JPS5810721A - Liquid crystal display element - Google Patents

Liquid crystal display element

Info

Publication number
JPS5810721A
JPS5810721A JP56109732A JP10973281A JPS5810721A JP S5810721 A JPS5810721 A JP S5810721A JP 56109732 A JP56109732 A JP 56109732A JP 10973281 A JP10973281 A JP 10973281A JP S5810721 A JPS5810721 A JP S5810721A
Authority
JP
Japan
Prior art keywords
liquid crystal
display element
voltage
state
crystal display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56109732A
Other languages
Japanese (ja)
Other versions
JPH0512687B2 (en
Inventor
Koji Kuroda
孝二 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP56109732A priority Critical patent/JPS5810721A/en
Publication of JPS5810721A publication Critical patent/JPS5810721A/en
Publication of JPH0512687B2 publication Critical patent/JPH0512687B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To extend allowable ranges of the voltage, the temperature, and the cell thickness to increase the number of displayable picture elements, by using a specific optically active resin as materials of an oriented film in the storage type liquid crystal display element using the helical structure liquid crystal. CONSTITUTION:A liquid crystal 4, which has a helical structure of <=5mu helical pitch, and oriented films 3a and 3b consisting of an optically active resin which induces the helical direction opposite to that of the liquid crystal 4 in the liquid crystal 4 are held between a pair of electrode substrates 1a and 1b either of which is transparent at least, thus producing a liquid crystal display element. If the helical pitch exceeds 5mu, a sufficient contrast cannot be obtained in the display element where the interval of electrodes is about 5-30mu, and the storage time is shortened, and the display element is inferior in practicality. The simple or a mixture of a cholestric liquid crystal is used. A polyamino acid resin is used desirably as the optically active resin constituting oriented films. The relaxation time is made longer to obtain a liquid crystal display element where the display characteristic, specially, the wirting and erasing operation characteristic is improved.

Description

【発明の詳細な説明】 本発明は、らせん構造を有する液晶を用いる記憶型液晶
表示素子に関し、更に詳しくは中間電圧あるいは中間温
度状態で準安定な透明状態を維持できる時間、すなわち
緩和時間をより長くすることにより表示特性、tfI#
に書込消去操作特性を改善した液晶表示素子を提供する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a memory type liquid crystal display element using a liquid crystal having a helical structure, and more specifically, the present invention relates to a memory type liquid crystal display element using a liquid crystal having a helical structure. By increasing the display characteristics, tfI#
The present invention provides a liquid crystal display element with improved write/erase operation characteristics.

従来のらせん構造を有する液晶を用いる記憶型液晶表示
素子による記憶表示方法には、大別して、コレステリッ
ク系液晶を垂直ないし水平配向と組合せて電圧印加によ
り散乱表示する方法と、スメクチック系液晶を弱い垂直
ないし水平配向と組合せて電圧印加と温度制御によって
散乱表示する方法がある。これら記憶型液晶は、温度へ
の差はあるが、いずれも、電圧ゼロで散乱状態と透明状
態とが共存し、電圧上昇とともに中間電圧で散乱を呈し
、さらに高電圧において強制ネマチック状態となり透明
化する性質を有する。また、これら液晶は、高電圧で透
明化した後、電圧を下げて中間電圧(あるいは中間温度
)としたときにはヒステリシス効果により透明状態で一
定の時間内であれば準安定化する。液晶マトリクス表示
素子においては、はとんどの画素(単位表示部)に上記
準安定状態を維持する中間電圧(あるいは中間温度)を
与えつつ所望の画素に書込あるいは消去操作(アドレス
)を順次行い全体として所望の表示を行う。しかしなが
ら、記憶型液晶において、上記準安定状態を持続できる
時間は限られており、この時間内においてアドレスを終
了する必要があり、温度変化やセル厚のばらつきによる
液晶の特性変化があると、表示不能または不均一な表示
になるため、実用上、配憶型液晶表示素子の使用可能温
度範囲は狭く、またセル厚の許容範囲は狭いものとなっ
ていた。
Conventional memory display methods using memory-type liquid crystal display elements using liquid crystals with a helical structure can be roughly divided into two methods: cholesteric liquid crystals are combined with vertical or horizontal alignment to perform scattering display by applying voltage, and smectic liquid crystals are used in combination with weak vertical alignment. Alternatively, there is a method of scattering display by applying voltage and controlling temperature in combination with horizontal orientation. Although there are differences in temperature, these memory type liquid crystals exhibit a scattering state and a transparent state coexisting at zero voltage, exhibit scattering at an intermediate voltage as the voltage increases, and then become forced into a nematic state at higher voltages and become transparent. It has the property of Moreover, after these liquid crystals become transparent at a high voltage, when the voltage is lowered to an intermediate voltage (or an intermediate temperature), the liquid crystal becomes metastable within a certain period of time in a transparent state due to the hysteresis effect. In a liquid crystal matrix display element, writing or erasing operations (address) are sequentially performed on desired pixels while applying an intermediate voltage (or intermediate temperature) to maintain the above-mentioned metastable state to most pixels (unit display area). A desired display is performed as a whole. However, in memory-type liquid crystals, the time that the above-mentioned metastable state can be maintained is limited, and it is necessary to complete the address within this time.If the characteristics of the liquid crystal change due to temperature changes or variations in cell thickness, the display Therefore, in practice, the usable temperature range of memory-type liquid crystal display elements is narrow, and the permissible range of cell thickness is also narrow.

本発明者は、上述の問題を解決すべく研究した結果、液
晶と接する電極板上に設ける配向膜として特定の光学活
性樹脂からなるものを用いれば、上記準安定状態の持続
時間が延長され、結果とし【電圧、温度、セル厚の許容
範囲が拡大でき、また表示可能な画素数も増大できるこ
とを見出した。
As a result of research to solve the above-mentioned problem, the present inventor found that if an alignment film made of a specific optically active resin is used as the alignment film provided on the electrode plate in contact with the liquid crystal, the duration of the above-mentioned metastable state can be extended. As a result, we found that the permissible ranges of voltage, temperature, and cell thickness could be expanded, and the number of displayable pixels could also be increased.

本発明の液晶表示素子は、このような知見に基づくもの
であり、より詳しくは、らせんピッチが5μ以下のらせ
ん構造を有する液晶を、この液晶と逆のらせん方位を液
晶に誘導する光学活性樹脂からなる配向膜を液晶側表面
に有し少くとも一方が透明な一対の電極基板で挾持して
なることを特徴とするものである。
The liquid crystal display element of the present invention is based on such knowledge, and more specifically, the liquid crystal display element of the present invention is made of an optically active resin that induces a liquid crystal having a helical structure with a helical pitch of 5μ or less to have a helical orientation opposite to that of the liquid crystal. The device is characterized in that it has an alignment film on the liquid crystal side surface and is sandwiched between a pair of electrode substrates, at least one of which is transparent.

以下、実施例について本発明を参照しつつ更に具体的に
説明する。
Hereinafter, examples will be described in more detail with reference to the present invention.

第1図は、本発明の一実施例にかかる液晶表示素子の概
念的積層構造を示す斜視図である。
FIG. 1 is a perspective view showing a conceptual laminated structure of a liquid crystal display element according to an embodiment of the present invention.

第1図において、一対の透明基板1m、[4のそれぞれ
対向する一面上には、列電極膜2m、行電極膜2bが設
けられ、これらがそれぞれ電極基板を構成する。更に電
極膜2m 、 2b上にはそれぞれ一対の光学活性樹脂
からなる配向膜3m、3bが形成され、それらの間には
、らせん構造を有する液晶4が挾持される。図示しない
が、電極膜2m。
In FIG. 1, a column electrode film 2m and a row electrode film 2b are provided on opposing surfaces of a pair of transparent substrates 1m and 4, respectively, and these constitute electrode substrates. Further, a pair of alignment films 3m and 3b made of optically active resin are formed on the electrode films 2m and 2b, respectively, and a liquid crystal 4 having a helical structure is sandwiched between them. Although not shown, the electrode film is 2 m long.

2bの個々は、それぞれ独立圧電位を与えられる駆動電
源端子に接続され、また構成される素子(セル)の周囲
部には慣用のシール構造が与えられている。配向膜3m
、3bならびに、液晶4の詳細については後述する。第
1図に示すような液晶表示素子の構造は、配向膜3m、
3bが光学活性樹脂からなることを除き、それ自体、公
知なものである。
Each of the elements 2b is connected to a driving power supply terminal to which an independent piezoelectric potential is applied, and a conventional sealing structure is provided around the periphery of the element (cell). Orientation film 3m
, 3b and the liquid crystal 4 will be described in detail later. The structure of a liquid crystal display element as shown in FIG. 1 includes an alignment film 3m,
Except for the fact that 3b is made of an optically active resin, it is known per se.

本発明の液晶表示素子の駆動方法もそれ自体は公知のも
のが用いられ、例えば電界効果でコレステリック−ネマ
チック相転移を起す方法と、レーザー書き込み等の熱効
果をこれに組合せて相転移をより多様化する方法とがあ
る。電界効果によるコレステリック−ネマチック相転移
を利用した記憶効果を有する液晶表示素子の駆動方法と
しては、たとえば特開昭(資)−159294号公報あ
るいは特開昭50−159294号公報によるものがあ
り、これら方法には、表示状態を持続するために表示内
容をリフレッシュする回路が不要であり、原理的にクロ
スト嶋りをなくすことができるため、多数の走査電極の
液晶表示素子でも容易に表示できる利点、大面積の!ト
リクス表示装置においても簡便に低電力で表示を行い得
る利点がある。
The method of driving the liquid crystal display element of the present invention is also known per se. For example, a method of causing a cholesteric-nematic phase transition using an electric field effect, and a method of causing a cholesteric-nematic phase transition using an electric field effect, and a method that combines this with a thermal effect such as laser writing to create a more diverse range of phase transitions. There is a way to do this. As a method for driving a liquid crystal display element having a memory effect using cholesteric-nematic phase transition caused by an electric field effect, there are methods disclosed in, for example, Japanese Patent Application Laid-Open No. 159294/1983 or Japanese Patent Application Laid-open No. 159294/1989. The method has the advantage that it does not require a circuit to refresh the displayed content to maintain the display state, and can theoretically eliminate crosstalk, so it can be easily displayed even on a liquid crystal display element with a large number of scanning electrodes. Large area! The TRIX display device also has the advantage of being able to easily display images with low power.

たとえば第1図に示した液晶表示素子に上記電界効果に
よる駆動方法により書込−消去を行う原理を第2図以下
を用いて説明し、本発明の理解の一助とする。
For example, the principle of writing and erasing the liquid crystal display element shown in FIG. 1 by the above-mentioned field effect driving method will be explained with reference to FIGS. 2 and below to aid in understanding the present invention.

第2図は、第1図の液晶表示素子において液晶4として
、らせんピッチ2μ程度の正の誘電異方性を有するコレ
ステリック相液晶を用いる場合の該液晶表示素子におけ
る印加電圧量−光透過強度(′r)の一般的特性曲線を
示すものである。液晶は、電圧印加前は点Aで示される
透、明状態にあるが、印加電圧Vを徐々に増大してスレ
ッショルド電圧vL より大きくすると、特性線!、に
沿って透過強度が減少し、特性性j2  の領域の不透
明状態と15゜ なる。そしてこの不透明状態から電圧Vを減少すると、
今度は、特性線1. に沿って点Bで示される不透明な
コレステリック状態(フォーカルコニック状]111)
になる。他方、特性線!5で示される不透明状態から電
圧Vを更に増加してスレッシロルド電圧VH1より大き
くすると、特性線44 に沿って点Cの透明状態(強制
ネマチック状II)となる。更にこの強制ネマチック状
1(cあるいは後述するスレン′ショルP電圧VFr2
以上における点D)から遷移の中間段階のプレステリツ
ク状態(G状態)が出現するまでの時間である緩和時間
τNC以内に電圧Vを零に低下させると特性線15に沿
って点ムの透明なプレステリツク状1!!(基底状態)
に戻る。他方、強制ネマチックス状態にある液晶にかけ
られている電圧Vを、この遷移時間τNCよりも長い時
間かけて徐々に降下させると、降下条件により変動はあ
るが、スレッショルド電圧vH2までは透明状態であり
、その後に特性線16及びIs に沿って点Bの不透明
なコレステリック状態となる。また液晶を点Cの透明状
!1にした後、スレッショルド電圧vH1と’[2の間
にある中間電圧!、を印加し続けた場合には、透明状態
はある緩和時間〒の間だけ透明状態を維持した後、特性
線I、の領域の不透明状態となる。
FIG. 2 shows the voltage applied to the liquid crystal display element - light transmission intensity ( 'r) shows a general characteristic curve. The liquid crystal is in a transparent, bright state shown at point A before voltage is applied, but when the applied voltage V is gradually increased to exceed the threshold voltage vL, the characteristic line! , the transmission intensity decreases along , and becomes 15° from the opaque state in the region of characteristic j2. Then, when the voltage V is decreased from this opaque state,
This time, characteristic line 1. Opaque cholesteric state (focal conic shape] 111) indicated by point B along
become. On the other hand, characteristic lines! When the voltage V is further increased from the opaque state shown by 5 to exceed the threshold voltage VH1, the transparent state (forced nematic state II) at point C is obtained along the characteristic line 44. Furthermore, this forced nematic state 1 (c or Thren's Sholl P voltage VFr2, which will be described later)
If the voltage V is reduced to zero within the relaxation time τNC, which is the time from point D) to the appearance of the presteric state (G state) at the intermediate stage of the transition, the transparent point M along the characteristic line 15 Presterik-like 1! ! (ground state)
Return to On the other hand, if the voltage V applied to the liquid crystal in the forced nematic state is gradually lowered over a period longer than this transition time τNC, the liquid crystal remains in the transparent state up to the threshold voltage vH2, although it varies depending on the drop conditions. This is followed by the opaque cholesteric state at point B along the characteristic line 16 and Is. Also, the liquid crystal is transparent at point C! 1, the intermediate voltage between the threshold voltage vH1 and '[2! , continues to be applied, the transparent state remains transparent for a certain relaxation time 〒, and then becomes opaque in the region of the characteristic line I.

なお以上の特性は、交番電圧を印加した場合にも基本的
に同様である。
Note that the above characteristics are basically the same when an alternating voltage is applied.

上述したように、コレステリック相液晶は、印加電圧V
が零の場合K、第2図に示す点Aの透明状態と点Bの不
透明状態の2つの状態で比較的長期間安定化し、これを
利用して記憶表示を行うことができる。
As mentioned above, the cholesteric phase liquid crystal has an applied voltage V
When K is zero, it is stabilized for a relatively long period of time in two states, the transparent state at point A and the opaque state at point B shown in FIG. 2, and this can be used to perform memory display.

また、液晶に点Aの透明状態と点Bの不透明状態を与え
るためには、次のような電圧印加法を適用することもで
きる。すなわち、スレッシ璽ルド電圧vH1より高い電
圧E。を液晶に印加して点Cの透明状態にした後、第2
図および第3図(A)に示すE、にすると点りの透明状
態が維持される。この状態から遷移時間iNc以内に電
圧Vを零にすると、第3図体)、(B)に示すように第
2図における点Aの透明状態が得られる。一方、第3図
(C)に示すように第2図の点りの透明状態から、τN
c以上の時間だけ電圧を零に維持すると、コレステリッ
クへの遷移が終了した中間状態であるG状態になり再び
電圧E1 を印加すると第2図の特性線I、の領域の不
透明状態に移行し、この後に電圧Vを零とすると第2図
の点(B)の不透明状態を得ることができる(第3図(
C)、(D))。
Further, in order to give the liquid crystal a transparent state at point A and an opaque state at point B, the following voltage application method can also be applied. That is, the voltage E is higher than the threshold voltage vH1. is applied to the liquid crystal to make the point C transparent, and then the second
When set to E shown in the figure and FIG. 3(A), the transparent state of the dot is maintained. When the voltage V is reduced to zero from this state within the transition time iNc, a transparent state at point A in FIG. 2 is obtained as shown in FIGS. 3) and (B). On the other hand, as shown in Figure 3(C), from the transparent state of the dot in Figure 2, τN
When the voltage is maintained at zero for a time longer than c, the transition to the cholesteric state is completed, which is the intermediate state G state, and when the voltage E1 is applied again, the state shifts to the opaque state in the region of the characteristic line I in FIG. If the voltage V is then reduced to zero, the opaque state at point (B) in Figure 2 can be obtained (Figure 3 (
C), (D)).

このような電圧印加をX−Yff)リクス液晶表示素子
の各画素毎に行うためkは、行(ト)−列(3)各電極
群に下記のステップ1)〜4)に従って順次電圧を印加
すればよい。ここでは第4図に示すようなX、〜X5の
3列電極群とY、〜Y5の3行電極群とからなるX−Y
マトリクス液晶表示素子について説明する。
In order to apply such a voltage to each pixel of the liquid crystal display element (X-Yff), voltage is sequentially applied to each row (g)-column (3) electrode group according to steps 1) to 4) below. do it. Here, as shown in FIG. 4, an
A matrix liquid crystal display element will be explained.

ステップa): 列電極群X、〜Xsの電位を全てE、に、行電極群!1
〜Y、の電位を全て−E、とし、両者が交差する全ての
画素に一2K 、 (2E、 + Eo) V、、)の
電圧を印加することにより、第2図の点Cの透明状態と
する。
Step a): Set the potentials of all the column electrode groups X, ~Xs to E, and the row electrode group! 1
By setting all potentials of ~Y to -E and applying a voltage of 12K, (2E, + Eo) V, , to all pixels where both intersect, the transparent state of point C in Fig. 2 is obtained. shall be.

ステップb): 次に第4図に示すように列電極群x1〜XSの電位を全
て零とし、行電極群Y1〜Y3の電位を一1hのままと
し【全画素の印加電圧を−E1とすることKより第2図
の点りの透明状態とする。
Step b): Next, as shown in FIG. 4, the potentials of the column electrode groups x1 to XS are all set to zero, and the potentials of the row electrode groups Y1 to Y3 are kept at -1h. From step K, the dot in FIG. 2 becomes transparent.

ステップC): 選択された画素を不透明状態とする書込動作は、線順次
に行う。第5図に列電極X2を走査し、選択画素X2−
Y2に書込を行う場合の各電極の電位ならびに各画素に
かかる電圧を示す。すなわち、行電極Y2のみKKl 
(Y+ 、Y3は電位−zlのまま)の電位を与え、列
電極X2のみに電位E1(Xl、 Xsは電位0)を与
えれば、画素X2− Y、、X2−Ysには一2E1の
電圧がかかり、透明状態Cが保たれるが、画素X2  
y2にかかる電圧を10となる。したがって、第3図(
C)、Φ)に示すごとくこの状態で緩和時間τNC以上
保持すれば、次に全画素なl@4図の状態に戻して−E
、の電圧をかけたときにも特性線j2で示す不透明状態
に移行し文書込が行われる。
Step C): The writing operation to make the selected pixels opaque is performed line-sequentially. In FIG. 5, the column electrode X2 is scanned, and the selected pixel X2-
The potential of each electrode and the voltage applied to each pixel when writing to Y2 are shown. In other words, only the row electrode Y2 has KKl
(Y+, Y3 remain at potential -zl), and if we apply potential E1 (Xl, Xs are potential 0) only to column electrode X2, the voltage of -2E1 will be applied to pixels is applied, and transparent state C is maintained, but pixel X2
The voltage applied to y2 is 10. Therefore, Fig. 3 (
As shown in C) and Φ), if the relaxation time is maintained longer than τNC in this state, then return to the state of l@4 in which all pixels are present and -E
When a voltage of .

ステップd): 全ての列電極について走査が終了した稜、全行−全列の
印加電極を零とすることにより、点りの透明状態にある
全ての画素は点Aの透明状態となり、特性線I2の領域
にある全ての画素は点Bの状態に移行する。かくして記
憶表示が行なわれる。
Step d): On the edge where all column electrodes have been scanned, by setting the applied electrodes of all rows and all columns to zero, all pixels in the transparent state of the dot become the transparent state of point A, and the characteristic line All pixels in the area I2 transition to the state of point B. Memory display is thus performed.

以上のことより、上記駆動方法によれ)f、クロストー
クな生ずることなく全画素の走査ならびに記憶表示が行
われる。なお上記の例は、直流電圧±E1を用いる例で
あるが、直流電圧E1 および−IC1の代り、に絶対
値がElで位相が逆の交番電圧を用いることもできる。
From the above, by using the above driving method, all pixels can be scanned and stored and displayed without causing crosstalk. Note that the above example uses the DC voltage ±E1, but instead of the DC voltages E1 and -IC1, an alternating voltage whose absolute value is El and whose phase is opposite may be used.

上述した駆動方法の一つの問題は、各列電極の走査にτ
式だけ時間がかかるのに対して、それ以外の列電極に属
する画素には基本的に−E1あるいは鵞、の電圧がかか
ることである。したがって走査列電極以外の電極は電圧
−E、またはElがかかった状態で、点りの透明状態あ
るいは特性線12で表わされる不透明状態で維持されね
ばならないのに対して、電圧E1がかかる状態で点りの
状態が維持できる時間は緩和時間Tの間だけである。
One problem with the driving method described above is that the scanning of each column electrode requires τ
The difference is that, while it takes time for the equation, a voltage of -E1 or 0.01 is basically applied to pixels belonging to other column electrodes. Therefore, electrodes other than the scanning column electrodes must be maintained in a dotted transparent state or an opaque state represented by characteristic line 12 when voltage -E or El is applied, whereas when voltage E1 is applied, The time when the lighted state can be maintained is only during the relaxation time T.

したがって、上述の方法で連続的に走査できる電極列の
最大数Nは、 N×τNC<T で許容される範囲に止まる。
Therefore, the maximum number N of electrode rows that can be continuously scanned by the above method is within the range allowed by N×τNC<T.

このように、上記駆動方法において、緩和時間〒は重要
な意味を持つにも拘らず、従来の液晶表示素子は緩和時
間Tの長さが充分でなかった。これに対して本欄、1の
液晶表示素子においては、配向膜材料として特定の光学
活性樹脂を用いることkより、表示に必要な相転移に要
する緩和時間は本質的に変化させることなく、緩和時間
Tをたとえば2〜10倍というように飛躍的に延長でき
るよ5になったものである。
As described above, in the above driving method, although the relaxation time T has an important meaning, the relaxation time T in the conventional liquid crystal display element was not long enough. On the other hand, in the liquid crystal display element in item 1 of this column, since a specific optically active resin is used as the alignment film material, the relaxation time required for the phase transition required for display does not essentially change. 5, which allows the time T to be extended dramatically, for example, by 2 to 10 times.

次に本発明の液晶表示素子の各部の材料について、より
詳細に説明する。
Next, the materials of each part of the liquid crystal display element of the present invention will be explained in more detail.

本発明に用いられる液晶は、第2図の点ムで示される基
底状態でらせんピッチが5μ以下のらせん組織を有する
ものが用いられる。らせんピッチが5μを超えると、電
極間隙が5〜30μ程度の表示素子では、充分なコント
ラストが得られず、また記憶時間も短かくなり、実用性
に乏しい。点Bないしは特性線j3で示される光散乱状
態は液晶自身の持つらせん構造と、配向、電界あるいは
熱的な撹乱作用とにより引き起こされるものである。
The liquid crystal used in the present invention has a helical structure with a helical pitch of 5 μm or less in the ground state shown by dots in FIG. 2. When the helical pitch exceeds 5 μ, sufficient contrast cannot be obtained in a display element with an electrode gap of about 5 to 30 μ, and the storage time becomes short, resulting in poor practicality. The light scattering state shown by the point B or the characteristic line j3 is caused by the helical structure of the liquid crystal itself, and by alignment, electric field, or thermal disturbance.

このような性質を有する液晶としては、コレステリック
液晶の単品または混合物、スメクチック液晶またはネマ
チック液晶と旋光性物質の混合物、らせんを持つスメク
チック液晶等が用いられる。
As liquid crystals having such properties, cholesteric liquid crystals alone or mixtures, smectic liquid crystals or mixtures of nematic liquid crystals and optically active substances, helical smectic liquid crystals, etc. are used.

液晶の種類は問わないが、その光散乱強度は一般に屈折
率異方性の大きな液晶の方が強く、ピ7工二ル系、シッ
フ系、アゾキシ系、ビリ叱ジン系等の液晶が実用上好ま
しく用いられる。また用いられる旋光性物質としては、
その混合により液晶状態を損なわないものなら各種のも
のが用いられるが、材料的には、プレステリツク系化合
物あるいは分子構造の一部に光学活性基を有するいわゆ
るカイラルネオチック物質が好ましく用いられる。
Although the type of liquid crystal does not matter, the light scattering intensity is generally stronger for liquid crystals with large refractive index anisotropy, and liquid crystals such as pyridine-based, Schiff-based, azoxy-based, and pyridine-based are used in practical applications. Preferably used. The optically active substance used is
Various materials can be used as long as the mixture does not impair the liquid crystal state, but in terms of materials, presteric compounds or so-called chiral neotic materials having an optically active group in a part of the molecular structure are preferably used.

また配向膜材料として用いられる光学活性樹脂としては
、基本的には分子構造中に光学活性基を有する任意の樹
脂が用いられるが、実用的には、Iリア建ノ酸樹脂が好
ましく用いられる。Iリアイノ酸樹脂の具体例としては
、下記の一般式で表わされるものが好ましく用いられる
Furthermore, as the optically active resin used as the alignment film material, basically any resin having an optically active group in its molecular structure can be used, but for practical purposes, Iriadenanoic acid resin is preferably used. As a specific example of the I liaino acid resin, those represented by the following general formula are preferably used.

ここで01は不斉炭素原子、nは10〜104の範囲の
整数であり、Rはたとえば以下の靭1内は単位ア々ノ酸
を示す)で表わされるものが用いられる;OH −CH(アラニン)、 CH−CH3(スレオニン)、
CH20H(セリン)、−OH20H2−8110H3
(メチオ(ヒスチジン)、−CH2−C0OH(アス/
ぐルチン酸)、CH20H2COOH(グルタミン酸)
、−CM2−CH−COOH(ヒドロキシグルタ電ン酸
)、CH2CH2C0OR’ (グルタンン醗エステル
(ここで8′はアルキル、アルキルフェニル、フェニル
、又はナフチル基)、−04HBNH2(リジン)、O
H これら光学活性樹脂を、たとえばジメチルホルムアミド
、ジメチルアセトアミP、ジメチルスルホキシP、ヘキ
サメチルホスホアiP、r−ブチ濃ラクトン、m−クレ
ゾール、クロロホルムまたはジク00エタン等のノーロ
ゲン化炭化水素、ジオキサンなどの溶媒に溶解した後、
浸漬(ディッピング)、スピンナーコーティング、スプ
レーコーティング等の慣用法により電極板上に塗布後、
溶媒を蒸発することにより厚さ0.01〜10μ程度の
配向膜を形成する。
Here, 01 is an asymmetric carbon atom, n is an integer in the range of 10 to 104, and R is represented by, for example, the following 1 indicates the unit anoic acid; OH -CH ( alanine), CH-CH3 (threonine),
CH20H (serine), -OH20H2-8110H3
(methio(histidine), -CH2-C0OH(as/
glutic acid), CH20H2COOH (glutamic acid)
, -CM2-CH-COOH (hydroxyglutaelectroic acid), CH2CH2C0OR' (glutane ester (where 8' is an alkyl, alkylphenyl, phenyl, or naphthyl group), -04HBNH2 (lysine), O
H These optically active resins can be combined with dimethylformamide, dimethylacetamide P, dimethyl sulfoxy P, hexamethylphosphor iP, r-butylene lactone, m-cresol, chloroform or norogenated hydrocarbons such as dichloroethane, dioxane, etc. After dissolving in a solvent such as
After coating on the electrode plate using conventional methods such as dipping, spinner coating, and spray coating,
By evaporating the solvent, an alignment film having a thickness of about 0.01 to 10 μm is formed.

本発明の配向膜としては、用いる液晶のらせん構造とは
逆のらせん方位を液晶に誘導する光学活性樹脂が用いら
れる。光学活性樹脂として、ボリアミノ酸を用いる場合
に、特定の液晶と組合せる単位アミノ酸としてLllと
D型のいずれを選ぶかは一概には決められないことであ
る。これは単位アミノ酸の重合によりイリアミノ酸を得
るに際して光学活性基の反転がしばしば認められるから
である。しかし、特定のアミノ酸についてLwのアずノ
酸から得られる?リアミノ酸とD型のアミノ酸から得ら
れるそれとでは、液晶に誘導されるらせん方位は一般に
逆となるので、特定の液晶に対していずれの型の4リア
ミノ酸を用いるべきかは簡単な実験により決定できるこ
とである。
As the alignment film of the present invention, an optically active resin that induces a helical orientation in the liquid crystal opposite to the helical structure of the liquid crystal used is used. When polyamino acids are used as optically active resins, it is difficult to decide whether to select Lll or D type amino acids as unit amino acids to be combined with a specific liquid crystal. This is because inversion of optically active groups is often observed when obtaining iriamino acids by polymerizing unitary amino acids. But what about certain amino acids that can be obtained from Lw azunoic acid? Since the helical orientations induced in liquid crystals are generally opposite between those obtained from 4-amino acids and those obtained from D-type amino acids, which type of 4-amino acids should be used for a particular liquid crystal can be determined by a simple experiment. It is possible.

本発明に用いられる電極基板ならびにシール構造は、従
来より液晶表示素子に用いられるものと特に異るもので
はないので、ここであらためて述べる必要はないであろ
う。
The electrode substrate and seal structure used in the present invention are not particularly different from those conventionally used in liquid crystal display elements, so there is no need to describe them here.

本発明において、このような光学活性樹脂からなる配向
膜を用いることにより、緩和時間Tが真長し、これを通
じて種々の改善が得られる理由は必ずしも明らかでない
が、光学活性樹脂が液晶が本来もつらせん構造とは逆の
らせん方位を液晶に誘導する性質をもっているため、実
質的なネマチック状態の界面が配向面より少し離れた液
晶層内に形成されるためではないかと推定される。
In the present invention, by using an alignment film made of such an optically active resin, the relaxation time T is lengthened, and the reason why various improvements can be obtained through this is not necessarily clear. It is presumed that this is because an interface in a substantial nematic state is formed in the liquid crystal layer a little distance from the alignment plane because it has the property of inducing a helical orientation opposite to the helical structure in the liquid crystal.

本発明の液晶表示素子は、レーザー書込型相転移セルと
して用いることもできる。この場合、第1図に図示の構
成において、電極膜2&(または2b)と光学活性樹脂
からなる配向膜3m(または3b)との間に、たとえば
各種の染料や顔料を含む被膜剤、多層蒸着膜郷からなる
レーザー波長の吸収層を形成したものや染料を液晶に添
加した形で用いられる。このような素子の吸収層に、た
とえば半導体レーザーからのレーザー光を照射すること
に発生する熱により液晶を溶融しあるいはその特性の温
度による変化を利用してネマチック化するスレツク曹ル
ド電圧を下げてネマチック化して透明状態とすることが
できる。その後、液晶の温度が下っても前述の準安定な
ヒステリシス透明状態になる。この準安定な透明状態は
、前述の例と同様に一定時間Tだけ持続し、この時間内
に各画素をレーザー走査し、その後電圧を零にすれば前
記中間温度における透明状態の画素と不透明状態の画素
とで得られる表示が固定される。ここにおいて、本発明
にしたがい、光学活性樹脂による配向膜を用いれば、中
間温度における透明状態の持続時間〒が延長され、その
結果、レーザー走査による画素数が増加するだけ寸なく
、均一なコントラストの安定した表示が得られる。
The liquid crystal display element of the present invention can also be used as a laser-written phase change cell. In this case, in the configuration shown in FIG. 1, between the electrode film 2& (or 2b) and the alignment film 3m (or 3b) made of optically active resin, a coating agent containing various dyes or pigments, a multilayer vapor deposition layer, etc. It is used in the form of a liquid crystal with a laser wavelength absorbing layer made of a film or with a dye added to the liquid crystal. For example, when the absorbing layer of such an element is irradiated with laser light from a semiconductor laser, the liquid crystal is melted by the heat generated, or the temperature changes in its properties are used to make it nematic by lowering the threshold voltage. It can be made nematic and transparent. Thereafter, even if the temperature of the liquid crystal drops, it enters the above-mentioned metastable hysteresis transparent state. This metastable transparent state lasts for a certain period of time T as in the previous example, and by scanning each pixel with a laser within this time and then reducing the voltage to zero, the pixels in the transparent state and the opaque state at the intermediate temperature can be changed. The display obtained with each pixel is fixed. Here, if an alignment film made of optically active resin is used according to the present invention, the duration of the transparent state at intermediate temperatures is extended, and as a result, the number of pixels by laser scanning is increased, and uniform contrast can be achieved. A stable display can be obtained.

本発明の液晶表示素子は、上記した電界効果型およびレ
ーザー書込型の表示方式に限らず、他のコレステリツク
ーネ!チック型あるいはスメクチツクーネ!チック型の
相転移による散乱表示を利用し、準安定な透明ネマチッ
ク状態の持続時間内に各画素の走査を行5記憶表示方式
に二股に利用可能なものであり、いずれの場合にも持続
時間の延長を通じて、画素数の増加、優れたコント2ス
トの均一性および安定性、動作信頼性などの効果が得ら
れる。
The liquid crystal display element of the present invention is not limited to the above-described field effect type and laser writing type display methods, but can also be applied to other cholesteritschune display systems. Tic-type or smectic-tskune! Using scattering display due to tick-type phase transition, each pixel is scanned within the duration of the metastable transparent nematic state and can be used in two ways for the 5-row memory display method, and in either case, the duration is By increasing the number of pixels, effects such as an increase in the number of pixels, excellent contrast uniformity and stability, and operational reliability can be obtained.

以下、製造例をあげて本発明を更に具体的に説明する。Hereinafter, the present invention will be explained in more detail with reference to production examples.

製造例1 各300本のIn2O3透明電極を表面に有するガラス
基板2枚の表面に、Iリーr−メチル−L−ダルタメー
トのジクロルエタン溶液をスピンナーコートして乾燥後
厚さ0.1μの配向膜を得た。次いでコレステリック相
液晶として♂フェニル系Np液晶(チッソ■製OR41
、(イ)重量%)と ピフェニル系カイ2ルネマチツク
物質(BDH社製CB15.10重量%)との混合液晶
を、上記2枚の電極板により電極が互いにねじれの位置
で直交するように挾持し、液晶層の厚さを9μとした場
合、第2図のスレッショルド電圧VH1は約11Vとな
り、1列あたりの最低走査時間は14ミリ秒となった。
Production Example 1 The surfaces of two glass substrates each having 300 In2O3 transparent electrodes on their surfaces were coated with a dichloroethane solution of Ilyr-methyl-L-daltamate, and after drying, an alignment film with a thickness of 0.1μ was formed. Obtained. Next, a male phenyl Np liquid crystal (OR41 manufactured by Chisso ■) was used as a cholesteric phase liquid crystal.
, (A) wt%) and a piphenyl-based chi2 runematic substance (CB15.10wt% manufactured by BDH) was sandwiched between the two electrode plates so that the electrodes were perpendicular to each other at twisted positions. When the thickness of the liquid crystal layer was 9 μm, the threshold voltage VH1 in FIG. 2 was about 11 V, and the minimum scanning time per column was 14 milliseconds.

そして、この液晶表示素子を1列あたりの走査時間を1
6オリ秒、印加電圧E。を18V、E、を9vで動作さ
せたところ、全画素について均一にムラなく走査、記憶
できた。
The scanning time per column of this liquid crystal display element is 1
6 oriseconds, applied voltage E. When operated at 18V and E at 9V, all pixels could be scanned and stored evenly and evenly.

一方、比較例として配向剤を垂直配向剤オクタデジルア
電ノシ2ンに変えたところ、全体の約%以上の走査を終
えた時点で画面全体が不透明となり表示が不可能となっ
た。
On the other hand, as a comparative example, when the alignment agent was changed to the vertical alignment agent octadecyl urethane 2, the entire screen became opaque and display became impossible at the time when more than about % of the entire screen had been scanned.

また配向剤をヂリーr−メチルーD−グルタメートとし
た場合にも、全体の約%以上の走査を終えた時点で画面
全体が不透明となり表示が不可能となった。
Also, when dily r-methyl-D-glutamate was used as the alignment agent, the entire screen became opaque and display became impossible after scanning approximately % or more of the entire screen.

なお本例の液晶表示素子では、緩和時間Tは10秒以上
となり、これは従来のシリコーン系配向剤を用いた場合
に比べて緩和時間が約3倍に延長されたことを意味する
In the liquid crystal display element of this example, the relaxation time T is 10 seconds or more, which means that the relaxation time is approximately three times longer than when a conventional silicone alignment agent is used.

製造例2 全面にI!1203の透明電極を有するガラス板と、全
面に8102とC@02とを順次蒸着し、赤外部を選択
的に透過する膜を形成し、次にその上にり田ムの熟色層
をスパッタリングによって形成し、更に全11にアルミ
ニウムの電極を形成したガラス板の、電極上にポリーT
−メチルーD−グルタメートのシタ四ルエタン溶液を塗
布し、乾燥して厚さ0.2μの配向膜を得た。次いでス
メクチック液晶(lIDl1社製に24)K12重量−
のコレステリツクク四ライPを添加した混合液晶を上記
一対の電極板に挾持させ工Iキシ樹脂で周辺をシールし
て液晶厚み12μの表示素子を得た。この表示素子の電
極板間に30Vの電圧をかけつつ、赤外線レーザー(出
力15W)でアル1=クム側から照射して1ili素あ
たり1msで約1秒間で走査してグツフィック儂を描い
た後、電圧を切ったところ、書込倫は鮮明に記憶された
Production example 2 I on the entire surface! A glass plate with a transparent electrode of 1203, 8102 and C@02 are sequentially deposited on the entire surface to form a film that selectively transmits infrared light, and then a ripe color layer of Ritamu is sputtered on top of it. PolyT
A solution of -methyl-D-glutamate in sita tetraethane was applied and dried to obtain an alignment film with a thickness of 0.2 μm. Next, smectic liquid crystal (24 manufactured by IDl1) K12 weight -
A mixed liquid crystal to which Cholesteric Liquid Crystal P was added was sandwiched between the above pair of electrode plates, and the periphery was sealed with Polyoxy resin to obtain a display element with a liquid crystal thickness of 12 μm. While applying a voltage of 30 V between the electrode plates of this display element, an infrared laser (output 15 W) was irradiated from the Al 1 = cum side and scanned at 1 ms per 1 ili element in about 1 second to draw a Gutsfik me. When the voltage was turned off, the writing process was clearly remembered.

また参考例として配向剤にIリーr−メチル−L−グル
タメートを用いた以外は上記と同様の操作を行った乏こ
ろ真込僚のコントラストに大きなムラが見られ全面への
表示ができなかった。
In addition, as a reference example, the same operation as above was carried out except that I-methyl-L-glutamate was used as the alignment agent. Large unevenness was observed in the contrast of the shokoro makomi-ryo, and it was not possible to display it on the entire surface. .

さらに配向剤として配向剤オクタデジルア建ノシランを
用いたところ、書込儂に配向剤のムラと見られる点状の
ムラが発生した。
Furthermore, when the alignment agent octadedylua-denosilane was used as an alignment agent, dot-like unevenness, which appeared to be unevenness of the alignment agent, occurred during writing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例kかかる液晶表示素子の概念
的積層構造を示す斜視図、第2図は同表示素子の印加電
圧−光透過強度特性曲線、第3図(A)、(C’)はそ
れぞれ表示素子に透明状態および不透明状態の画素を形
成するための印加電圧の時間変化曲線、第3図(3)、
Φ)は対応する画素における光透過強度の時間変化曲線
、第4図および第5図はそれぞれ本発明Kかかる一実施
例としてのX−Y!トリクス液晶表示素子に記憶画儂を
得るための中間工程における電圧印加状況を示す素子の
模式正面図である。 1a、lb・・・ガラス板、2m、2b・・・電極膜、
3m、3b・・・光学活性樹脂配向膜、4・・・液晶。 出願人代理人  猪 股    清 躬3 図 FF7J岬Lv 第 4 圃     躬 5 図
FIG. 1 is a perspective view showing a conceptual laminated structure of a liquid crystal display element according to an embodiment of the present invention, FIG. 2 is an applied voltage-light transmission intensity characteristic curve of the same display element, and FIG. C') are time-varying curves of applied voltage for forming pixels in a transparent state and an opaque state on a display element, respectively, FIG. 3 (3),
Φ) is a time change curve of light transmission intensity in the corresponding pixel, and FIGS. 4 and 5 are X-Y! FIG. 2 is a schematic front view of the TRIC liquid crystal display device showing the state of voltage application in an intermediate step for obtaining a memory image on the TRIC liquid crystal display device. 1a, lb...glass plate, 2m, 2b...electrode film,
3m, 3b... Optically active resin alignment film, 4... Liquid crystal. Applicant's agent Kiyomi Inomata 3 Figure FF7J Misaki Lv 4th field Kiyomi 5 Figure

Claims (1)

【特許請求の範囲】[Claims] らせんピッチが5μ以下のらせん構造を有する液晶を、
この液晶と逆のらせん方位を液晶に誘導する光学活性樹
脂からなる配向膜を液晶側表面に有し少くとも一方が透
明な一対の電極基板で挾持してなる液晶表示素子。
A liquid crystal having a helical structure with a helical pitch of 5μ or less,
A liquid crystal display element comprising an alignment film made of an optically active resin that induces the liquid crystal to have a helical orientation opposite to that of the liquid crystal, on the liquid crystal side surface and sandwiched between a pair of electrode substrates, at least one of which is transparent.
JP56109732A 1981-07-14 1981-07-14 Liquid crystal display element Granted JPS5810721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56109732A JPS5810721A (en) 1981-07-14 1981-07-14 Liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56109732A JPS5810721A (en) 1981-07-14 1981-07-14 Liquid crystal display element

Publications (2)

Publication Number Publication Date
JPS5810721A true JPS5810721A (en) 1983-01-21
JPH0512687B2 JPH0512687B2 (en) 1993-02-18

Family

ID=14517832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56109732A Granted JPS5810721A (en) 1981-07-14 1981-07-14 Liquid crystal display element

Country Status (1)

Country Link
JP (1) JPS5810721A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6037504A (en) * 1983-08-09 1985-02-26 Fujitsu Ltd Manufacture of optical waveguide
JPS61143702A (en) * 1984-12-17 1986-07-01 Inoue Japax Res Inc Manufacture of optical system
JPS61198270A (en) * 1985-02-28 1986-09-02 富士通株式会社 Projection type liquid crystal display unit and method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51110351A (en) * 1975-03-24 1976-09-29 Seikosha Kk Ekishohyojisochito sonoseizohoho
JPS51118458A (en) * 1975-04-10 1976-10-18 Dainippon Printing Co Ltd Electrooptic cell
JPS5557820A (en) * 1978-10-25 1980-04-30 Hitachi Ltd Liquid crystal display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51110351A (en) * 1975-03-24 1976-09-29 Seikosha Kk Ekishohyojisochito sonoseizohoho
JPS51118458A (en) * 1975-04-10 1976-10-18 Dainippon Printing Co Ltd Electrooptic cell
JPS5557820A (en) * 1978-10-25 1980-04-30 Hitachi Ltd Liquid crystal display device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6037504A (en) * 1983-08-09 1985-02-26 Fujitsu Ltd Manufacture of optical waveguide
JPS61143702A (en) * 1984-12-17 1986-07-01 Inoue Japax Res Inc Manufacture of optical system
JPS61198270A (en) * 1985-02-28 1986-09-02 富士通株式会社 Projection type liquid crystal display unit and method and application thereof
JPH0473128B2 (en) * 1985-02-28 1992-11-20 Fujitsu Ltd

Also Published As

Publication number Publication date
JPH0512687B2 (en) 1993-02-18

Similar Documents

Publication Publication Date Title
US4712873A (en) Liquid crystal optical device
US4681404A (en) Liquid crystal device and driving method therefor
JPS6232424A (en) Method for driving liquid crystal element
JP2592958B2 (en) Liquid crystal device
JPS59193426A (en) Driving method of optical modulating element
JPS6031120A (en) Driving method of optical modulating element
US5136408A (en) Liquid crystal apparatus and driving method therefor
US5276542A (en) Ferroelectric liquid crystal apparatus having temperature compensation control circuit
JPS61249024A (en) Liquid crystal optical element
US5093737A (en) Method for driving a ferroelectric optical modulation device therefor to apply an erasing voltage in the first step
KR100654082B1 (en) Monostable ferroelectric active-matrix display and a process for producing the same
JPS5810721A (en) Liquid crystal display element
JPH0422491B2 (en)
JPH079508B2 (en) Liquid crystal display device and driving method thereof
KR100317098B1 (en) Ferroelectric liquid crystal device
JPS61149933A (en) Driving method of optical modulating element
JPS6031121A (en) Driving method of optical modulating element
JPS61243430A (en) Driving method for ferroelectric liquid crystal element
JPS63316024A (en) Optical modulating element
JP2984788B2 (en) Display element device and display element driving method
JPH06194623A (en) Driving method of antiferroelectric liquid crystal display element
JPH0728037A (en) Liquid crystal display device
JPH1082979A (en) Driving method for liquid crystal element
JPH0446409B2 (en)
JP2749823B2 (en) Liquid crystal composition and liquid crystal device containing the same