JPH07241466A - Catalyst for purification of waste gas and its production - Google Patents

Catalyst for purification of waste gas and its production

Info

Publication number
JPH07241466A
JPH07241466A JP6065570A JP6557094A JPH07241466A JP H07241466 A JPH07241466 A JP H07241466A JP 6065570 A JP6065570 A JP 6065570A JP 6557094 A JP6557094 A JP 6557094A JP H07241466 A JPH07241466 A JP H07241466A
Authority
JP
Japan
Prior art keywords
silica
catalyst
exhaust gas
metal
titanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6065570A
Other languages
Japanese (ja)
Inventor
Yoshinori Shirasaki
義則 白▲さき▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP6065570A priority Critical patent/JPH07241466A/en
Publication of JPH07241466A publication Critical patent/JPH07241466A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a catalyst effective especially at high temp. and excellent in the rate of removal of NOx, the rate of removal of CO and the rate of removal of hydrocarbon by carrying a metal of the platinum group on crystalline titanium-contg. silica as a double oxide obtd. by allowing a titanate to coexist with amorphous silica. CONSTITUTION:Amorphous silica such as colloidal silica, together with a titanate such as sodium titanate, is heated in an aq. medium under pressure to produce crystalline titanium-contg. silica as a double oxide and a metal of the platinum group such as Pt or Rh is uniformly and tightly carried on the double oxide by ion exchange, impregnation or other method. The resultant catalyst is especially effective in the case where reaction temp., that is, the treatment temp. of waste gas is high.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車等の内燃機関や
火力発電その他から排出される排気ガス中からNOx、
炭化水素、CO等を浄化する触媒及びその製造法に関
し、より具体的には、結晶性チタン含有シリカ複合酸化
物からなるNOx、メタン等の炭化水素及びCOを含有
する排ガスの浄化用触媒及びその製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to NOx from exhaust gas emitted from internal combustion engines such as automobiles, thermal power generation, etc.
TECHNICAL FIELD The present invention relates to a catalyst for purifying hydrocarbons, CO and the like, and a method for producing the same, and more specifically, a catalyst for purifying exhaust gas containing hydrocarbons such as NOx and methane, which consist of silica composite oxide containing crystalline titanium, and CO, and the same. Regarding manufacturing method.

【0002】[0002]

【従来の技術】産業廃棄物、都市ゴミ等の焼却時におい
ては、それら廃棄物の由来、種類、組成等にもよるが、
NOxやCO、或いはSOx、炭化水素、塩化水素、臭
気等が生成する。このため、これらを含む排ガスに対し
て種々の対策が採られ、さらに研究、開発が進められて
おり、この点、自動車、火力発電、またコ−ジェネレ−
ションシステム等から排出される排ガスについても同様
である。
2. Description of the Related Art When incinerating industrial waste, municipal waste, etc., it depends on the origin, type, composition, etc. of the waste.
NOx, CO, or SOx, hydrocarbons, hydrogen chloride, odors, etc. are generated. Therefore, various measures have been taken against the exhaust gas containing these, and further research and development have been advanced. In this respect, automobiles, thermal power generation, and cogeneration
The same applies to the exhaust gas emitted from the system.

【0003】各種排ガス中のそれら成分のうちでも、特
にNOxの処理については、いわゆる排煙脱硝技術とし
て、例えば無触媒還元法、接触分解法、非選択又は選択
接触還元法、吸着法、電子線照射法、溶融塩吸収法、還
元吸収法その他種々の方法が知られているが、これらの
うち、その処理に当たり、触媒を使用して浄化する接触
還元法は、通常、NOxを最終的にN2 に変え、無害と
するものであるため、特に注目される。
Among these components in various exhaust gases, especially for the treatment of NOx, so-called flue gas denitration technology is used, for example, non-catalytic reduction method, catalytic cracking method, non-selective or selective catalytic reduction method, adsorption method, electron beam. Various methods such as irradiation method, molten salt absorption method, reduction absorption method and the like are known. Among them, the catalytic reduction method of purifying by using a catalyst for the treatment is usually NOx in the end. It is changed to 2 to make it harmless, so it is especially noted.

【0004】これまで、その接触還元法に使用する触媒
としては、Pt、Rh、Pd等の貴金属、TiO2、V2
5、Cr23、Fe23 等の金属酸化物、希土類酸化
物、硫化物、その他各種のものがあるが、これらは、使
用担体を含めて、排ガスに含まれる、被処理有害ガスの
種類や随伴酸素の量的割合等により適宜使い分けられて
適用されている。
So far, the catalysts used in the catalytic reduction method include noble metals such as Pt, Rh and Pd, TiO 2 and V 2.
There are various kinds of metal oxides such as O 5 , Cr 2 O 3 and Fe 2 O 3 , oxides of rare earths, sulfides, and various other substances. These are harmful substances to be treated, which are contained in exhaust gas including the carrier used. It is properly used depending on the type of gas and the quantitative ratio of the associated oxygen.

【0005】例えば、特開平4−193347号公報で
は、近年、ガソリンエンジンの低燃費化や排出CO2
低減化に伴い発生し、問題となっている「酸素を過剰に
含む希薄燃焼排気ガス」から、NOx、CO及び炭化水
素を酸素過剰雰囲気下に同時に除去する排気ガス浄化触
媒が提案されている。
For example, in Japanese Unexamined Patent Publication No. 4-193347, there has recently been a problem "dilute combustion exhaust gas containing an excess of oxygen" which has been caused by a reduction in fuel consumption of a gasoline engine and reduction of CO 2 emission. Therefore, an exhaust gas purifying catalyst that simultaneously removes NOx, CO and hydrocarbons in an oxygen excess atmosphere has been proposed.

【0006】この触媒は、組成式[「Mn(FenSi
96-n192)・16H2O」(式中、MはNaイオン又は
Kイオンを表わし、n<27である)]で示される結晶
性鉄シリケ−トにPt、Pd、Rh、Cu及びCoの中
から選ばれる少なくとも一種の金属を担持せしめてなる
もので、排気ガス中の炭化水素と酸素との反応よりも、
炭化水素とNOxとの反応を優先的に促進させることに
より、NOxを浄化することができるというものであ
る。
This catalyst has the compositional formula ["M n (Fe n Si
96-n O 192 ) .16H 2 O "(wherein M represents Na ion or K ion, n <27)], Pt, Pd, Rh, Cu and At least one metal selected from Co is supported, and rather than the reaction between hydrocarbons and oxygen in the exhaust gas,
It is possible to purify NOx by preferentially promoting the reaction between hydrocarbons and NOx.

【0007】そして、その組成式を有する結晶性鉄シリ
ケ−トを製造する手法としては、ケイ酸塩である水ガラ
スと鉄イオン等とを水熱合成することにより容易に得る
ことができるとし、その実施例の記載によれば、硝酸
鉄、水ガラス、硫酸及びテトラプロピルアンモニウムヒ
ドロキサイドの水溶液を混合し、オ−トクレ−ブ中、温
度210℃、60時間保持し、冷却、乾燥後、窒素流通
下、550℃での15時間の焼成するのに続き、空気流
通下、550℃で5時間焼成することにより製造されて
いる。
As a method for producing a crystalline iron silicate having the composition formula, it can be easily obtained by hydrothermally synthesizing water glass, which is a silicate, and iron ions. According to the description of the examples, iron nitrate, water glass, sulfuric acid and an aqueous solution of tetrapropylammonium hydroxide are mixed and kept in an autoclave at a temperature of 210 ° C. for 60 hours, cooled and dried, and then nitrogen. It is produced by baking under flowing air for 15 hours at 550 ° C., followed by baking under flowing air for 5 hours at 550 ° C.

【0008】[0008]

【発明が解決しようとする課題】本発明者は、これまで
提案された、このようなシリケ−ト系の触媒を使用する
技術をも前提にして、NOx等を含有する排ガス浄化用
の触媒又は担体につき鋭意検討、研究を進めているう
ち、非晶質のシリカと特定の金属酸塩との反応により得
られた結晶性複合酸化物が、NOx、炭化水素及びCO
を含有する排ガスの浄化用としてきわめて特異な特性を
示し、それらの成分の浄化率を格段に改善し得ることを
見い出し、本発明に到達するに至ったものである。
DISCLOSURE OF THE INVENTION The present inventor has made a catalyst for purifying exhaust gas containing NOx or the like, on the premise of the technique proposed so far, which uses such a silicate catalyst. As a result of intensive studies and research on the carrier, a crystalline complex oxide obtained by the reaction of amorphous silica with a specific metal salt is NOx, hydrocarbon and CO.
The present invention has reached the present invention by discovering that it exhibits extremely peculiar characteristics for purification of exhaust gas containing carbon dioxide, and that the purification rate of those components can be markedly improved.

【0009】すなわち、本発明は、非晶質シリカと特定
の金属酸塩との反応により得られた結晶性複合酸化物か
らなる担体に所定の金属を担持させてなるNOx、炭化
水素及びCOを含有する排ガスの浄化用触媒及びその製
造法を提供することを目的とするものである。
That is, according to the present invention, NOx, hydrocarbon and CO obtained by supporting a predetermined metal on a carrier composed of a crystalline complex oxide obtained by the reaction of amorphous silica and a specific metal acid salt. It is an object of the present invention to provide an exhaust gas-purifying catalyst contained therein and a method for producing the same.

【0010】[0010]

【課題を解決するための手段】本発明は、水性媒体中、
非晶質シリカにチタン酸塩を共存させることにより得ら
れた結晶性チタン含有シリカ複合酸化物に白金族金属を
担持してなることを特徴とする排ガス浄化用触媒を提供
するものである。
The present invention is directed to an aqueous medium,
The catalyst for purifying exhaust gas is characterized in that a platinum group metal is supported on a crystalline titanium-containing silica composite oxide obtained by coexisting a titanate with amorphous silica.

【0011】また、本発明は、水性媒体中において、非
晶質シリカをチタン酸ナトリウム等のチタン酸塩ととも
に、加圧下、加熱することにより結晶性チタン含有シリ
カ複合酸化物を製造し、これに白金族金属を担持させる
ことを特徴とする排ガス浄化用触媒の製造法を提供する
ものである。
The present invention also produces a crystalline titanium-containing silica composite oxide by heating amorphous silica with a titanate such as sodium titanate under pressure in an aqueous medium. The present invention provides a method for producing a catalyst for purifying exhaust gas, which comprises supporting a platinum group metal.

【0012】本発明において、その原料として使用する
非晶質シリカすなわち無定形シリカとしては、反応性の
ものであれば使用することができ、具体的には、例えば
コロイド状シリカ、ホワイトカ−ボン(四塩化ケイ素か
らの気相生成法等で製造された高純度含水シリカ)、水
ガラス等を挙げることができる。
In the present invention, as the amorphous silica used as the raw material, that is, amorphous silica, any reactive one can be used, and specifically, for example, colloidal silica and white carbon. (High-purity hydrous silica produced by a vapor phase production method from silicon tetrachloride), water glass and the like.

【0013】また、チタン酸塩としては、非晶質シリカ
と所定の反応条件下で反応性であれば、特に制限はな
く、使用することができ、その例としては、チタン酸ナ
トリウム等を挙げることができる。
The titanate may be used without particular limitation as long as it is reactive with amorphous silica under predetermined reaction conditions, and examples thereof include sodium titanate. be able to.

【0014】また、本発明においては、上記のようにし
て得られた結晶性複合酸化物に、これを担体として、金
属を担持させるが、この金属としては、Pt、Rh、P
d等の貴金属を使用する。またその担持の仕方として
は、それら金属を均質且つ強固に担持させることができ
れば、特に制限はなく、例えばイオン交換法、含浸法、
沈着法その他適宜の方法を採ることができる。
In the present invention, the crystalline composite oxide obtained as described above is loaded with a metal as a carrier, and the metal is Pt, Rh, P.
Noble metal such as d is used. The method of supporting the metal is not particularly limited as long as the metal can be uniformly and strongly supported, and for example, an ion exchange method, an impregnation method,
A deposition method and other appropriate methods can be adopted.

【0015】[0015]

【実施例】以下、本発明の実施例を、その担持金属とし
てPdを使用した場合について説明するが、本発明が、
その処理温度、処理時間その他に関し、この実施例に限
定されるものではないことは勿論である。
EXAMPLES Examples of the present invention will be described below using Pd as a supporting metal.
It is needless to say that the processing temperature, the processing time and the like are not limited to those in this embodiment.

【0016】《実施例1》まず、原料として市販の非晶
質シリカとチタン酸ナトリウム(Na2Ti37:添川
理化学社製、含量=純度99.9%)とを用意し、ビ−
カ−中、次のA〜C液を調製した。 A液:蒸留水100.0g+水酸化ナトリウム10.4
g B液:蒸留水100.0g+チタン酸ナトリウム26.
3g C液:蒸留水340.0g+非晶質シリカ(SiO2
90.0g
Example 1 First, commercially available amorphous silica and sodium titanate (Na 2 Ti 3 O 7 : manufactured by Soegawa Rikagaku Co., content = purity 99.9%) were prepared as raw materials, and beer
The following solutions A to C were prepared in a car. Solution A: distilled water 100.0 g + sodium hydroxide 10.4
g liquid B: distilled water 100.0 g + sodium titanate 26.
3 g liquid C: distilled water 340.0 g + amorphous silica (SiO 2 ).
90.0 g

【0017】次いで、A液をB液に攪拌しながら加え、
さらにこの混合液をC液に攪拌しながら加えた。その後
この混合液をテフロン製1リットルビ−カ−に移し、こ
れをオ−トクレ−ブ中に入れ、攪拌しながら水熱合成を
行った。なお、この場合の攪拌速度は200rpmとし
たが、本発明を実施するに際しては、この攪拌自体必要
に応じて行えば足りるものである。
Then, the liquid A is added to the liquid B while stirring,
Furthermore, this mixed liquid was added to liquid C while stirring. After that, this mixed solution was transferred to a Teflon-made 1 liter beaker, placed in an autoclave, and hydrothermally synthesized while stirring. Although the stirring speed in this case was 200 rpm, when the present invention is carried out, the stirring itself may be carried out if necessary.

【0018】その水熱合成の条件としては、昇温速度1
℃/分で160℃まで昇温し、続いて温度160℃で2
時間保持し、さらに0.33℃/分の昇温速度で190
℃まで昇温し、190℃で48時間保持した。ここでの
そのオ−トクレ−ブ内の圧力は、ほぼ12kg/cm2
Gで一定であり、これはその反応水溶液の飽和蒸気圧に
相当する。
The conditions for the hydrothermal synthesis are as follows: heating rate 1
C./min to 160.degree. C., then 160.degree. C. for 2
Hold for a further time, and 190 at a heating rate of 0.33 ° C / min.
The temperature was raised to 190 ° C. and the temperature was maintained at 190 ° C. for 48 hours. The pressure in the autoclave here is approximately 12 kg / cm 2.
It is constant at G, which corresponds to the saturated vapor pressure of the aqueous reaction solution.

【0019】この水熱合成を終了した後、自然冷却によ
り常温にまで冷却し、その内容物を遠心分離機により結
晶性生成物と母液を分離し、蒸留水で洗浄後、温度11
0℃で一昼夜乾燥し、さらに電気炉中で500℃、20
時間焼成した。引続き、この生成物を1N(規定)の硝
酸アンモニウム溶液に浸し、80℃で24時間イオン交
換し、この処理終了後、遠心分離機により分離し、蒸留
水により洗浄した。
After completion of the hydrothermal synthesis, the contents were cooled to room temperature by natural cooling, the crystalline product was separated from the mother liquor by a centrifuge, washed with distilled water, and the temperature was adjusted to 11
It is dried at 0 ° C for 24 hours and then in an electric furnace at 500 ° C for 20 days.
Burned for hours. Subsequently, this product was immersed in a 1N (normal) ammonium nitrate solution and subjected to ion exchange at 80 ° C. for 24 hours. After completion of this treatment, it was separated by a centrifuge and washed with distilled water.

【0020】次いで、その洗浄物を温度110℃で一昼
夜乾燥し、電気炉中、温度500℃で、3時間焼成し
た。この焼成生成物をX線分析により分析したところ、
その結晶構造は、石英型の結晶構造を示し、シリカとチ
タン酸化物との複合酸化物すなわち結晶性チタン含有シ
リカ複合酸化物であることが分かった。
Then, the washed product was dried at a temperature of 110 ° C. for one day and then baked in an electric furnace at a temperature of 500 ° C. for 3 hours. When the baked product was analyzed by X-ray analysis,
The crystal structure showed a quartz type crystal structure, and it was found to be a composite oxide of silica and titanium oxide, that is, a crystalline titanium-containing silica composite oxide.

【0021】一方、予じめ準備した硝酸Pd(硝酸パラ
ジウム)の0.5gを蒸留水190mlに溶かし、アン
モニア水と酢酸を用いて、pHを7.0に調整した。こ
の溶液に上記結晶性チタン含有シリカ複合酸化物を1
0.0g加え、ロ−タリ−エバポレ−タ−を使用し、温
度50℃で24時間イオン交換をした。
On the other hand, 0.5 g of Pd nitrate (palladium nitrate) prepared in advance was dissolved in 190 ml of distilled water, and the pH was adjusted to 7.0 using aqueous ammonia and acetic acid. 1 part of the above crystalline titanium-containing silica composite oxide was added to this solution.
After adding 0.0 g, ion exchange was carried out at a temperature of 50 ° C. for 24 hours using a rotary evaporator.

【0022】このイオン交換終了後、分離、洗浄、乾燥
をし、500℃で3時間焼成して触媒を得、これを排ガ
ス処理用の供試触媒とした。この触媒につき、成分分析
をしたところ、TiO2 及びPdがそれぞれ13.7w
t%及び0.5wt%含まれており、Si/Ti比(モ
ル比)は約8.4であった。
After completion of this ion exchange, separation, washing and drying were carried out, and calcination was carried out at 500 ° C. for 3 hours to obtain a catalyst, which was used as a test catalyst for treating exhaust gas. Component analysis of this catalyst revealed that TiO 2 and Pd were 13.7 w each.
t / 0.5 wt% and the Si / Ti ratio (molar ratio) was about 8.4.

【0023】次いで、この供試触媒を用いて、排ガスの
浄化試験を行った。被処理排ガスとしてはNO=181
ppm、CO=910ppm、CO2=6.8%、O2
9.1%、CH4 =2450ppm、水蒸気(stea
m)=9.1%及び残余(バランス)N2 からなるガス
を使用し、処理温度を350〜425℃、また空間速度
(SV)を44000hr-1として実施した。この結果
を表1に示す。
Then, an exhaust gas purification test was conducted using this test catalyst. NO = 181 as the exhaust gas to be treated
ppm, CO = 910 ppm, CO 2 = 6.8%, O 2 =
9.1%, CH 4 = 2450ppm, steam (stea)
m) = 9.1% and the balance (balance) of N 2 gas was used, the treatment temperature was 350 to 425 ° C., and the space velocity (SV) was 44000 hr −1 . The results are shown in Table 1.

【0024】[0024]

【表 1】 [Table 1]

【0025】表1のとおり、本発明に係る、シリカとチ
タン酸化物との結晶性複合酸化物にPdを担持させた触
媒は、特にそのNOx除去率、炭化水素(CH4 )除去
率及びCOの除去率が優れていることが分かる。また、
これらの除去率は、反応温度が高くなるに従って上昇し
ており、この点、炭化水素(CH4 )の除去率について
も、ほぼ同様の傾向を示している。
As shown in Table 1, the catalyst according to the present invention, in which Pd is supported on the crystalline composite oxide of silica and titanium oxide, has the NOx removal rate, hydrocarbon (CH 4 ) removal rate and CO It can be seen that the removal rate of is excellent. Also,
The removal rates of these increase as the reaction temperature increases, and in this respect, the removal rates of hydrocarbons (CH 4 ) show almost the same tendency.

【0026】例えば、NOx除去率についてみると、反
応温度350℃では、11.1%であるのに対し、その
反応温度を375℃、400℃、さらには425℃へと
逐次高くするに伴い、その除去率も向上し、400℃で
は33.0%、425℃に至っては36.5%もの除去
率を示している。
For example, regarding the NOx removal rate, while the reaction temperature is 350 ° C., it is 11.1%, but as the reaction temperature is gradually increased to 375 ° C., 400 ° C., and further to 425 ° C., The removal rate is also improved, showing 33.0% at 400 ° C and 36.5% at 425 ° C.

【0027】《実施例2》まず、原料として、実施例1
の場合と同じ非晶質シリカとチタン酸ナトリウムとを用
意し、ビ−カ−中、次のA〜C液を調製した。 A液:蒸留水100.0g+水酸化ナトリウム13.4
g B液:蒸留水100.0g+チタン酸ナトリウム14.
9g C液:蒸留水340.0g+非晶質シリカ(SiO2
96.0g
Example 2 First, as a raw material, Example 1 was used.
The same amorphous silica and sodium titanate as in the above case were prepared, and the following solutions A to C were prepared in a beaker. Solution A: distilled water 100.0 g + sodium hydroxide 13.4
g B solution: 100.0 g of distilled water + sodium titanate 14.
9 g liquid C: distilled water 340.0 g + amorphous silica (SiO 2 ).
96.0g

【0028】以降、実施例1においては、合成時の攪拌
速度を200rpm、焼成を温度550℃、20時間と
したのに代えて、攪拌速度を300rpm、焼成を温度
500℃、3時間とした以外は、実施例1の場合と同様
に行い、石英型の結晶構造のチタン含有シリカ複合酸化
物にPd金属を担持した触媒を得、これを排ガス処理用
の供試触媒とした。この触媒につき、成分分析をしたと
ころ、TiO2 が9.1wt%、Pdが0.5wt%含
まれており、Si/Ti(モル)比は約13.7であっ
た。
Hereinafter, in Example 1, except that the stirring speed during synthesis was 200 rpm and the firing temperature was 550 ° C. for 20 hours, the stirring speed was 300 rpm and the firing temperature was 500 ° C. for 3 hours. Was performed in the same manner as in Example 1 to obtain a catalyst in which Pd metal was supported on a titanium-containing silica composite oxide having a quartz type crystal structure, and this was used as a test catalyst for exhaust gas treatment. A component analysis of this catalyst revealed that it contained 9.1 wt% of TiO 2 and 0.5 wt% of Pd, and the Si / Ti (mol) ratio was about 13.7.

【0029】次いで、この供試触媒を用いて、排ガスの
浄化試験すなわちこの触媒の活性試験を実施した。被処
理排ガスとしては、NO=91ppm、CH4 =109
0ppm、CO=910ppm、CO2 =6.8%、O
2 =9.1%、水蒸気(スチ−ム)=9.1%及び残部
(バランス)N2 からなるガスを使用し、処理温度を3
50〜425℃、また空間速度(SV)を44000h
-1として実施した。この結果を表2に示す。
Then, using this test catalyst, an exhaust gas purification test, that is, an activity test of this catalyst was carried out. As the exhaust gas to be treated, NO = 91 ppm, CH 4 = 109
0 ppm, CO = 910 ppm, CO 2 = 6.8%, O
2 = 9.1%, steam (steam) = 9.1%, and the balance (balance) of N 2 is used, and the treatment temperature is 3
50 ~ 425 ℃, space velocity (SV) 44000h
It was carried out as r −1 . The results are shown in Table 2.

【0030】[0030]

【表 2】 [Table 2]

【0031】表2のとおり、この結晶性チタン含有シリ
カ複合酸化物にPd金属を担持させた触媒は、実施例1
の場合に比べて、HC(CH4 )除去率及びCO除去率
ではほぼ同等であり、NOx及びNO除去率がやや低下
しているが、それでも有効な効果除去効果が得られてい
ることが分かる。
As shown in Table 2, the catalyst prepared by supporting Pd metal on this crystalline titanium-containing silica composite oxide was prepared as in Example 1.
Compared with the case of, the HC (CH 4 ) removal rate and the CO removal rate are almost the same, and the NOx and NO removal rates are slightly reduced, but it can be seen that an effective effect removal effect is still obtained. .

【0032】本発明において、このように優れた特性が
得られるその原因については、非晶質シリカとチタン酸
塩との反応により得られる結晶性複合酸化物すなわち結
晶性チタン含有シリカ複合酸化物自体の独特の結晶構造
によるものと推認されるが、その理由は詳細には不明で
ある。本発明では、この点に関連し、比較例として次の
実験を試みた。
In the present invention, the reason why such excellent characteristics are obtained is as follows. A crystalline complex oxide obtained by a reaction between amorphous silica and a titanate, that is, a crystalline titanium-containing silica complex oxide itself. It is presumed to be due to the unique crystal structure of, but the reason is unknown in detail. In the present invention, in connection with this point, the following experiment was attempted as a comparative example.

【0033】《比較例1》すなわち、ペンタシル型のチ
タノシリケ−トを担体とし、これにPd金属を担持させ
た供試試料を作製したが、そのペンタシル型チタノシリ
ケ−トとしては、次のようにして合成したものを使用
し、これに前記実施例1の場合と同様にしてPd金属を
担持させたものである。
Comparative Example 1 That is, a test sample was prepared by using a pentasil-type titanosilicate as a carrier and supporting Pd metal thereon. The pentasil-type titanosilicate was prepared as follows. The synthesized material is used, and the Pd metal is supported on it in the same manner as in the case of the first embodiment.

【0034】まず、原料としてケイ酸ナトリウム溶液
(関東化学社製、Na2 O:17〜19wt%、SiO
2 :35〜38wt%)、硫酸第二チタン(添川理化学
社製、Ti(SO4)・nH2O、n=4〜9)及びテト
ラプロピルアンモニウムハイドロオキサイド水溶液[東
京化成工業社製、(C374 NOH:20〜25%水
溶液]を用意した。
First, as a raw material, a sodium silicate solution (Kanto Chemical Co., Inc., Na 2 O: 17 to 19 wt%, SiO 2
2 : 35 to 38 wt%), titanium sulphate (manufactured by Soegawa Chemical Co., Ltd., Ti (SO 4 ) nH 2 O, n = 4 to 9) and tetrapropylammonium hydroxide aqueous solution [manufactured by Tokyo Kasei Kogyo Co., Ltd. (C 3 H 7 ) 4 NOH: 20 to 25% aqueous solution] was prepared.

【0035】次いで、上記各原料を用いて、ビ−カ−
中、次のA〜D液を調製した。 A液:蒸留水150.0g+ケイ酸ナトリウム溶液15
0.0g B液:蒸留水100.0g+硫酸第二チタン16.3g C液:テトラプロピルアンモニウムハイドロオキサイド
水溶液90.0g D液:硫酸30.0g
Next, a beaker is prepared by using each of the above raw materials.
The following liquids A to D were prepared. Solution A: 150.0 g distilled water + 15 sodium silicate solution
0.0 g B liquid: 100.0 g distilled water + titanium sulfate 16.3 g C liquid: tetrapropylammonium hydroxide aqueous solution 90.0 g D liquid: 30.0 g sulfuric acid

【0036】引続き、D液をB液に攪拌しながら滴下
し、この混合液にA液を攪拌しながら滴下し、さらにC
液を滴下した。その後この混合液をテフロン製1リット
ルビ−カ−に移し、これをオ−トクレ−ブ中にセットし
た。以降、550℃での焼成時間を10時間とした以外
は、実施例1の場合と同様に行い、Pd金属担持のペン
タシル型チタノシリケ−ト生成物を得、これを比較例供
試触媒とした。
Subsequently, the liquid D is added dropwise to the liquid B while stirring, and the liquid A is added dropwise to this mixed liquid while stirring, and further C
The liquid was dropped. Thereafter, this mixed solution was transferred to a Teflon-made 1 liter beaker and set in an autoclave. Thereafter, the same procedure as in Example 1 was carried out except that the calcining time at 550 ° C. was changed to 10 hours to obtain a Pd metal-supported pentasil-type titanosilicate product, which was used as a comparative test catalyst.

【0037】次いで、この比較例供試触媒を用いて、排
ガスの浄化試験を行った。被処理排ガスとしては、前記
実施例1の場合と同じ組成、すなわちNO、CH4 及び
COを同じ割合で含む排ガスを使用し、また処理温度、
空間速度(SV)等の条件についても、実施例1の場合
と同様に行った。この結果を表3に示す。
Next, an exhaust gas purification test was conducted using this comparative example test catalyst. As the exhaust gas to be treated, the exhaust gas containing the same composition as in the case of Example 1, that is, containing NO, CH 4 and CO in the same ratio, was used.
The conditions such as space velocity (SV) were the same as in the case of Example 1. The results are shown in Table 3.

【0038】[0038]

【表 3】 [Table 3]

【0039】表3のとおり、ペンタシル型のチタノシリ
ケ−トを担体とし、これにPdを担持させた供試試料で
は、CO除去率については、350〜425℃の何れの
温度でも有効であるが、NOx除去能は実質上皆無であ
り、またCH4 除去率については、350℃及び375
℃では効果はなく、400℃で2.5%、425℃でも
僅かに8.3%を示すに過ぎない。
As shown in Table 3, in the test sample in which pentasil-type titanosilicate was used as a carrier and Pd was carried on the carrier, the CO removal rate was effective at any temperature of 350 to 425 ° C. There is virtually no NOx removal capacity, and CH 4 removal rate is 350 ° C and 375
There is no effect at 400 ° C., showing only 2.5% at 400 ° C. and only 8.3% at 425 ° C.

【0040】《比較例2〜3》この比較例では、チタン
酸ナトリウムを含まないシリカのみを担体とし、Pd金
属を担持させた供試試料を用いたが、このシリカとして
は以下のようにして合成したものを用い、これにPd金
属を担持させたものである。以降、この担持がイオン交
換法によるものを比較例2、含浸法によるものを比較例
3としている。
Comparative Examples 2 to 3 In this comparative example, a test sample in which only silica containing no sodium titanate was used as a carrier and Pd metal was supported was used. A synthesized product is used and Pd metal is supported on it. Hereafter, the supporting method by the ion exchange method is referred to as Comparative Example 2, and the supporting method by the impregnation method is referred to as Comparative Example 3.

【0041】まず、原料として非晶質シリカを用い、以
下の溶液を調製した。A液として水酸化ナトリウム(N
aOH)12.6gと蒸留水(H2 O)100.0gと
の溶液、B液として非晶質シリカ(SiO2 )96.1
gと蒸留水440.0gとの溶液を作り、A液をB液に
加えた。以降、この混合液について、実施例2と同様に
して水熱合成、取り出し、洗浄、焼成を行った。これで
合成したシリカについてX線分析をしたところ、石英型
であった。
First, the following solution was prepared using amorphous silica as a raw material. Sodium hydroxide (N
a solution of 12.6 g of aOH) and 100.0 g of distilled water (H 2 O), and amorphous silica (SiO 2 ) 96.1 as solution B
g and distilled water 440.0 g were made into a solution, and solution A was added to solution B. Thereafter, this mixed solution was subjected to hydrothermal synthesis, extraction, washing and firing in the same manner as in Example 2. The silica thus synthesized was subjected to X-ray analysis and found to be a quartz type.

【0042】次いで、上記合成シリカに対し、実施例1
と同様にして硝酸アンモニウムによるイオン交換を行っ
た後、Pd金属を担持させたが、これにはイオン交換法
と含浸法とによって行った。なお、上記合成シリカに対
して硝酸アンモニウムによるイオン交換を行うことなく
Pd金属を担持させた試料についても試みたが、この場
合には、Pd担持量が少ない(0.02wt%程度)こ
となどから、直ちに本発明に対する比較の対象とはしづ
らいので、以下には記載していない。
Then, Example 1 was applied to the above synthetic silica.
After carrying out ion exchange with ammonium nitrate in the same manner as above, Pd metal was supported, which was carried out by an ion exchange method and an impregnation method. An attempt was also made for a sample in which Pd metal was supported on the above synthetic silica without performing ion exchange with ammonium nitrate. In this case, however, the Pd supported amount was small (about 0.02 wt%). Since it is difficult to immediately compare with the present invention, it is not described below.

【0043】まず、イオン交換法では、上記合成シリカ
を実施例1と同様にして硝酸アンモニウムによりイオン
交換を行った合成シリカを用意する一方、硝酸Pdの
1.0gを蒸留水300mlに溶かし、アンモニア水と
酢酸を用いてpHを7.0に調整した。この溶液に上記
用意したシリカを20.0g加え、ロ−タリ−エバポレ
−タ−を用いて50℃で24時間イオン交換した。イオ
ン交換終了後、分離、洗浄、乾燥をし、500℃で3時
間焼成し、供試触媒とした。この試料におけるシリカに
対するPdの量的割合は0.03wt%であった。
First, in the ion exchange method, a synthetic silica prepared by ion exchanging the above synthetic silica with ammonium nitrate was prepared in the same manner as in Example 1, while 1.0 g of Pd nitrate was dissolved in 300 ml of distilled water to prepare an aqueous ammonia solution. And pH were adjusted to 7.0 with acetic acid. 20.0 g of the above-prepared silica was added to this solution, and ion exchange was carried out at 50 ° C. for 24 hours using a rotary evaporator. After completion of ion exchange, separation, washing and drying were performed, and calcination was performed at 500 ° C for 3 hours to obtain a test catalyst. The quantitative ratio of Pd to silica in this sample was 0.03 wt%.

【0044】また含浸法では、上記合成シリカを実施例
1と同様にして硝酸アンモニウムによりイオン交換を行
ったシリカを用意する一方、硝酸Pdの0.5gを蒸留
水300mlに溶かし、アンモニア水と酢酸を用いて、
pHを7.0に調整した。この溶液に上記シリカを2
0.0g加え、ロ−タリ−エバポレ−タ−を用いて系内
を減圧して水分を蒸発させ、Pdを担持させた。含浸終
了後、系内を大気圧に戻し、さらに乾燥をし、500℃
で3時間焼成し、これを供試触媒とした。この試料にお
けるシリカに対するPdの量的割合は0.8wt%であ
った。
In the impregnation method, the synthetic silica is ion-exchanged with ammonium nitrate in the same manner as in Example 1, while 0.5 g of Pd nitrate is dissolved in 300 ml of distilled water to remove ammonia water and acetic acid. make use of,
The pH was adjusted to 7.0. 2 parts of the above silica to this solution
0.0 g was added, and the system was depressurized using a rotary evaporator to evaporate the water content and support Pd. After the completion of impregnation, the pressure in the system is returned to atmospheric pressure, and further dried to 500 ° C.
It was calcined for 3 hours and used as a test catalyst. The quantitative ratio of Pd to silica in this sample was 0.8 wt%.

【0045】次いで、この両供試触媒を用いて、排ガス
の浄化試験を行った。被処理排ガスとしては、前記実施
例2の場合と同じ組成、すなわちNO、CH4 及びCO
を同じ割合で含む排ガスを使用し、また処理温度、空間
速度(SV)等の条件についても実施例2の場合と同様
に行った。これらの結果を、それぞれ、表4及び表5に
示す。
Then, an exhaust gas purification test was carried out using both of the tested catalysts. The exhaust gas to be treated has the same composition as in the case of Example 2, that is, NO, CH 4 and CO.
Exhaust gas containing the same proportion was used, and the treatment temperature, space velocity (SV) and other conditions were the same as in Example 2. The results are shown in Table 4 and Table 5, respectively.

【0046】[0046]

【表 4】 [Table 4]

【0047】[0047]

【表 5】 [Table 5]

【0048】表4によると、これはPdをイオン交換法
により担持させた場合であるが、合成シリカを担体と
し、これにPdを担持させた供試試料では、CO除去率
については、温度350〜425℃の範囲の何れでも有
効であるが、NOx除去能は僅かに認められるだけであ
り、またCH4 除去機能については、殆んど有ないこと
が明らかである。
According to Table 4, this is the case where Pd was supported by the ion exchange method. In the test sample in which Pd was supported on synthetic silica as a carrier, the CO removal rate was about 350 ° C. It is effective in any temperature range of up to 425 ° C., but the NOx removing ability is only slightly recognized, and it is clear that it has almost no CH 4 removing function.

【0049】また、表5は、Pdを含浸法により担持さ
せた場合であるが、表4の場合とほぼ同様の傾向を示
し、合成シリカを担体とし、これにPd金属を担持させ
た供試試料では、CO除去率については、温度350〜
425℃の範囲で何も有効であるが、NOx除去能は僅
かに認められるだけであり、またCH4 除去機能につい
ては、殆んど有ないことが分かる。
Table 5 shows the case where Pd was supported by the impregnation method, but it showed almost the same tendency as in Table 4, and the test was carried out by using Pd metal supported on synthetic silica as a carrier. In the sample, the CO removal rate is 350 to
It is understood that nothing is effective in the range of 425 ° C., but the NOx removing ability is only slightly recognized, and the CH 4 removing function is almost absent.

【0050】以上、比較例1〜3の事実からすると、本
発明において、非晶質シリカとチタン酸塩とを原料とし
て得られた結晶性チタン含有シリカ複合酸化物に白金族
金属を担持させてなる触媒において得られる、そのNO
x、NO及びCH4 の除去率上の効果は、ただその担体
を構成する成分としてシリカとチタン(酸化チタン)を
有すれば足りるというものではなく、恐らくは、その結
晶構造等による、微妙な何らかの作用によるもの思われ
る。
From the facts of Comparative Examples 1 to 3 above, in the present invention, a platinum group metal is supported on a crystalline titanium-containing silica composite oxide obtained from amorphous silica and titanate as raw materials. NO obtained with the catalyst
The effect on the removal rate of x, NO, and CH 4 is not sufficient if only silica and titanium (titanium oxide) are contained as components constituting the carrier, and it is possible that there is a subtle difference due to its crystal structure or the like. It seems to be due to the action.

【0051】[0051]

【発明の効果】以上のとおり、本発明における、非晶質
シリカとチタン酸塩とを原料とし、非晶質シリカの結晶
化過程において、チタン酸塩を共存させることにより得
られた結晶性チタン含有シリカ複合酸化物にPd等の金
属を担持させてなる排ガス浄化用触媒は、優れた、NO
x除去率、COの除去率及び炭化水素の除去率を有して
おり、これらNOx除去率、CO除去率及び炭化水素の
除去率は、反応温度すなわち排ガス処理温度が高い場合
に特に有効である。
INDUSTRIAL APPLICABILITY As described above, the crystalline titanium obtained by using the amorphous silica and the titanate as the raw materials in the present invention and coexisting with the titanate in the crystallization process of the amorphous silica. The exhaust gas-purifying catalyst in which a metal such as Pd is supported on the contained silica composite oxide is excellent in NO.
x removal rate, CO removal rate and hydrocarbon removal rate, and these NOx removal rate, CO removal rate and hydrocarbon removal rate are particularly effective when the reaction temperature, that is, the exhaust gas treatment temperature is high. .

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 21/06 ZAB A B01D 53/36 104 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location B01J 21/06 ZAB A B01D 53/36 104 A

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】水性媒体中、非晶質シリカにチタン酸塩を
反応させることにより得られた結晶性チタン含有シリカ
複合酸化物に白金族金属を担持してなることを特徴とす
る排ガス浄化用触媒。
1. An exhaust gas purifying characterized by comprising a platinum group metal supported on a crystalline titanium-containing silica composite oxide obtained by reacting an amorphous silica with a titanate in an aqueous medium. catalyst.
【請求項2】水性媒体中、非晶質シリカにチタン酸塩を
共存、反応させ、オ−トクレ−ブ中で結晶化させること
により結晶性チタン含有シリカ複合酸化物を製造し、こ
れに白金族金属を担持させることを特徴とする排ガス浄
化用触媒の製造法。
2. A crystalline titanium-containing silica composite oxide is produced by reacting amorphous silica with a titanate in an aqueous medium and crystallizing it in an autoclave. A method for producing a catalyst for purifying exhaust gas, which comprises supporting a group metal.
JP6065570A 1994-03-08 1994-03-08 Catalyst for purification of waste gas and its production Pending JPH07241466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6065570A JPH07241466A (en) 1994-03-08 1994-03-08 Catalyst for purification of waste gas and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6065570A JPH07241466A (en) 1994-03-08 1994-03-08 Catalyst for purification of waste gas and its production

Publications (1)

Publication Number Publication Date
JPH07241466A true JPH07241466A (en) 1995-09-19

Family

ID=13290810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6065570A Pending JPH07241466A (en) 1994-03-08 1994-03-08 Catalyst for purification of waste gas and its production

Country Status (1)

Country Link
JP (1) JPH07241466A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2765492A1 (en) * 1997-07-03 1999-01-08 Rhodia Chimie Sa GAS TREATMENT PROCESS FOR THE REDUCTION OF NITROGEN OXIDE EMISSIONS USING A CATALYTIC COMPOSITION WITH A SUPPORT BASED ON SILICA AND TITANIUM OXIDE

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2765492A1 (en) * 1997-07-03 1999-01-08 Rhodia Chimie Sa GAS TREATMENT PROCESS FOR THE REDUCTION OF NITROGEN OXIDE EMISSIONS USING A CATALYTIC COMPOSITION WITH A SUPPORT BASED ON SILICA AND TITANIUM OXIDE
WO1999001216A1 (en) * 1997-07-03 1999-01-14 Rhodia Chimie Method for treating gases to reduce nitrogen oxide emissions using a catalytic composition based on silica and titanium oxide
US6491886B1 (en) 1997-07-03 2002-12-10 Rhodia Chimie Method for treating gases to reduce nitrogen oxide emissions

Similar Documents

Publication Publication Date Title
JP3310781B2 (en) Exhaust gas purification catalyst and method for producing the same
JPH07241466A (en) Catalyst for purification of waste gas and its production
JPH0516886B2 (en)
JPH10137597A (en) Catalyst for purifying nitrogen oxide
JPH0889758A (en) Decomposing method of ammonia
JPH024453A (en) Preparation of catalyst for nitrogen oxide contact reduction
JPH06170166A (en) Removal of nitrogen oxide
JP3482658B2 (en) Nitrogen oxide removal method
JP3395219B2 (en) Nitrogen oxide removal method
JPH07251077A (en) Production of catalyst for purifying nox-containing discharge gas
JP3111491B2 (en) Exhaust gas purification catalyst
JP3257686B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JPH08299761A (en) Decomposing and removing method of ammonia
JPH05154349A (en) Method and catalyst for removing nitrogen oxide in combustion exhaust gas
JPH06277522A (en) Nitrogen oxide removing catalyst and nitrogen oxide removing method using same
JP3395220B2 (en) Nitrogen oxide removal method
JP3242946B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JP2661383B2 (en) Exhaust gas purification catalyst
JP3355638B2 (en) Exhaust gas purification catalyst
JPH08117558A (en) Formation of nitrogen dioxide
JP3366342B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JPH06335618A (en) Ammonia decomposing method
JPH06170170A (en) Removal of nitrogen oxide
JPH07275657A (en) Ammonia decomposition method
JPH04367724A (en) Catalyst and method for removing nitrogen oxide