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、有機溶媒に耐性を有す
る微生物を変換(突然変異及び選択培養)により取得す
る方法及び該方法によって得られ得る有機溶媒耐性微生
物に関するものである。
【0002】また、有機硫黄化合物の分解能を有する有
機溶媒耐性微生物を用いたバイオ脱硫技術も提供する。
【0003】
【従来の技術及び発明が解決しようとする課題】バイオ
リアクター等に代表されるバイオテクノロジーは、様々
な産業分野で脚光を浴びており、進歩及び発展してき
た。その中には、優れた機能及び活性を有している微生
物等のバイオ触媒(生体触媒)技術も含まれている。
【0004】これらバイオ触媒の利用分野は、例えば、
アルコール、抗生物質、アミノ酸、タンパク、ホルモン
及び異性化糖の製造、並びにアミノ酸の不斉分割、環境
浄化及び燃料電池等であり、いずれも水系工程での利用
であった。
【0005】現在、石油関連工業及び化学工業に関して
も同様に、バイオテクノロジーの応用が検討されてい
る。しかしながら、非水系の工程を有するこれらの分野
には未だ応用されていないのが実情である。この最大の
理由は、バイオ触媒(即ち、微生物)が、元来、多量の
水の存在下でその活性を示すもの(親水性)であるため
であり、多量の油等(有機溶媒)の存在下では失活し、
さらには生存成育できないのが通常であるからである。
【0006】一方、世界における石油需要は、世界的な
産業活性化の必要性、発展途上国における消費の増加、
石油代替エネルギーの開発の頭打ち及び省エネルギーの
限界等から未だ底堅いものがある。特にガソリンや灯油
・軽油の需要は堅調で、石油の需要の構造は急速に軽質
化の方向に向かっている。
【0007】かかる軽質石油の需要の増大に伴い、石油
の精製分野では、省エネルギーや環境問題に関してなお
一層の進歩及び発展が望まれている。しかしながら、現
行の蒸留や化学反応を中心とした精製技術は、もはや成
熟した域に達しており、石油精製技術には、新たな技術
(即ち、バイオテクノロジー)の応用が望まれている。
【0008】石油精製技術において、バイオテクノロジ
ーの応用により解決すべき課題としては、例えば、高温
・高圧の操作条件を必要とする現行の石油精製プロセス
を常温・常圧で精製が可能なプロセスとすること、有機
硫黄化合物を確実に除去すること等が挙げられる。
【0009】それらの中でも、昨今の地球規模の環境問
題に対応し、微生物による油中からの有機硫黄化合物の
除去方法の確立は大変重要な課題である。
【0010】行政サイドにおいても、軽油・灯油の硫黄
分を、現在の0.5%から5年後には0.05%まで削
減することが検討されている。
【0011】一般に、石油中には0.05%〜5%の硫
黄が含有されており、その形態は、元素硫黄に加えて硫
酸塩、亜硫酸塩、チオ硫酸、チオフェン置換基を有する
ベンゾチオフェン、ジベンゾチオフェン及びアルキルベ
ンゾチオフェン等、多種類に及ぶ。これらの中でも、現
行の脱硫プロセスにおいて除去が困難なチオフェン骨格
を有するジベンゾチオフェン及びアルキルジベンゾチオ
フェンが石油の精製工程上、特に問題となっている。
【0012】これら難分解性の有機硫黄化合物を生分解
する微生物としては、窒素置換雰囲気(以下、『微好
気』という。)で成育する、牧野らの報告(牧野ら、
『石油成分中の含硫有機化合物資源化微生物の探索』、
1992年 4月、農芸化学会)があった。
【0013】しかしながら、一般に、微生物は有機溶媒
への耐性を有しておらず、これら微生物を用いて有機硫
黄化合物を生分解する場合、多量の水を必要とし、脱硫
プロセスの規模が巨大なものとなる欠点があった。
【0014】これまでにも有機溶媒系に微生物を適用す
る試みとして、自然界より耐有機溶媒耐性菌の取得が検
討されていた(Akira Inoue and Koki Horikoshi, "A P
seudomonas thrives in high concentrations of tolue
ne", Nature p.264-268 Vol.338 16 March 1989 )。
【0015】しかしながら、耐有機溶媒耐性菌が工業的
にも有用な機能を兼ね備えているとは限らず、多くの場
合には単に耐性のみを示すにすぎないという問題点を持
っていた。
【0016】これらの問題点を克服するため、自然界で
親水性ではあるが多くの有用な機能を有した有用微生物
を、その有用な機能を保持したまま親水性から耐有機溶
媒耐性菌に効率良く変換させ取得させ得る方法が開発さ
れれば、工業にとってその波及性及び進歩性は大きいも
のがある。
【0017】さらにまた、従来の有機溶媒耐性微生物の
多くは好気性の微生物であり、これらを用いた生分解で
は、空気(酸素)が稀薄な状態(嫌気的条件及び/又は
微好気的条件)の工程が多い石油工業等には応用が困難
であるという欠点があった。
【0018】尚、本発明でいう微好気的条件とは、酸素
はわずかに存在するが、それが爆発限界の酸素含有率以
下である条件を意味する。
【0019】従って、有機溶媒に耐性を有する微生物で
あって、嫌気又は微好気的に、各種の目的反応物に対し
て分解、合成及び/又は変換等の作用活性を有する微生
物の取得が、化学工業等の有機溶媒系の工程を有する各
種産業分野における一つの課題であるといえるが、その
ような微生物は未だ取得されていない。
【0020】
【課題を解決するための手段】本発明者らは、かかる問
題点を顧み、化学工業等においても利用可能な微生物を
取得すべく鋭意検討した結果、微生物の突然変異処理及
び有機溶媒中での選択培養により有機溶媒耐性微生物を
取得できることを見出だし本発明を完成させた。
【0021】即ち、本発明は、有機溶媒耐性微生物の取
得方法であって、親株微生物に変異処理を施し、有機溶
媒を加えて選択培養することを特徴とする前記取得方法
である。
【0022】ここで、親株微生物の変異処理としては、
γ線及びX線等の放射線を含めた紫外線の照射処理、並
びにニトロソグアニジン及びEMS(エチルメタンスル
フォネート)等の各種変異誘発物質による変異処理等、
どのような手法であっても良いが、親株微生物の菌体脂
肪酸組成を変えるような処理であることが好ましい。ま
た、菌体脂肪酸組成を変える際は、特に、微生物の菌体
脂肪酸中にトランス型不飽和脂肪酸、分枝脂肪酸又は奇
数炭素数の飽和脂肪酸を多く含有させることが好まし
く、これら脂肪酸の含量を多くすることで、生体膜中の
脂質の流動性を下げることができる。このような脂肪酸
としては、例えば、ヘプタデセン酸、ドデカン酸、及び
ヘプタデカン酸等が挙げられるが、この限りではない。
【0023】さらに、変異処理によって微生物に有機溶
媒耐性を付与すべく、親株微生物に対して以下のいずれ
かの性質をもつように変異処理を施す(後述の実施例5
〜7参照)。すなわち、(a)菌体内の遊離脂肪酸の全
脂肪酸に対する割合が高い、(b)菌体内リポ多糖の高
分子量部分(O鎖又はO抗原)が大きく減少又は欠除し
ている、(c)ヘプタノール、ノナノールなどの低級直
鎖脂肪アルコールの酸化により菌体内に奇数脂肪酸が増
大している、(d)毒性の強い有機溶媒と接触すること
により菌体内奇数脂肪酸が増大している。
【0024】有機溶媒耐性微生物は、このような性質を
もつことによって有機溶媒耐性が付与されていると推定
することができる。理論に拘束されるつもりはないが、
その作用機序については、次のように考えることができ
る。
【0025】毒性の強い有機溶媒とは、log Pが小
さい有機溶媒、すなわち水に溶け易い有機溶媒である、
それ故、バクテリアがこの毒性の強い有機溶媒を排除す
るためには、疎水性となることが重要であると考えられ
る。遊離脂肪酸はグリセロールリン酸を含まない脂肪酸
であるので、脂質に組み込まれた脂肪酸より疎水性が大
きい。ここで重要な点は、遊離脂肪酸の絶対量ではな
く、その割合である。たとえ絶対量が多くても、これに
比例して脂質に組込まれた脂肪酸が多ければ疎水性は打
ち消されてしまう。さらに、リポ多糖の高分子量側は親
水性の糖がたくさん結合したものである。これがはずれ
た、膜に埋め込まれた部分の親水性は非常に小さい。そ
れ故、高分子量側がなくなれば、疎水性となると考えら
れる。
【0026】次に、親株微生物としてはいかなる微生物
をも使用し得るが、各種の油・有機溶媒での耐性を獲得
したほうが生産性や反応速度の向上などが期待され、且
つ有機溶媒耐性微生物に変換する効果がより鮮明になる
ので有機溶媒感受性微生物を使用することが好ましい。
その代表的な例としてシュウドモナス属細菌が挙げられ
るが、この限りではない。
【0027】また、本発明は、前記取得方法によって得
られ得る有機溶媒耐性微生物にも係わり、該有機溶媒耐
性微生物は、親株微生物の有する性質の一部又は全部が
保存されていることが好ましい。
【0028】これら有機溶媒耐性微生物に保存される親
株微生物の有する有用な性質(機能)としては、例え
ば、分解活性機能、不斉合成等の合成活性(機能)及び
変換活性機能等が挙げられるが、この限りではない。ま
た、有機溶媒系で行った方が収率及び効率等の点で有利
である種々の反応にも、本発明の微生物を利用すること
が可能である。
【0029】分解活性機能が保存される例としては、例
えば、前記取得方法において、親株微生物に難除去性の
有機硫黄化合物を分解除去する親水性のバイオ脱硫菌で
あるシュウドモナス・プチダNo.69(FERM P
−13262、平成4年11月6日付きで通産省工業技
術院生命工学工業技術研究所微生物寄託センターに寄
託、特願平4−350074)を用いて取得した、難除
去性有機硫黄化合物の優れた分解能力が保存された有機
溶媒耐性微生物が挙げられる。即ち、シュウドモナス・
プチダNo.69−1(FERM BP−4519)、
シュウドモナス・プチダNo.69−2(FERM B
P−4520)及びシュウドモナス・プチダNo.69
−3(FERM BP−4521)であり、平成5年1
2月27日付きで通産省工業技術院生命工学工業技術研
究所微生物寄託センターに寄託されている。
【0030】これらは、微好気及び有機溶媒存在下で脱
硫能を有する有機溶媒耐性微生物であり、本発明の好ま
しい実施態様の一つである。即ち、これら微生物を石油
精製や石炭の脱硫工程に応用することにより、より効率
の良い、省エネルギーで安全な脱硫プロセスを確立する
ことが可能であろう。
【0031】また、本発明の方法において、微生物に有
機溶媒を加えて選択培養する工程は、寒天培地上に変異
処理した有機溶媒感受性微生物を塗布した上に有機溶媒
を目的の濃度比率で重層しても良く又は液体培養におい
て変異処理した有機溶媒感受性菌及び目的有機溶媒を一
緒に入れて培養しても良い。また、pH、温度及び通気
の割合(通気する場合)等の条件も当業者によって容易
に設定され得るが、好ましくは、その微生物が成育する
条件が良いことは言うまでもない。
【0032】また、本発明において使用される有機溶媒
は、微生物に耐性を付与しようとする有機溶媒であれば
どのようなものも使用可能である。
【0033】ところで、微生物に対して極めて毒性(殺
菌力)の高い有機溶媒としては、1−ヘプタノール及び
ベンゼンが挙げられる(Akira Inoue and Koki Horikos
hi,“A Pseudomonas thrives in high concentrations
of toluene ”, Nature p.264-268 Vol.338 16 March 1
989)。この理由で、本発明の実施例では、1−ヘプタ
ノール、1−ノナノール及び1−デカノールを使用して
有機溶媒耐性微生物が得られることを実証した。
【0034】しかしながら、他の有機溶媒に関しても本
発明の方法により有機溶媒耐性微生物が得られることは
当業者にとって自明のことであり、本発明でいう有機溶
媒が、実施例により限定されるものではないと解釈され
たい。
【0035】また、本発明の実施例では、親株微生物の
持つ有用な機能の一つとして分解活性機能をとりあげ、
例示するが、他の親株微生物の有用な機能、例えば、リ
パーゼによるエステル不斉合成等の合成活性(機能)又
は長鎖炭化水素からの長鎖脂肪酸等への変換活性機能等
を利用した実施態様も当業者には自明のことであり、容
易に実施することができよう。
【0036】本発明の方法の好適実施態様として以下の
方法を挙げることができるが、これに必ずしもとらわれ
るものではない。
【0037】1. 親株微生物が嫌気微生物及び/又は
微好気微生物である有機溶媒耐性微生物の取得方法。
【0038】2. 親株微生物がシュウドモナス属細菌
である有機溶媒耐性微生物の取得方法。
【0039】3. 前記シュウドモナス属細菌が有機溶
媒感受性微生物である有機溶媒耐性微生物の取得方法。
【0040】4. 前記有機溶媒感受性微生物がシュウ
ドモナス・プチダNo.69(FERM P−1326
2)である有機溶媒耐性微生物の取得方法。
【0041】以下、実施例により本発明を詳細に説明す
るが、本発明はこれに限定されるものではない。
【0042】
【実施例】
(参考例)先ず、シュウドモナス・プチダNo.69の
取得方法を示す。
【0043】さまざまな土壌と培養液A(1l中に以下
の物質を含んでいる。硝酸アンモニウム1.0g、リン
酸水素二カリウム2.0g、リン酸二水素カリウム1.
0g、酵母エキス30mg、ペプトン30mg、ビーフ
エキス30mg、塩化マグネシウム100mg、塩化カ
ルシウム10mg、塩化鉄(III )10mg、塩化マン
ガン10mg及び塩化亜鉛10mg。)と1000pp
mとなるように、難除去性有機硫黄化合物の代表例とし
てジベンゾチオフェンを密栓できる試験官に入れ、9
9.99%の窒素ガスを十分に培養液に通し、すぐに密
栓し、30℃で振盪することにより増殖してきた菌株を
得た。これを純化した菌株の一つは、シュウドモナス・
プチダNo.69と命名され、工業技術院微生物工業技
術研究所に微工研菌寄第13262号(FERM P−
13262)として寄託されている。
【0044】尚、本菌はジベンゾチオフェンの他にもア
ルキルジベンゾチオフェン等、他の難除去性有機硫黄化
合物をも分解するバイオ脱硫菌である。
【0045】(実施例1)シュウドモナス・プチダN
o.69を、紫外線照射し、有機溶媒を加えて選択培養
することにより、難除去性有機硫黄化合物の代表例とし
てジベンゾチオフェンを微好気・有機溶媒の存在下にお
いて分解する菌株を取得した。
【0046】先ず、シュウドモナス・プチダNo.69
をバクト社のNB液体培地(1l中にニュートリエント
ブロス8gを含む)に懸濁し、30℃で対数増殖期(6
60nmの濁度が0.3〜0.4)まで振盪培養した
後、培養液1mlを濃縮後、NB寒天培地(1l中にニ
ュートリエントブロス8g及びバクトアガー15gを含
む)に塗布した。
【0047】この寒天培地を15Wの殺菌灯(253.
7nmの紫外線を発する)の直下、60cmの所に置
き、菌の生存率が10-3〜10-4となるように20〜2
5秒間照射した。すぐに1−ヘプタノールを深さ1mm
となるように加え、アルミホイルで包んで、30℃で培
養した。2週間後、成育してきたコロニーを3度、1−
ヘプタノールを重層したNB寒天培地で継代培養するこ
とにより純化した。
【0048】上記のようにして得た菌株を、シュウドモ
ナス・プチダNo.69−1、シュウドモナス・プチダ
No.69−2及びシュウドモナス・プチダNo.69
−3と命名し、シュウドモナス・プチダNo.69−1
はFERM BP−4519号として、シュウドモナス
・プチダNo.69−2はFERM BP−4520号
として及びシュウドモナス・プチダNo.69−3はF
ERM BP−4521号として平成5年12月27日
付きで通産省工業技術院生命工学工業技術研究所微生物
寄託センターに寄託した。
【0049】(実施例2)(実施例1)で得た菌株の微
好気、有機溶媒存在下でのジベンゾチオフェン分解能を
以下のようにして求めた。
【0050】1−ヘプタノールを重層したNB寒天培地
で増殖させたシュウドモナス・プチダNo.69−1、
シュウドモナス・プチダNo.69−2及びシュウドモ
ナス・プチダNo.69−3を培養液B(1l中に0.
8gのニュートリエントブロスを含んでいる。)20m
lに懸濁し、0.2mlの1−デカノール(又は1−ノ
ナノール)を加え、99.99%の窒素ガスで培養液の
上層を置換した。
【0051】密栓した後、30℃で一昼夜振盪培養し
た。この培養液を遠心し、培養液Bを除き、沈殿した菌
体を培養液Aに懸濁し、培養液Aを20ml含むバイア
ルに移した。5%又は10%(体積/体積)となるよ
う、20mgのジベンゾチオフェンを含む1.05ml
又は2.22mlの1−デカノール(又は1−ノナノー
ル)を加え、培養液上層の空気を前述と同じ純度の窒素
ガスで置換し、密栓して30℃で培養した。20日間
後、塩酸を加えて、pHを2.5にした後、20mlの
酢酸エチルで残存するジベンゾチオフェンを抽出した。
定量はガスクロマトグラフィーにより行った。ガスクロ
マトグラフィーの装置は島津社製GC14Aを用い、カ
ラムはジーエルサイエンス社製のシリコンOV17
1.5% 80/100メッシュ クロモソーブ WA
W DWCSを用いた。分析の条件は、次の通りに行っ
た。まず、インジェクターの温度を290℃にし、昇温
は155℃から185℃まで1分間に10℃で行い、検
出はFID(Flame Ionization De
tector)を用い、290℃で行った。内部標準と
してカルバゾールを用いた。実験結果は2サンプル以上
の平均値とし、表1に示した。数値は分解したジベンゾ
チオフェン(ppm)を表している。
【0052】
【表1】 (実施例3)シュウドモナス・プチダNo.69とシュ
ウドモナス・プチダNo.69−3を75mlの終濃度
10mMの硫酸マグネシウムと5mMの塩化カルシウム
を含むNB液体培地と75mlの1−ヘプタノールを含
む500mlの三角フラスコに懸濁し、30℃で振盪培
養した。一定時間ごとに660nmの濁度と生菌数を測
定した。
【0053】生菌数の測定は次の通りに行った。培養液
0.1mlを9.9mlの0.9%(重量/体積)塩化
ナトリウム溶液と混ぜ、100倍希釈液とし、さらにこ
の希釈液を、順次、10倍づつ希釈して、10-3、10
-4、10-5、10-6、10-7、10-8希釈液を調製し
た。各希釈液0.1mlをNB寒天培地に塗布して、3
0℃で2日間培養した。生育してきたコロニーを測定
し、もとの培養液1ml中に生存する菌体数を計算し
た。結果は図1及び2に示した。
【0054】(実施例4)取得した有機溶媒耐性微生物
及び変換する前の有機溶媒感受性微生物の脂肪酸組成の
変化を調べた。
【0055】20000ppmの濃度のジベンゾチオフ
ェンを含む1−ヘプタノールを重層した寒天培地C(培
養液Aに1l当たり、15gの寒天を含む)に増殖させ
たシュウドモナス・プチダNo.69−3(FERM
BP−4521)を、10%(体積/体積)1−ヘプタ
ノール、終濃度10mMの硫酸マグネシウムと5mMの
塩化カルシウムを含む90%NB液体培地に懸濁し、3
0℃で一昼夜、振盪培養した。遠心により、菌体を得、
脂質を抽出後、脂肪酸に加水分解して、脂肪酸メチルを
作製、抽出した。
【0056】脂質の抽出は、BlighとDyerの方
法[E.G.Bligh, W.J.Dyer, Ca
n.J.Biochem.Physiol.,Vol.
37,p.911(1959)]に従い、脂質からの脂
肪酸への加水分解及び脂肪酸メチルの作製はMorri
sonとSmithらの方法[W.R.Morriso
n,L.Smith,J.Lipid Res.,Vo
l.5,p.600(1964)]に従って行った。
【0057】尚、有機溶媒感受性微生物としてはシュウ
ドモナス・プチダNo.69(FERM P−1326
2)を用い、NB寒天培地で増殖させ、終濃度10mM
の硫酸マグネシウムと5mMの塩化カルシウムを含むN
B液体培地で一晩、30℃で振盪培養したことを除いて
は、前述と同じ方法で脂肪酸メチルを作製、抽出した。
【0058】次に、抽出した脂肪酸メチルの分析条件を
示す。島津製作所社製のガスクロマトグラフィー分析装
置GC15Aに、信和化工株式会社製のキャピラリーカ
ラム(FFS ULBON HR−SS−10、口径
0.32mm、長さ50m)を取り付け、インジェクタ
ー温度を250℃、昇温は150℃から220℃まで1
分間に2℃で行った。検出はFIDで行い、ディテクタ
ー温度は250℃で行った。この結果を図3及び4に示
す。
【0059】これより、取得前の菌株の脂肪酸組成はシ
ュウドモナス・プチダに典型的なものであったのに対し
て、取得した菌株では、不飽和結合や分枝鎖を持つ脂肪
酸(例えば、C17:1、C18:0 iso等)が多く含有されて
いることが分かる。
【0060】(実施例5)シュウドモナス・プチダN
o.69−3(FERM BP−4521)をn−ヘプ
タノール、2−オクタノン、2−ヘプタノール、エトキ
シベンゼン、n−オクタノール、n−ノナノールに浸さ
れたN寒天培地(ニュートリエントブロス8gとバクト
アーガー15gを1lに含み、5mM塩化カルシウム、
10mM硫酸マグネシウムに調節されている)で約一週
間、30℃で培養し、増殖してきた菌体をそれぞれ、同
じ有機溶媒を体積で10%含むN液体培地(ニュートリ
エントブロス8gを1lに含み、5mM塩化カルシウ
ム、10mM硫酸マグネシウムに調節されている)に一
部移し、30℃で振盪培養した。それぞれの菌が定常期
にはいった頃に集菌した。一部はBlighとDyer
の方法(Bligh,E.G., and W.J.D
yer,Can.J.Biochem.Physio
l., vol 37, Page 911−917,
1959年)により、全脂肪酸を抽出し、Morri
sonとSmithの方法(Morrison, W.
R., and L.Smith, J.Lipid
Res., vol 5, Page 600−60
8, 1964年)によりメチル化を行った。また、残
りの菌の一部を用い、Cohenらの方法(Cohe
n,M.,R.G.H.Morgan, and A.
F.Hoffman, J.Lipid Res,.
vol 10, Page 614−616, 196
9年)、5%塩酸−メタノール溶液により遊離脂肪酸の
みメチル化した。脂肪酸メチルの検出は島津GC15A
によって行った。分析に用いられたカラムは信和化工株
式会社FFS ULBON HR−SS−10キャピラ
リーカラムで、40℃から220℃まで2℃の昇温で行
った。ピークの同定は市販標準品を用いて行なった。結
果を表2及び表3に示す。
【0061】
【表2】
【0062】
【表3】 表2は各有機溶媒中で培養したときに検出される菌体内
の各脂肪酸の全脂肪酸に対する割合を示し、特に菌体内
トランス型脂肪酸と奇数脂肪酸の割合が高いことが分か
る。また表3は遊離脂肪酸の全脂肪酸に対する割合が高
まることを示しており、特にトランス型脂肪酸と奇数脂
肪酸の割合が高い。
【0063】(実施例6)実施例5と同じ培養条件(た
だし有機溶媒としては、n−ヘプタノール、n−オクタ
ノール、n−ノナノール、n−デカノール、n−ウンデ
カノール、n−ドデカノールを用いた)で培養後、遠心
して(10000g,10分)上清を用いた。この上清
から酸を5%炭酸水素ナトリウムで抽出し、塩酸でpH
を1として酸性とした後、エーテルで抽出した。ロータ
リーエバポレーターで完全に乾固した後、前述のMor
risonとSmithの方法により、メチル化した。
脂肪酸メチルの検出は実施例5と同様に行った。結果を
図5(横軸:脂肪アルコールの炭素数、縦軸:変換効率
の常用対数)を示した。
【0064】図から、奇数炭素数の直鎖脂肪アルコール
の対応奇数脂肪酸への酸化効率がより高いことが分か
る。
【0065】(実施例7)実施例5と同じ条件で培養
(ただし、リポ多糖のヘプタノール濃度依存を調べる実
験では濃度は体積で0%、0.1%、1.0%、10.
0%が用いられた。有機溶媒依存を調べる実験ではデカ
リン、n−ドデカノール、n−ウンデカノール、n−デ
カノール、n−ノナノール、n−オクタノール、エトキ
シベンゼン、n−ヘプタノールが用いられた)して得た
菌体を、PrestonとPennerの方法(Pre
ston,M.A. and J.L.Penner,
Infect.Immun., vol 55, P
age 1806−1812,1987年)でタンパク
質分解し、LaemmliとFavreの方法(Lae
mmli,U.K. and M.Favre,J.M
ol.Biol.,vol 80, Page 575
−599, 1973年)で電気泳動を行い、Tsai
とFraschの方法(Tsai,C.M. and
C.E.Frasch, Anal.Bioche
m., vol 119, Page 115−11
9, 1982年)によりリポ多糖を検出した。結果を
図6および図7に示した。
【0066】図6はリポ多糖のn−ヘプタノール濃度依
存性を示しているが、ヘプタノール濃度が0.1%でも
すでに高分子量側が欠除されており、また有機溶媒がな
いと親株と同じく高分子量側が再生されることが分か
る。また図7はリポ多糖有機溶媒依存性を示している
が、各有機溶媒と培養したときのリポ多糖より、レーン
No.が大きくなるに従い、log Pが小さい有機溶
媒が使われている。従って、高分子量側がだんだん欠除
していることが分かる。
【0067】
【発明の効果】有機溶媒中で増殖し、なおかつ親水性の
親株の持つ有用な機能を発現する微生物を元来親水性の
微生物から効果的に変換取得して得ることができた。さ
らに、親株微生物にシュウドモナス属細菌を用いること
で、微好気・有機溶媒中で難除去性有機硫黄化合物を分
解するバイオ脱硫菌を得ることができた。
【図面の簡単な説明】
【図1】シュウドモナス・プチダNo.69(×)とシ
ュウドモナス・プチダNo.69−3(○)を50%
(体積/体積)の1−ヘプタノール存在下で培養した時
の660nmの濁度の経時変化を示す。
【図2】図1の条件下で培養した時のシュウドモナス・
プチダNo.69(×)とシュウドモナス・プチダN
o.69−3(○)の生菌数を示す。
【図3】シュウドモナス・プチダNo.69の脂肪酸メ
チルの分析結果を示す。
【図4】シュウドモナス・プチダNo.69−3の脂肪
酸メチルの分析結果を示す。
【図5】炭素数の異なる直鎖脂肪アルコールの、対応す
る脂肪酸への酸化効率の比較を示す。
【図6】リポ多糖のn−ヘプタノール濃度依存性を示す
電気泳動写真である。レーンlはコントロールとして、
有機溶媒を含まないN液体培地で培養したNo.69
(FERM P−13262)、レーン2は0%、レー
ン3は0.1%、レーン4は1.0%、レーン5は10
%を示す。
【図7】リポ多糖有機溶媒依存性を示す電気泳動写真で
ある。レーン1はコントロールの有機溶媒を含まないN
液体培地で培養したNo.69(FERM P−132
62)、レーン2はデカリン、レーン3はn−ドデカノ
ール、レーン4はn−ウンデカノール、レーン5はn−
デカノール、レーン6はn−ノナノール、レーン7はn
−オクタノール、レーン8はエトキシベンゼン、レーン
9はヘプタノールを示す。
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // C02F 3/34 ZAB Z (C12N 1/20 C12R 1:40) (72)発明者 津幡 卓一 埼玉県入間郡大井町西鶴ケ岡一丁目3番1 号 東燃株式会社総合研究所内

Claims (12)

    【特許請求の範囲】
  1. 【請求項1】 親株微生物に変異処理を施し、有機溶媒
    を加えて選択培養することを特徴とする有機溶媒耐性微
    生物の取得方法。
  2. 【請求項2】 変異処理により親株微生物の菌体脂肪酸
    組成が変わる請求項1の方法。
  3. 【請求項3】 変異処理により親株微生物のリポ多糖組
    成が変わる請求項1の方法。
  4. 【請求項4】 変異処理により、菌体脂肪酸組成中のト
    ランス型不飽和脂肪酸、分枝脂肪酸及び/又は奇数炭素
    数の飽和脂肪酸の含量が増大する請求項2の方法。
  5. 【請求項5】 変異処理により、菌体内遊離脂肪酸の全
    脂肪酸に対する割合を高める請求項1の方法。
  6. 【請求項6】 変異処理により、低級直鎖脂肪アルコー
    ルの酸化をして菌体内に奇数脂肪酸を高める請求項1の
    方法。
  7. 【請求項7】 変異処理により、毒性の強い有機溶媒と
    接して奇数脂肪酸を高める請求項1の方法。
  8. 【請求項8】 変異処理により、菌体内リポ多糖の高分
    子側の割合を減少又は欠除させる請求項3の方法。
  9. 【請求項9】 請求項1〜8のいずれかの方法により得
    られる有機溶媒耐性微生物。
  10. 【請求項10】 親株微生物の有する性質の一部又は全
    部が保存されている請求項9の微生物。
  11. 【請求項11】 有機硫黄化合物の生分解性が保存され
    た請求項10の微生物。
  12. 【請求項12】 シュウドモナス・プチダNo.69−
    1(FERM BP−4519)、シュウドモナス・プ
    チダNo.69−2(FERM BP−4520)又は
    シュウドモナス・プチダNo.69−3(FERM B
    P−4521)である請求項11の微生物。
JP6264544A 1994-02-02 1994-10-04 有機溶媒耐性微生物の取得方法及び該方法により取得した有機溶媒耐性微生物 Pending JPH07255462A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP6264544A JPH07255462A (ja) 1994-02-02 1994-10-04 有機溶媒耐性微生物の取得方法及び該方法により取得した有機溶媒耐性微生物
DE69534954T DE69534954T2 (de) 1994-02-02 1995-02-02 Methode zur Darstellung von Mikroorganismen welche resistent für organische Lösungsmittel sind, sowie organische Lösungsmittel resistente Mikroorganismen, durch diese Methode erhalten
EP95300656A EP0666316B1 (en) 1994-02-02 1995-02-02 Method for obtaining organic solvent-resistant microorganisms and organic solvent-resistant microorganisms obtainable by the method
US08/741,335 US5804435A (en) 1994-02-02 1996-10-29 Method for obtaining organic solvent-resistant microorganisms and organic solvent-resistant microorganisms obtainable by the method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-11252 1994-02-02
JP1125294 1994-02-02
JP6264544A JPH07255462A (ja) 1994-02-02 1994-10-04 有機溶媒耐性微生物の取得方法及び該方法により取得した有機溶媒耐性微生物

Publications (1)

Publication Number Publication Date
JPH07255462A true JPH07255462A (ja) 1995-10-09

Family

ID=26346667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6264544A Pending JPH07255462A (ja) 1994-02-02 1994-10-04 有機溶媒耐性微生物の取得方法及び該方法により取得した有機溶媒耐性微生物

Country Status (4)

Country Link
US (1) US5804435A (ja)
EP (1) EP0666316B1 (ja)
JP (1) JPH07255462A (ja)
DE (1) DE69534954T2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003073680A (ja) * 2001-09-04 2003-03-12 Kawasaki Heavy Ind Ltd 有機性廃棄物のメタン発酵ガスの脱硫装置
JP2017525939A (ja) * 2014-06-12 2017-09-07 ヒグロス インベスト ゲーエムベーハー 溶液中の内毒素の脱マスキングの方法
US10697958B2 (en) 2014-06-12 2020-06-30 Hyglos Invest Gmbh Unmasking endotoxins in solution

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6020185A (en) * 1997-05-23 2000-02-01 Geovation Consultants, Inc. Method and composition for the anaerobic biodegradation of toxic compounds
US6077432A (en) * 1999-03-15 2000-06-20 Applied Research Associates, Inc. Bio-degradation of ammonium perchlorate, nitrate, hydrolysates and other energetic materials
US6365410B1 (en) 1999-05-19 2002-04-02 Genencor International, Inc. Directed evolution of microorganisms
US7101410B1 (en) 2004-06-03 2006-09-05 Baugh Clarence L Method for the microbiological desulfurization of fossil fuels
US7998724B2 (en) * 2007-04-27 2011-08-16 Ut-Battelle Llc Removal of mercury from coal via a microbial pretreatment process
US20110195505A1 (en) * 2009-10-08 2011-08-11 Butamax(Tm) Advanced Biofuels Llc Bacterial strains for butanol production
CN106007242B (zh) * 2015-07-26 2021-10-26 重庆新知创科技有限公司 一种去除含铬污水污染物的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0218734A1 (en) * 1985-10-02 1987-04-22 Atlantic Research Corporation A novel mutant microorganism and its use in removing organic sulfur compounds
JPH07100026B2 (ja) * 1991-09-30 1995-11-01 海洋科学技術センター フラボバクテリウム属に属する新規微生物
JPH07103379B2 (ja) * 1992-11-13 1995-11-08 工業技術院長 バイオ脱硫法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003073680A (ja) * 2001-09-04 2003-03-12 Kawasaki Heavy Ind Ltd 有機性廃棄物のメタン発酵ガスの脱硫装置
JP2017525939A (ja) * 2014-06-12 2017-09-07 ヒグロス インベスト ゲーエムベーハー 溶液中の内毒素の脱マスキングの方法
US10585086B2 (en) 2014-06-12 2020-03-10 Hyglos Invest Gmbh Unmasking endotoxins in solution
US10697958B2 (en) 2014-06-12 2020-06-30 Hyglos Invest Gmbh Unmasking endotoxins in solution
US11092592B2 (en) 2014-06-12 2021-08-17 Biomérieux Deutschland Gmbh Unmasking endotoxins in solution
US11860158B2 (en) 2014-06-12 2024-01-02 Biomérieux Deutschland Gmbh Unmasking endotoxins in solution

Also Published As

Publication number Publication date
EP0666316B1 (en) 2006-04-26
US5804435A (en) 1998-09-08
DE69534954D1 (de) 2006-06-01
DE69534954T2 (de) 2006-12-28
EP0666316A3 (en) 1998-05-20
EP0666316A2 (en) 1995-08-09

Similar Documents

Publication Publication Date Title
Guarino et al. Assessment of three approaches of bioremediation (Natural Attenuation, Landfarming and Bioagumentation–Assistited Landfarming) for a petroleum hydrocarbons contaminated soil
Kureel et al. Biodegradation and kinetic study of benzene in bioreactor packed with PUF and alginate beads and immobilized with Bacillus sp. M3
Caccavo Jr et al. Geovibrio ferrireducens, a phylogenetically distinct dissimilatory Fe (III)-reducing bacterium
CN110846257A (zh) 降解长链烷烃的微生物菌及其应用
Kaushik et al. Integrating photobiological hydrogen production with dye–metal bioremoval from simulated textile wastewater
JPH07255462A (ja) 有機溶媒耐性微生物の取得方法及び該方法により取得した有機溶媒耐性微生物
Kim et al. Influence of phenol on the biodegradation of pyridine by freely suspended and immobilized Pseudomonas putida MK1
JPH0369957B2 (ja)
CN106635872B (zh) 一株莫海威芽孢杆菌及其应用
CN111733098A (zh) 一种芽孢杆菌在低温降解石油烃中的应用
Fatajeva et al. The use of Acinetobacter sp. for oil hydrocarbon degradation in saline waters
Plas et al. Degradation of carbondisulphide by a Thiobacillus isolate
CN101670238B (zh) 一种去除环境中甲烷的方法
JP2008043321A (ja) クロレラ・ブルガリスおよびこれを用いたバイオレメディエーション方法、ならびにバイオリアクタおよびこれを用いた有害物質除去方法。
KR100464107B1 (ko) 유류분해 미생물제제 및 그 제조방법
JP2566708B2 (ja) フラン化合物の生物分解方法および2−フランカルボン酸の製造方法
JP2005270970A (ja) テトラクロロエチレンの分解方法および脱塩素微生物
JP2991395B2 (ja) 5−アミノレブリン酸生産微生物および5−アミノレブリン酸の製造方法
RU2656145C1 (ru) СПОСОБ БИОДЕСТРУКЦИИ ДЕГИДРОАБИЕТИНОВОЙ КИСЛОТЫ С ИСПОЛЬЗОВАНИЕМ ШТАММА Rhodococcus rhodochrous ИЭГМ 107
JPH06184557A (ja) バイオ脱硫法
CN1156580C (zh) 用于高温氧化的嗜热甲胺氮营养菌
JP2636175B2 (ja) 微生物を用いた脱窒素方法
Ankita et al. Soil fungi
Surakusumah et al. The role and dynamics of fungi population as a remediator in used motor vehicle oil biodegradation
Adams et al. Chlorpyrifos degradation by Bacillus sp. strain UPMB10 isolated from polluted environment: Analysis and characterization of the metabolite by GC-MS

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050408

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050824

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051004

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20060407