JPH10137597A - Catalyst for purifying nitrogen oxide - Google Patents

Catalyst for purifying nitrogen oxide

Info

Publication number
JPH10137597A
JPH10137597A JP8300301A JP30030196A JPH10137597A JP H10137597 A JPH10137597 A JP H10137597A JP 8300301 A JP8300301 A JP 8300301A JP 30030196 A JP30030196 A JP 30030196A JP H10137597 A JPH10137597 A JP H10137597A
Authority
JP
Japan
Prior art keywords
catalyst
nitrogen oxides
denitration
copper
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8300301A
Other languages
Japanese (ja)
Inventor
Shigeru Nojima
野島  繁
Iwao Tsukuda
岩夫 佃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP8300301A priority Critical patent/JPH10137597A/en
Publication of JPH10137597A publication Critical patent/JPH10137597A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a catalyst capable of removing nitrogen oxide discharged from a waste gas of a boiler or the like particularly at a low temp. SOLUTION: This catalyst is a denitrification catalyst for catalytically reducing to remove nitrogen oxide in the waste gas by adding ammonia in the waste gas, has a fine pore having 1.3-20nm diameter and >=500m<2> /g specific surface area and is formed by carrying copper on a mesoporous metalloslicate having the silicon oxide-to-a metal oxide molar ratio of 5-1000.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はボイラ等の排ガスか
ら排出される窒素酸化物を除去する触媒に関する。
The present invention relates to a catalyst for removing nitrogen oxides discharged from exhaust gas from a boiler or the like.

【0002】[0002]

【従来の技術】大気汚染防止の観点からボイラや各種燃
焼炉から発生する窒素酸化物(NOx)を防止するため
の方法として、脱硝触媒を用いてアンモニア(NH3
を排ガス中に添加することによって接触的に窒素と水に
分解する選択的接触還元法が幅広く用いられている。
2. Description of the Related Art As a method for preventing nitrogen oxides (NO x ) generated from a boiler or various combustion furnaces from the viewpoint of air pollution prevention, ammonia (NH 3 ) is produced using a denitration catalyst.
The catalytic catalytic reduction method of decomposing into nitrogen and water catalytically by adding methane to exhaust gas has been widely used.

【0003】[0003]

【発明が解決しようとする課題】これまでの脱硝触媒は
TiO2 を担体として、V2 5 を活性金属とする触媒
が一般的であった。この触媒は耐久性に優れている実績
を有しているが、反応温度は250〜400℃の範囲が
活性温度域であった。最近、種々の排ガスに対する脱硝
の必要性が高まっており、とりわけ200℃以下の低温
域の脱硝が必要となってきている。例えば、下記の低温
脱硝の用途が挙げられる。
Conventional denitration catalysts have generally used TiO 2 as a carrier and V 2 O 5 as an active metal. Although this catalyst has a track record of being excellent in durability, the reaction temperature ranged from 250 to 400 ° C. in the active temperature range. In recent years, the need for denitration of various exhaust gases has been increasing, and in particular, denitration in a low temperature range of 200 ° C. or lower has become necessary. For example, the following uses for low-temperature denitration are listed.

【0004】(1) ごみ焼却炉用脱硝:除塵後の脱硝(温
度域:150〜200℃)。 (2) 脱硫前脱硝:乾式脱硝+湿式脱硫一体型プロセス。
なお、脱硝後のリークアンモニアは脱硫効率向上に作用
する(温度域:70〜130℃)。 (3) ガスタービン起動時脱硝:運転起動時に対応(温度
域:室温〜250℃)。 (4) トンネル脱硝:希薄NOx 大容量ガスに対応(温度
域:室温)。 これまでの触媒では上記用途に適用することはできず、
より低温で高活性な触媒の出現が望まれていた。
(1) Denitration for refuse incinerator: Denitration after dust removal (temperature range: 150 to 200 ° C.). (2) Denitration before desulfurization: Dry denitration + wet desulfurization integrated process.
The leaked ammonia after denitration acts to improve the desulfurization efficiency (temperature range: 70 to 130 ° C.). (3) Denitration at start of gas turbine: Corresponds to start of operation (temperature range: room temperature to 250 ° C). (4) Tunnel denitration: Corresponds to lean NO x large volume gas (temperature range: room temperature). Conventional catalysts cannot be applied to the above applications,
There has been a demand for a catalyst that is more active at lower temperatures.

【0005】[0005]

【課題を解決するための手段】本発明者らは上記技術水
準に鑑み、より低温で高活性な窒素酸化物浄化用触媒の
開発につき鋭意研究の結果、下記構成(1) 〜(3) を有す
る触媒を発明するに至った。
Means for Solving the Problems In view of the above technical level, the present inventors have conducted intensive studies on the development of a catalyst for purifying nitrogen oxides at a lower temperature and a higher activity. As a result, the following constitutions (1) to (3) were obtained. The inventors have invented a catalyst having the same.

【0006】(1) 排ガス中にアンモニアを添加し、排ガ
ス中の窒素酸化物を接触的に還元除去する脱硝触媒であ
って、直径が1.3〜20nmの細孔を有し、比表面積
が500m2 /g以上であり、さらに、金属酸化物に対
するケイ素酸化物のモル比が5〜1000であるメソポ
ーラスメタロシリケートに銅を担持してなることを特徴
とする窒素酸化物浄化用触媒。
(1) A denitration catalyst for catalytically reducing and removing nitrogen oxides in exhaust gas by adding ammonia to the exhaust gas, which has pores having a diameter of 1.3 to 20 nm and a specific surface area of A catalyst for purifying nitrogen oxides, wherein copper is supported on a mesoporous metallosilicate having a molar ratio of silicon oxide to metal oxide of 5 to 1000 or more, which is 500 m 2 / g or more.

【0007】(2) メソポーラスメタロシリケートを構成
する金属がアルミニウム、鉄、ガリウム、マンガン、ク
ロム、チタン、ジルコニウム、白金、パラジウム、銅、
亜鉛、バナジウム及びホウ素よりなる群のうちの少なく
とも1種の金属であることを特徴とする上記(1) 記載の
窒素酸化物浄化用触媒。
(2) The metal constituting the mesoporous metallosilicate is aluminum, iron, gallium, manganese, chromium, titanium, zirconium, platinum, palladium, copper,
The nitrogen oxide purifying catalyst according to the above (1), which is at least one metal selected from the group consisting of zinc, vanadium and boron.

【0008】(3) メソポーラスメタロシリケートの粉末
X線回折パターンの1つピークが1.8nmより大きい
面間隔を有するか、または非晶質状態であることを特徴
とする上記(1) または(2) 記載の窒素酸化物浄化用触
媒。
(3) The above (1) or (2), wherein one peak of the powder X-ray diffraction pattern of the mesoporous metallosilicate has a plane spacing larger than 1.8 nm or is in an amorphous state. 21. The catalyst for purifying nitrogen oxides according to the above.

【0009】[0009]

【発明の実施の形態】本発明で用いるメソポーラスメタ
ロシリケートはシリカ化合物、他の金属化合物及びカチ
オン系界面活性剤を反応させて合成することができる。
使用する原料のうちのシリカ化合物としてはコロイダル
シリカ、フュームドシリカ、ケイ酸ナトリウム及びアル
コキシドシリカ等が用いられ、カチオン系界面活性剤と
してはR1 2 3 4 + (但し、式中のR1 はアル
キル基、アリール基またはアリールアルキル基であり、
2 3 4 は炭素数1〜10のアルキル基または水素
であり、Q+ は窒素またはリンである)で表される有機
テンプレートをケイ素1モルあたり0.01〜10モル
用いて水熱法により合成することができる。
BEST MODE FOR CARRYING OUT THE INVENTION The mesoporous metallosilicate used in the present invention can be synthesized by reacting a silica compound, another metal compound and a cationic surfactant.
Among the raw materials used, colloidal silica, fumed silica, sodium silicate, alkoxide silica, and the like are used as the silica compound, and R 1 R 2 R 3 R 4 Q + (wherein, R 1 is an alkyl group, an aryl group or an arylalkyl group;
R 2 R 3 R 4 is an alkyl group having 1 to 10 carbon atoms or hydrogen, and Q + is nitrogen or phosphorus). It can be synthesized by a method.

【0010】さらに、上記に示す他の金属化合物として
は、アルミニウム、鉄、ガリウム、マンガン、クロム、
チタン、ジルコニウム、白金、パラジウム、銅、亜鉛、
バナジウム及びホウ素よりなる群のうちの少なくとも1
種の金属の化合物であり、金属酸化物に対するケイ素酸
化物のモル比が5〜1000になるように、これら金属
化合物を添加してシリカ化合物と水熱法により複合酸化
物を形成することによりメソポーラスメタロシリケート
を合成することができる。
Further, the other metal compounds shown above include aluminum, iron, gallium, manganese, chromium,
Titanium, zirconium, platinum, palladium, copper, zinc,
At least one of the group consisting of vanadium and boron
The compound is a compound of a kind metal, and the metal oxide is added so that the molar ratio of the silicon oxide to the metal oxide is 5 to 1000 to form a composite oxide with the silica compound by a hydrothermal method. Metallosilicates can be synthesized.

【0011】次に、上記メソポーラスメタロシリケート
に活性金属の銅を担持させる方法の一つとしてはイオン
交換法があげられ、メソポーラスメタロシリケート中の
金属上に銅を配位させることによって行いうる。
Next, one of the methods of supporting the active metal copper on the mesoporous metallosilicate is an ion exchange method, which can be carried out by coordinating copper on the metal in the mesoporous metallosilicate.

【0012】(作用)上記の銅を担持したメソポーラス
メタロシリケートが低温度域の脱硝反応で高性能を示す
理由の一つとして、高比表面積を有する担体に活性金属
である銅が高分散して担持されるためであると考えられ
る。すなわち、従来のTiO2 を主成分とする担体は比
表面積が70m2 /g程度であるのに対して、本発明に
おけるメソポーラスメタロシリケートの比表面積は、5
00m2 /g以上、特に1000m2 /g以上を有し、
それにより低温度域でも高活性能を有するものと考えら
れる。
(Function) One of the reasons why the mesoporous metallosilicate supporting copper exhibits high performance in a denitration reaction in a low temperature range is that copper as an active metal is highly dispersed in a carrier having a high specific surface area. This is considered to be due to being carried. That is, the specific surface area of the conventional carrier mainly composed of TiO 2 is about 70 m 2 / g, whereas the specific surface area of the mesoporous metallosilicate in the present invention is 5 m 2 / g.
00m 2 / g or more, particularly having a more 1000 m 2 / g,
Thereby, it is considered that the compound has high activity even in a low temperature range.

【0013】[0013]

【実施例】以下、本発明の窒素酸化物浄化触媒の製法の
具体例をあげ、得られた触媒の効果を明らかにする。
EXAMPLES Hereinafter, specific examples of the method for producing the nitrogen oxide purifying catalyst of the present invention will be described to clarify the effects of the obtained catalyst.

【0014】(実施例1)130.9gのシリカゾル
(日産化学製:スノーテックス20,SiO2 :20%
含有)と水:51.1gに硝酸アルミニウム{Al(N
3 3 ・9H2 O}:4.1gを溶解させた溶液を混
合させてA液とする。水212.7gに水酸化ナトリウ
ム(NaOH):11.5g溶解させ、ドデシルトリメ
チルアンモニウムクロライド(DTMC):82.9g
を添加してB液とする。水100gにH2 SO4 :1
3.0gを添加してC液とする。
Example 1 130.9 g of silica sol (manufactured by Nissan Chemical: Snowtex 20, SiO 2 : 20%)
Aluminum nitrate @ Al (N
O 3) 3 · 9H 2 O }: 4.1g were mixed solution prepared by dissolving the A solution. Sodium hydroxide (NaOH): 11.5 g is dissolved in 212.7 g of water, and dodecyltrimethylammonium chloride (DTMC): 82.9 g
To make solution B. H 2 SO 4 : 1 in 100 g of water
Add 3.0 g to make solution C.

【0015】1リットルのオートクレーブを用いて、ま
ず、A液を添加する。次にB液(アルカリ液)とC液
(酸液)を同一割合の滴下速度で供給しスラリゲルを形
成する。滴下後、室温で2時間攪拌を行う。なお、この
時の溶液のpHは9.5であった。次に、スラリ溶液を
140℃に加熱し、48時間攪拌しながら水熱合成を行
った。合成後、スラリを洗浄、濾過し、固形分を乾燥し
た後、空気雰囲気下で550℃、5時間焼成を行った。
このサンプルを試料1とする。
First, the solution A is added using a 1 liter autoclave. Next, the liquid B (alkali liquid) and liquid C (acid liquid) are supplied at the same dropping rate to form a slurry gel. After the addition, the mixture is stirred at room temperature for 2 hours. The pH of the solution at this time was 9.5. Next, the slurry solution was heated to 140 ° C., and hydrothermal synthesis was performed while stirring for 48 hours. After the synthesis, the slurry was washed, filtered, and the solid content was dried, and then calcined at 550 ° C. for 5 hours in an air atmosphere.
This sample is referred to as Sample 1.

【0016】試料1の粉末X線回折パターン(CuKα
線使用)を図1に、N2 吸着法による細孔径分布を図2
に示す。図1より、この試料1は回折ピークを有さない
ことから、非晶質物質であることがわかる。また、図2
より平均細孔径は2.6nm(26Å)である。さら
に、BET法により窒素吸着化表面積は1530m2
gでありICP法によるSiO2 /Al2 3 (モル
比)は79であった。
The powder X-ray diffraction pattern of Sample 1 (CuKα
Fig. 1 shows the pore size distribution by the N 2 adsorption method.
Shown in FIG. 1 shows that this sample 1 is an amorphous substance because it has no diffraction peak. FIG.
More average pore diameter is 2.6 nm (26 °). Further, the nitrogen adsorption surface area was 1530 m 2 /
g and SiO 2 / Al 2 O 3 (molar ratio) by ICP method was 79.

【0017】(実施例2)実施例1の合成方法におい
て、C液に添加するH2 SO4 量を6.0gとして、ス
ラリのpHを13.4の状態で水熱合成を実施例1と同
様の方法で行って試料2を得た。この試料2の粉末X線
回折パターン(CuKα線使用)を図3に示す。図3よ
り、試料2は回折パターン2θ=2.8°、4.6°、
5.5°、7.2°にピークを有することがわかり、各
々の面間隔が3.2nm、1.9nm、1.6nm、
1.2nmである。なお、細孔径分布は試料1とほぼ同
様であった。またBET法による比表面積は1460m
2 /gであり、ICP法によるSiO2 /Al2 3
78であった。
(Example 2) In the synthesis method of Example 1, the amount of H 2 SO 4 to be added to the solution C was 6.0 g, and the hydrothermal synthesis was carried out with the slurry pH being 13.4. Sample 2 was obtained in the same manner. FIG. 3 shows a powder X-ray diffraction pattern (using CuKα rays) of Sample 2. 3, the diffraction pattern 2θ = 2.8 °, 4.6 °,
It can be seen that there are peaks at 5.5 ° and 7.2 °, and the respective plane spacings are 3.2 nm, 1.9 nm, 1.6 nm,
1.2 nm. The pore size distribution was almost the same as that of Sample 1. The specific surface area by the BET method is 1460m
2 / g, and the ratio of SiO 2 / Al 2 O 3 by the ICP method was 78.

【0018】(実施例3)実施例2の合成方法におい
て、A液を調製する際、硝酸アルミニウムの代わりに、
硝酸鉄{Fe(NO3 3 ・9H2 O}:4.4g、三
塩化バナジウム(VCl3 ):1.7g、硝酸マンガン
{Mn(NO3 2 ・5H2 O}:1.9g、硝酸ガリ
ウム{Ga(NO3 3 ・6H2 O}:4.3g、硝酸
クロム{Cr(NO3 3 ・9H2 O}:4.4g、硫
酸チタニル(TiOSO4 ):1.0g、ホウ酸(H3
BO3 ):0.7g、塩化白金酸(H2 PtCl6 ・6
2 O):1.5g、硝酸パラジウム{Pd(NO3
2 }:0.7g、硝酸銅{Cu(NO3 2 ・6H
2 O}:2.0g、硝酸亜鉛{Zn(NO3 2 ・6H
2 O}:2.0g、オキシ硝酸ジルコニウム{ZrO
(NO3 2 ・2H2 O}:1.6gを添加し、実施例
2と同様の水熱合成法によってメソポーラスメタロシリ
ケートを合成した。これらの試料を試料3〜14とす
る。なお、これら試料3〜14の物性値を前記試料1,
2と共に後記表1に示す。
Example 3 In the synthesis method of Example 2, when preparing solution A, instead of aluminum nitrate,
Iron nitrate {Fe (NO 3 ) 3 .9H 2 O}: 4.4 g, vanadium trichloride (VCl 3 ): 1.7 g, manganese nitrate {Mn (NO 3 ) 2 .5H 2 O}: 1.9 g, gallium nitrate {Ga (NO 3) 3 · 6H 2 O}: 4.3g, chromium nitrate {Cr (NO 3) 3 · 9H 2 O}: 4.4g, titanyl sulfate (TiOSO 4): 1.0g, boric Acid (H 3
BO 3): 0.7g, chloroplatinic acid (H 2 PtCl 6 · 6
H 2 O): 1.5 g, palladium nitrate @ Pd (NO 3 )
2}: 0.7 g, copper nitrate {Cu (NO 3) 2 · 6H
2 O}: 2.0g, zinc nitrate {Zn (NO 3) 2 · 6H
2 O: 2.0 g, zirconium oxynitrate {ZrO
(NO 3) 2 · 2H 2 O}: was added 1.6g, was synthesized mesoporous metallosilicate by the same hydrothermal synthesis method as in Example 2. These samples are referred to as samples 3 to 14. In addition, the physical property values of these samples 3 to 14
2 are shown in Table 1 below.

【0019】(実施例4)実施例1の合成法において、
A液を調製する際、硝酸アルミニウムの添加量を8.2
g、16.4gとして、実施例1と同様の方法により合
成した。これらの試料を試料15、16とする。
Example 4 In the synthesis method of Example 1,
When preparing solution A, the amount of aluminum nitrate added was adjusted to 8.2.
g and 16.4 g were synthesized in the same manner as in Example 1. These samples are referred to as samples 15 and 16.

【0020】さらに実施例1の合成法において、A液を
調製する際、コロイダルシリカの代わりにオルトケイ酸
エチル:91g、微粒子シリカ(トクソウ製ファインシ
ールK−41):26gを添加して実施例1と同様に合
成し、試料17、18を得た。また実施例1において、
コロイダルシリカ及び水酸化ナトリウムの代わりに3号
ケイ酸ソーダを(SiO2 :29.1%、Na2 O:
9.5%)90gをB液に添加し、実施例1と同様に合
成し、試料19を得た。
Further, in the synthesis method of Example 1, when preparing the solution A, 91 g of ethyl orthosilicate and 26 g of fine-particle silica (fine seal K-41 made by Tokusoh) were added instead of colloidal silica. Samples 17 and 18 were obtained in the same manner as described above. In Example 1,
No. 3 sodium silicate was used instead of colloidal silica and sodium hydroxide (SiO 2 : 29.1%, Na 2 O:
90 g (9.5%) was added to the solution B, and the mixture was synthesized in the same manner as in Example 1 to obtain a sample 19.

【0021】(実施例5)実施例1の合成法においてB
液を調製する際、ドデシルトリメチルアンモニウムクロ
ライド(DTMAC)の添加量を41g、21gとして
実施例1と同様に合成し、試料20.21を得た。
(Example 5) In the synthesis method of Example 1, B
When preparing the solution, the amount of dodecyltrimethylammonium chloride (DTMAC) added was 41 g and 21 g, and the synthesis was performed in the same manner as in Example 1 to obtain a sample 20.21.

【0022】また、実施例1の合成法においてB液を調
製する際、ドデシルトリメチルクロライドの代わりにヘ
キサデシルトリメチルアンモニウムクロライド(HDT
MAC)及びオクタデシルトリメチルアンモニウムクロ
ライド(ODTMAC)を各々82g添加し、実施例1
と同様に水熱合成し、試料22、23を得た。以上の実
施例より、合成した試料1〜試料23の比表面積を後記
表1に示す。
In preparing the solution B in the synthesis method of Example 1, hexadecyltrimethylammonium chloride (HDT) was used instead of dodecyltrimethylchloride.
MAC) and octadecyltrimethylammonium chloride (ODTMAC) in an amount of 82 g each.
Samples 22 and 23 were obtained by hydrothermal synthesis in the same manner as described above. Table 1 below shows the specific surface areas of Samples 1 to 23 synthesized from the above Examples.

【0023】(実施例6)試料1〜23各々10gを、
酢酸銅0.1mol/リットルの30℃の水溶液2リッ
トルに添加して6時間攪拌してイオン交換を行った。イ
オン交換後、十分試料を洗浄して110℃で12時間乾
燥を行った。乾燥後の銅の担持量をCuO換算にて下記
表1に併せて示し、粉末触媒1〜23とする。
Example 6 10 g of each of Samples 1 to 23 was
It was added to 2 liters of a 30 mol aqueous solution of copper acetate 0.1 mol / l and stirred for 6 hours to perform ion exchange. After the ion exchange, the sample was sufficiently washed and dried at 110 ° C. for 12 hours. The supported amount of copper after drying is shown in Table 1 below in terms of CuO, and is referred to as powder catalysts 1 to 23.

【0024】[0024]

【表1】 [Table 1]

【0025】(実施例7)粉末触媒1〜23を脱硝反応
試験を行った。反応試験条件を下記表2に示す。
Example 7 A denitration reaction test was performed on the powdered catalysts 1 to 23. The reaction test conditions are shown in Table 2 below.

【0026】[0026]

【表2】 [Table 2]

【0027】脱硝率はNOx (NO+NO2 )の減少率
より求めた。NO及びNO2 の濃度は質量分析計により
求めた。触媒1〜23の脱硝率を前記表1に併せて示
す。表1に示すように、本発明触媒は少量のサンプルに
て低温において高活性を示し、窒素酸化物浄化用触媒と
して有望である。
The denitration rate was determined from the reduction rate of NO x (NO + NO 2 ). NO and NO 2 concentrations were determined by mass spectrometry. The denitration rates of the catalysts 1 to 23 are also shown in Table 1 above. As shown in Table 1, the catalyst of the present invention shows high activity at a low temperature in a small amount of sample, and is promising as a catalyst for purifying nitrogen oxides.

【0028】[0028]

【発明の効果】以上の結果のとおり、本発明触媒は低温
域で高活性な窒素酸化物浄化用触媒であり、有望な触媒
として実用化が期待できる。
As described above, the catalyst of the present invention is a catalyst for purifying nitrogen oxides which is highly active in a low temperature range and is expected to be put to practical use as a promising catalyst.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係る試料(触媒)1のX線
回折パターンを示すグラフ。
FIG. 1 is a graph showing an X-ray diffraction pattern of a sample (catalyst) 1 according to one example of the present invention.

【図2】本発明の一実施例に係る試料1の細孔径分布を
示すグラフ。
FIG. 2 is a graph showing a pore size distribution of Sample 1 according to one example of the present invention.

【図3】本発明の一実施例に係る試料2のX線回折パタ
ーンを示すグラフ。
FIG. 3 is a graph showing an X-ray diffraction pattern of Sample 2 according to one example of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B01J 23/80 ZAB B01D 53/36 ZAB 23/835 ZAB 102D 23/84 ZAB 102H 23/89 ZAB B01J 23/74 301A 23/82 ZABA ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI B01J 23/80 ZAB B01D 53/36 ZAB 23/835 ZAB 102D 23/84 ZAB 102H 23/89 ZAB B01J 23/74 301A 23/82 ZABA

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 排ガス中にアンモニアを添加し、排ガス
中の窒素酸化物を接触的に還元除去する脱硝触媒であっ
て、直径が1.3〜20nmの細孔を有し、比表面積が
500m2 /g以上であり、さらに、金属酸化物に対す
るケイ素酸化物のモル比が5〜1000であるメソポー
ラスメタロシリケートに銅を担持してなることを特徴と
する窒素酸化物浄化用触媒。
1. A denitration catalyst for adding ammonia to an exhaust gas to catalytically reduce and remove nitrogen oxides in the exhaust gas, having pores having a diameter of 1.3 to 20 nm and a specific surface area of 500 m 2 / g or more, further, nitrogen oxide purification catalyst molar ratio of silicon oxide to metal oxide is characterized by being obtained by carrying copper mesoporous metallosilicate is 5 to 1,000.
【請求項2】 メソポーラスメタロシリケートを構成す
る金属がアルミニウム、鉄、ガリウム、マンガン、クロ
ム、チタン、ジルコニウム、白金、パラジウム、銅、亜
鉛、バナジウム及びホウ素よりなる群のうちの少なくと
も1種の金属であることを特徴とする請求項1記載の窒
素酸化物浄化用触媒。
2. The metal constituting the mesoporous metallosilicate is at least one metal selected from the group consisting of aluminum, iron, gallium, manganese, chromium, titanium, zirconium, platinum, palladium, copper, zinc, vanadium and boron. 2. The catalyst for purifying nitrogen oxides according to claim 1, wherein:
【請求項3】 メソポーラスメタロシリケートの粉末X
線回折パターンの1つピークが1.8nmより大きい面
間隔を有するか、または非晶質状態であることを特徴と
する請求項1または2記載の窒素酸化物浄化用触媒。
3. Powder X of mesoporous metallosilicate
3. The catalyst for purifying nitrogen oxides according to claim 1, wherein one peak of the line diffraction pattern has a plane spacing larger than 1.8 nm or is in an amorphous state.
JP8300301A 1996-11-12 1996-11-12 Catalyst for purifying nitrogen oxide Withdrawn JPH10137597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8300301A JPH10137597A (en) 1996-11-12 1996-11-12 Catalyst for purifying nitrogen oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8300301A JPH10137597A (en) 1996-11-12 1996-11-12 Catalyst for purifying nitrogen oxide

Publications (1)

Publication Number Publication Date
JPH10137597A true JPH10137597A (en) 1998-05-26

Family

ID=17883141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8300301A Withdrawn JPH10137597A (en) 1996-11-12 1996-11-12 Catalyst for purifying nitrogen oxide

Country Status (1)

Country Link
JP (1) JPH10137597A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001019731A1 (en) * 1999-09-09 2001-03-22 Kubota Corporation Novel compound and microporous material and method for production thereof
WO2004096888A1 (en) * 2003-05-02 2004-11-11 The Circle For The Promotion Of Science And Engineering Catalysts and processes for production of polymers
US7632769B2 (en) 2004-07-26 2009-12-15 Hiroshi Okamoto Zirconia porous body and manufacturing method thereof
JP2010051836A (en) * 2008-08-26 2010-03-11 Babcock Hitachi Kk Nitrogen oxide purifying catalyst and nitrogen oxide purifying method
JP2013136034A (en) * 2011-12-28 2013-07-11 Isuzu Motors Ltd Urea scr catalyst and exhaust gas post-treatment system
CN114790406A (en) * 2022-05-20 2022-07-26 浙江桃花源环保科技有限公司 Fuel additive for inhibiting generation of nitrogen-containing pollutants in biomass fuel combustion

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001019731A1 (en) * 1999-09-09 2001-03-22 Kubota Corporation Novel compound and microporous material and method for production thereof
WO2004096888A1 (en) * 2003-05-02 2004-11-11 The Circle For The Promotion Of Science And Engineering Catalysts and processes for production of polymers
US7632769B2 (en) 2004-07-26 2009-12-15 Hiroshi Okamoto Zirconia porous body and manufacturing method thereof
US7642210B2 (en) 2004-07-26 2010-01-05 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Zirconia porous body and manufacturing method thereof
JP2010051836A (en) * 2008-08-26 2010-03-11 Babcock Hitachi Kk Nitrogen oxide purifying catalyst and nitrogen oxide purifying method
JP2013136034A (en) * 2011-12-28 2013-07-11 Isuzu Motors Ltd Urea scr catalyst and exhaust gas post-treatment system
CN114790406A (en) * 2022-05-20 2022-07-26 浙江桃花源环保科技有限公司 Fuel additive for inhibiting generation of nitrogen-containing pollutants in biomass fuel combustion
CN114790406B (en) * 2022-05-20 2023-05-30 浙江桃花源环保科技有限公司 Fuel additive for inhibiting generation of nitrogenous pollutants in biomass fuel combustion

Similar Documents

Publication Publication Date Title
EP2406006B1 (en) Mobile denox catalyst
JP5474181B2 (en) Catalyst cocatalyst in vanadium-free mobile catalyst
EP0686423B1 (en) Use of ammonia decomposition catalysts
JPH10137597A (en) Catalyst for purifying nitrogen oxide
JP5164821B2 (en) Nitrogen oxide selective catalytic reduction catalyst
JP3132959B2 (en) Ammonia decomposition catalyst
CN109647499B (en) Catalyst for growing Cu-SSZ-13 molecular sieve by taking HT-SiC as carrier and preparation method thereof
JP3132960B2 (en) Ammonia decomposition catalyst
JPH08215544A (en) Method for removing nitrogen oxide of diesel engine
JP3229136B2 (en) Ammonia decomposition method
JPH081006A (en) Catalyst for purification of exhaust gas and its production
JP3332652B2 (en) Ammonia decomposition removal method
JPH044045A (en) Catalyst for processing exhaust gas
JP3229117B2 (en) Ammonia decomposition method
JP3322520B2 (en) Exhaust gas denitration catalyst
JPH10509645A (en) Nitrogen oxide decomposition method and catalyst
JPH08266870A (en) Denitrifying method
AU2011101385A4 (en) Mobile DeNOx catalyst
JP3453172B2 (en) DeNOx method
JP2001286751A (en) Basic gas absorbent and method for treating basic gas- containing exhaust gas
JPH07241466A (en) Catalyst for purification of waste gas and its production
JPH06335618A (en) Ammonia decomposing method
CN113134383A (en) Preparation method of metal oxide catalyst
JPH06126187A (en) Removing method for nitrogen oxide
JPH0796139A (en) Method for purifying waste gas

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040203